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Abstract

We determine the asymptotic limit of the function computed by support vector machines
(SVM) and related algorithms that minimize a regularized empirical convex loss function
in the reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where
the number of examples tends to infinity, the bandwidth of the Gaussian kernel tends to
0, and the regularization parameter is held fixed. Non-asymptotic convergence bounds to
this limit in the L2 sense are provided, together with upper bounds on the classification
error that is shown to converge to the Bayes risk, therefore proving the Bayes-consistency
of a variety of methods although the regularization term does not vanish. These results
are particularly relevant to the one-class SVM, for which the regularization can not vanish
by construction, and which is shown for the first time to be a consistent density level set
estimator.

Keywords: Regularization, Gaussian kernel RKHS, One-class SVM, Convex loss func-
tions, kernel density estimation.

1. Introduction

Given n i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of a random variable (X,Y ) ∈ R
d × {−1, 1}, we

study in this paper the limit and consistency of learning algorithms that solve the following
problem:

arg min
f∈Hσ

{
1

n

n∑

i=1

φ (Yif(Xi)) + λ‖ f ‖2
Hσ

}
, (1)

where φ : R → R is a convex loss function and Hσ is the reproducing kernel Hilbert space
(RKHS) of the normalized Gaussian radial basis function kernel (denoted simply Gaussian
kernel below):

kσ(x, x′) =
1

(√
2πσ

)d exp

(−‖x− x′ ‖2

2σ2

)
. (2)
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This framework encompasses in particular the classical support vector machine (SVM)
(Boser et al., 1992) when φ(u) = max(1−u, 0). Recent years have witnessed important the-
oretical advances aimed at understanding the behavior of such regularized algorithms when
n tends to infinity and λ decreases to 0. In particular the consistency and convergence rates
of the two-class SVM (see, e.g., Steinwart, 2002; Zhang, 2004; Steinwart and Scovel, 2004,
and references therein) have been studied in detail, as well as the shape of the asymptotic
decision function (Steinwart, 2003; Bartlett and Tewari, 2004). The case of more general
convex loss functions has also attracted a lot of attention recently (Zhang, 2004; Lugosi and
Vayatis, 2004; Bartlett et al., 2003), and been shown to provide under general assumptions
consistent procedure for the classification error.

All results published so far, however, study the case where λ decreases as the number of
points tends to infinity (or, equivalently, where λσ−d converges to 0 if one uses the classical
non-normalized version of the Gaussian kernel instead of (2)). Although it seems natural
to reduce regularization as more and more training data are available — even more than
natural, it is the spirit of regularization (Tikhonov and Arsenin, 1977; Silverman, 1982)
—, there is at least one important situation where λ is typically held fixed: the one-class
SVM (Schölkopf et al., 2001). In that case, the goal is to estimate an α-quantile, that is, a
subset of the input space X of given probability α with minimum volume. The estimation
is performed by thresholding the function output by the one-class SVM, that is, the SVM
(1) with only positive examples; in that case λ is supposed to determine the quantile level1.
Although it is known that the fraction of examples in the selected region converges to
the desired quantile level α (Schölkopf et al., 2001), it is still an open question whether
the region converges towards a quantile, that is, a region of minimum volume. Besides,
most theoretical results about the consistency and convergence rates of two-class SVM with
vanishing regularization constant do not translate to the one-class case, as we are precisely
in the seldom situation where the SVM is used with a regularization term that does not
vanish as the sample size increases.

The main contribution of this paper is to show that Bayes consistency for the classifica-
tion error can be obtained for algorithms that solve (1) without decreasing λ, if instead the
bandwidth σ of the Gaussian kernel decreases at a suitable rate. We prove upper bounds
on the convergence rate of the classification error towards the Bayes risk for a variety of
functions φ and of distributions P , in particular for SVM (Theorems 6). Moreover, we
provide an explicit description of the function asymptotically output by the algorithms,
and establish converge rates towards this limit for the L2 norm (Theorem 7). In particular,
we show that the decision function output by the one-class SVM converges towards the
density to be estimated, truncated at the level 2λ (Theorem 8); we finally show (Theorem
9) that this implies the consistency of one-class SVM as a density level estimator for the
excess-mass functional (Hartigan, 1987).

This paper is organized as follows. In Section 2, we set the framework of this study
and state the main results. The rest of the paper is devoted to the proofs of these results.
In Section 3, we provide a number of known and new properties of the Gaussian RKHS.
Sections 4 is devoted to the proof of the main theorem that describes the speed of con-
vergence of the regularized φ-risk of its empirical minimizer towards its minimum. This

1. While the original formulation of the one-class SVM involves a parameter ν, there is asymptotically a

one-to-one correspondance between λ and ν
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proof involves in particular a control of the sample error in this particular setting that is
dealt with in Section 5. Section 6 relates the minimization of the regularized φ-risk to more
classical measures of performance, in particular classification error and L2 distance to the
limit. These results are discussed in more detail in Section 7 for the case of the 1- and
2-SVM. Finally the proof of the consistency of the one-class SVM as a density level set
estimator is postponed to Section 8.

2. Notations and Main Results

Let (X,Y ) be a pair of random variables taking values in R
d × {−1, 1}, with distribution

P . We assume throughout this paper that the marginal distribution of X is absolutely
continuous with respect to Lebesgue measure with density ρ : R

d → R, and that is has a
compact support included in a compact set X ⊂ R

d. Let η : R
d → [0, 1] denote a measurable

version of the conditional distribution of Y = 1 given X, the so-called regression function.
The normalized Gaussian radial basis function (RBF) kernel kσ with bandwidth para-

meter σ > 0 is defined for any (x, x′) ∈ R
d × R

d by:

kσ(x, x′) =
1

(√
2πσ

)d exp

(−‖x− x′ ‖2

2σ2

)
,

the corresponding reproducing kernel Hilbert space (RKHS) is denoted by Hσ, with as-

socited norm ‖ . ‖Hσ . Moreover let κσ = ‖ kσ ‖L∞ = 1/
(√

2πσ
)d

. Several useful properties
of this kernel and its RKHS are gathered in Section 3.

Denoting by M the set of measurable real-valued functions on R
d, we define several

risks for functions f ∈ M:

• The classification error rate, usually refered to as (true) risk of f , when Y is predicted
by the sign of f(X), is denoted by

R (f) = P (sign (f(X)) 6= Y ) ,

and the minimium achievable classification error rate over M is called the Bayes risk:

R∗ = inf
f∈M

R(f).

• For a scalar λ > 0 fixed throughout this paper and a convex function φ : R → R, the
φ-risk regularized by the RKHS norm is defined, for any σ > 0 and f ∈ Hσ, by

Rφ,σ (f) = EP [φ (Y f (X))] + λ‖ f ‖2
Hσ

Furthermore, for any real r ≥ 0, we know that φ is Lipschitz on [−r, r], and we denote
by L (r) the Lipschitz constant of the restriction of φ to the interval [−r, r]. For
example, for the hinge loss φ(u) = max(0, 1 − u) one can take L(r) = 1, and for the
squared hinge loss φ(u) = max(0, 1 − u)2 one can take L(r) = 2(r + 1).

• Finally, the L2-norm regularized φ-risk is, for any f ∈ M:

Rφ,0 (f) = EP [φ (Y f (X))] + λ‖ f ‖2
L2
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where,

‖ f ‖2
L2

=

∫

Rd

f(x)2dx ∈ [0,+∞].

Each of these risks has an empirical counterpart where the expectation with respect to P
is replaced by an average over an i.i.d. sample T = {(X1, Y1) , . . . , (Xn, Yn)}. In particular,
the following empirical version of Rφ,σ will be used

∀σ > 0, f ∈ Hσ, R̂φ,σ (f) =
1

n

n∑

i=1

φ (Yif (Xi)) + λ‖ f ‖2
Hσ

The main focus of this paper is the analysis of learning algorithms that minimize the
empirical φ-risk regularized by the RKHS norm R̂φ,σ, and their limit as the number of points
tends to infinity and the kernel width σ decreases to 0 at a suitable rate when n tends to ∞,
λ being kept fixed. Roughly speaking, our main result shows that in this situation, if φ is a
convex loss function, the minimization of R̂φ,σ asymptotically amounts to minimizing Rφ,0.

This stems from the fact that the empirical average term in the definition of R̂φ,σ converges
to its corresponding expectation, while the norm in Hσ of a function f decreases to its L2

norm when σ decreases to zero. To turn this intuition into a rigorous statement, we need a
few more assumptions about the minimizer of Rφ,0 and about P . First, we observe that the
minimizer of Rφ,0 is indeed well-defined and can often be explicitly computed (the following
lemma is part of Theorem 28):

Lemma 1 For any x ∈ R
d, let

fφ,0(x) = arg min
α∈R

{
ρ(x) [η(x)φ(α) + (1 − η(x))φ(−α)] + λα2

}
.

Then fφ,0 is measurable and satisfies:

Rφ,0 (fφ,0) = inf
f∈M

Rφ,0 (f)

Second, let us recall the notion of modulus of continuity (DeVore and Lorentz, 1993):

Definition 2 (Modulus of continuity) Let f be a Lebesgue measurable function from
R

d to R. Then its modulus of continuity in the L1-norm is defined for any δ ≥ 0 as follows

ω(f, δ) = sup
0≤‖ t ‖≤δ

‖ f(.+ t) − f(.) ‖L1 , (3)

where ‖ t ‖ is the Euclidian norm of t ∈ R
d.

Our main result can now be stated as follows:

Theorem 3 (Main Result) Let σ1 > σ > 0, 0 < p < 2, δ > 0, and let f̂φ,σ denote a

minimizer of the R̂φ,σ risk over Hσ, where φ is assumed to be convex. Assume that the mar-
ginal density ρ is bounded, and let M = supx∈Rd ρ(x). Then there exist constants (Ki)i=1...4
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(depending only on p, δ, λ, d, and M) such that the following holds with probability greater
than 1 − e−x over the draw of the training data

Rφ,0(f̂φ,σ) −R∗
φ,0 ≤ K1L

(√
κσφ (0)

λ

) 4
2+p ( 1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1

n

) 2
2+p

+K2L

(√
κσφ (0)

λ

)2(
1

σ

)d x

n

+K3
σ2

σ2
1

+K4ω(fφ,0, σ1) .

(4)

The first two terms in r.h.s. of (4) bound the estimation error (also called sample error)
associated with the Gaussian RKHS, which naturally tends to be small when the number
of training data increases and when the RKHS is ’small’, i.e., when σ is large. As is usually
the case in such variance/bias splitings, the variance term here depends on the dimension
d of the input space. Note that it is also parametrized by both p and δ. The third term
measures the error due to penalizing the L2-norm of a fixed function in Hσ1 by its ‖ . ‖Hσ -
norm, with 0 < σ < σ1. This is a price to pay to get a small estimation error. As for the
fourth term, it is a bound on the approximation error of the Gaussian RKHS. Note that,
once λ and σ have been fixed, σ1 remains a free variable parameterizing the bound itself.

In order to highlight the type of convergence rates one can obtain from Theorem 3, let
us assume that the φ loss function is Lipschitz on R (e.g., take the hinge loss), and suppose
that for some 0 ≤ β ≤ 1, c1 > 0, and for any h ≥ 0, the density function ρ satisfies the
following inequality

ω(ρ, h) ≤ c1h
β . (5)

Then we can optimize the right hand side of (4) w.r.t. σ1, σ, p and δ by balancing the four
terms. This eventually leads to:

Rφ,0

(
f̂φ,σ

)
−R∗

φ,0 = OP

((
1

n

) 2β
4β+(2+β)d

−ǫ
)
, (6)

for any ǫ > 0. This rate is achieved by choosing

σ1 =

(
1

n

) 2
4β+(2+β)d

− ǫ
β

, (7)

σ = σ
2+β

2
1 =

(
1

n

) 2+β
4β+(2+β)d

− ǫ(2+β)
2β

, (8)

p = 2 and δ as small as possible (that is why an arbitray small quantity ǫ appears in the
rate).

Theorem 3 shows that, when φ is convex, minimizing the R̂φ,σ risk for well-chosen width
σ is a an algorithm consistant for the Rφ,0-risk. In order to relate this consistency with more

5



traditional measures of performance of learning algorithms, the next theorem shows that
under a simple additionnal condition on φ, Rφ,0-risk-consistency implies Bayes consistency:

Theorem 4 If φ is convex, differentiable at 0, with φ′(0) < 0, then for every sequence of
functions (fi)i≥1 ∈ M,

lim
n→+∞

Rφ,0 (fi) = R∗
φ,0 =⇒ lim

n→+∞
R (fi) = R∗

This theorem results from a more general quantitative analysis of the relationship between
the excess Rφ,0-risk and the excess R-risk (see Theorem 30). In order to state a refined
version of it in the particular case of the support vector machine algorithm, we first need
to introduce the notion of low density exponent :

Definition 5 We say that a distribution P with ρ as marginal density of X w.r.t. Lebesgue
measure has a low density exponent γ ≥ 0 if there exists (c2, ǫ0) ∈ (0,+∞)2 such that

∀ǫ ∈ [0, ǫ0], P
({
x ∈ R

d : ρ(x) ≤ ǫ
})

≤ c2ǫ
γ .

We are now in position to state a quantitative relationship between the excess Rφ,0-risk and
the excess R-risk in the case of support vector machines:

Theorem 6 Let φ1(α) = max (1 − α, 0) be the hinge loss function, and φ2(α) = max (1 − α, 0)2,
be the squared hinge loss function. Then for any distribution P with low density exponent
γ, there exist constant (K1,K2, r1, r2) ∈ (0,+∞)4 such that for any f ∈ M with an excess
Rφ1,0-risk upper bounded by r1 the following holds:

R(f) −R∗ ≤ K1

(
Rφ1,0(f) −R∗

φ1,0

) γ
2γ+1 ,

and if the excess regularized Rφ2,0-risk upper bounded by r2 the following holds:

R(f) −R∗ ≤ K2

(
Rφ2,2(f) −R∗

φ2,2

) γ
2γ+1 ,

We note that Theorem 32 generalizes this result to any loss function through the introduc-
tion of variational arguments, in the spirit of Bartlett et al. (2003). Hence the consistency
of SVM is prooved, together with upper bounds on the convergence rates, for the first time
in a situation where the effect of regularization does not vanish asymptotically.

Another consequence of the Rφ,0-consistency of an algorithm is the L2convergence of
the function output by the algorithm to the minimizer of the Rφ,0-risk:

Lemma 7 For any f ∈ M, the following holds:

‖ f − fφ,0 ‖2
L2

≤ 1

λ

(
Rφ,0(f) −R∗

φ,0

)
.

This result is particularly relevant to study algorithms whose objective are not binary
classification. Consider for example the 1-class SVM algorithm, which served as the initial
motivation for this paper. Then we can state the following
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Theorem 8 Let ρλ denote the density truncated as follows:

ρλ(x) =

{
ρ(x)
2λ if ρ(x) ≤ 2λ,

1 otherwise.
(9)

Let f̂σ denote the function output by the one-class SVM. Then, under the general conditions
of Theorem 3,

lim
n→+∞

‖ f̂σ − ρλ ‖L2 = 0 ,

for σ choosen as in Equation (8).

A very interesting by-product of this theorem is the consistency of the one-class SVM
algorithm for density level set estimation, which to the best of our knowledge has not been
stated so far:

Theorem 9 Let 0 < µ < 2λ < M , let Cµ be the level set of the density function ρ at level

µ, and Ĉµ be the level set of 2λf̂σ at level µ, where f̂σ is still the function outptut by the
one-class SVM. For any distribution Q, for any subset C of R

d, define the excess-mass of
C with respect to Q as follows:

HQ (C) = Q (C) − µLeb (C) .

Then, under the general assumptions of Theorem 3, we have

lim
n→+∞

HP (Cµ) −HP

(
Ĉµ

)
= 0 ,

for σ choosen as in Equation (8).

The excess-mass functional was first introduced by Hartigan (1987) to assess the quality of
density level set estimators. It is maximized by the true density level set Cµ and acts as a
risk functional in the one-class framework. The proof of Theorem 9 is based on the following
general result: if ρ̂ is a density estimator converging to the true density ρ in the L2 sense,
then for any fixed 0 < µ < supRd {ρ}, the excess mass of the level set of ρ̂ at level µ converges
to the excess mass of Cµ. In other words, as is the case in the classification framework,
plug-in rules built on L2-consistent density estimators are consistent with respect to the
excess mass.

3. Some Properties of the Gaussian kernel and its RKHS

This section presents known and new results about the Gaussian kernel and its associated
RKHS, that are useful for the proofs of our results. They concern the explicit description
of the RKHS norm in terms of Fourier transforms, its relation with the L2-norm, and some
approximation properties of convolutions with the Gaussian kernel. They make use of basic
properties of Fourier transforms which we now recall.
For any f in L1(R

d), its Fourier transform F [f ] : R
d → R is defined by

F [f ] (ω) =

∫

Rd

e−i<x,ω>f(x)dx .

7



If in addition F [f ] ∈ L1(R
d), f can be recovered from F [f ] by the inverse Fourier formula:

f(x) =
1

(2π)d

∫

Rd

F [f ] (ω)ei<x,ω>dω .

Finally Parseval’s equality relates the L2-norm of a function and its Fourier transform if
f ∈ L1(R

d) ∩ L2(R
d) and F [f ] ∈ L2(R

d):

‖ f ‖2
L2

=
1

(2π)d
‖F [f ] ‖2

L2
. (10)

3.1 Fourier Representation of the Gaussian RKHS

The normalized Gaussian radial basis function kernel kσ with bandwidth parameter σ > 0,
more simply refered to as Gaussian kernel in the rest of this paper, is defined on R

d × R
d

by

kσ(x, x′) =
1

(√
2πσ

)d exp

(−‖x− x′ ‖2

2σ2

)
. (11)

The normalizing constant

κσ = ‖ kσ ‖L∞ =
(√

2πσ
)−d

, (12)

ensures that the kernel integrates to 1 for any σ > 0. For any u ∈ R
d, the expression kσ(u)

denotes kσ(0, u), with Fourier transform known to be:

F [kσ] (ω) = e
−σ2‖ ω ‖2

2 . (13)

Let Hσ denote the RKHS associated with the gaussian kernel kσ. The general study of
translation invariant kernels provides an accurate characterization of their associated RKHS
in terms of the their Fourier transform (see, e.g., Matache and Matache, 2002). In the case
of the Gaussian kernel, the following holds :

Lemma 10 (Characterization of Hσ) Let C0(R
d) denote the set of continuous functions

on R
d that vanish at infinity. The set

Hσ =

{
f ∈ C0(R

d) : f ∈ L1(R
d) and

∫

Rd

|F [f ] (ω)|2e
σ2‖ ω ‖2

2 dω <∞
}

(14)

is the RKHS associated with the gaussian kernel kσ, and the associated dot product is given
for any f, g ∈ Hσ by

< f, g >Hσ=
1

(2π)d

∫

Rd

F [f ] (ω)F [g] (ω)∗e
σ2‖ ω ‖2

2 dω , (15)

where a∗ denotes the conjugate of a complex number a. In particular the associated norm
is given for any f ∈ Hσ by

‖ f ‖2
Hσ

=
1

(2π)d

∫

Rd

|F [f ] (ω)|2e
σ2‖ ω ‖2

2 dω . (16)
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This lemma readily implies several basic facts about Gaussian RKHS and their associ-
ated norms summarized in the next lemma. In particular, it shows that the family (Hσ)σ>0

forms a nested collection of models, and that for any fixed function, the RKHS norm de-
creases to the L2-norm as the kernel bandwidth decreases to 0:

Lemma 11 The following statements hold:

1. For any 0 < τ < σ,
Hσ ⊂ Hτ ⊂ L2(R

d) . (17)

Moreover, for any f ∈ Hσ,

‖ f ‖Hσ ≥ ‖ f ‖Hτ ≥ ‖ f ‖L2 (18)

and

0 ≤ ‖ f ‖2
Hτ

− ‖ f ‖2
L2

≤ τ2

σ2

(
‖ f ‖2

Hσ
− ‖ f ‖2

L2

)
. (19)

2. For any σ > 0 and f ∈ Hσ,

lim
τ→0

‖ f ‖Hτ = ‖ f ‖L2 . (20)

3. For any σ > 0 and f ∈ Hσ,

‖ f ‖L∞ ≤ √
κσ‖ f ‖Hσ . (21)

Proof Equations (17) and (18) are direct consequences of the characterization of the
Gaussian RKHS (16) and of the observation that

0 < τ < σ =⇒ e
σ2‖ ω ‖2

2 ≥ e
τ2‖ ω ‖2

2 ≥ 1.

In order to prove (19), we derive from (16) and Parseval’s equality (10):

‖ f ‖2
Hτ

− ‖ f ‖2
L2

=
1

(2π)d

∫

Rd

|F [f ] (ω)|2
[
e

τ2‖ ω ‖2
2 − 1

]
dω . (22)

For any 0 ≤ u ≤ v, we have (eu − 1)/u ≤ (ev − 1)/v by convexity of eu, and therefore:

‖ f ‖2
Hτ

− ‖ f ‖2
L2

≤ 1

(2π)d

τ2

σ2

∫

Rd

|F [f ] (ω)|2
[
e

σ2‖ ω ‖2
2 − 1

]
dω, (23)

which leads to (19). Equation (20) is now a direct consequence of (19). Finally, (21) is a
classical bound derived from the observation that, for any x ∈ R

d,

| f(x) | = |< f, kσ >Hσ |
≤ ‖ f ‖Hσ‖ kσ ‖Hσ

=
√
κσ‖ f ‖Hσ .

9



3.2 Links with the Non-Normalized Gaussian Kernel

It is common in the machine learning literature to work with a non-normalized version of
the Gaussian RBF kernel, namely the kernel:

k̃σ(x, x′) = exp

(−‖x− x′ ‖2

2σ2

)
. (24)

From the relation kσ = κσk̃σ (remember that κσ is defined in Equation 12), we deduce from
the general theory of RKHS that Hσ = H̃σ and

∀f ∈ Hσ, ‖ f ‖H̃σ
=

√
κσ‖ f ‖Hσ . (25)

As a result, all statements about kσ and its RKHS easily translate into statements about
k̃σ and its RKHS. For example, (18) shows that, for any 0 < τ < σ and f ∈ H̃σ,

‖ f ‖H̃σ
≥
√
κσ

κτ
‖ f ‖H̃τ

=
( τ
σ

) d
2 ‖ f ‖H̃τ

,

a result that was shown recently (Steinwart et al., 2004, Corollary 3.12).

3.3 Convolution with the Gaussian kernel

Besides its positive definiteness, the Gaussian kernel is commonly used as a kernel for
function approximation through convolution. Recall that the convolution between two
functions f, g ∈ L1

(
R

d
)

is the function f ∗ g ∈ L1

(
R

d
)

defined by

f ∗ g (x) =

∫

Rd

f (x− u) g (u) du

and that it satisfies
F [f ∗ g] = F [f ]F [g] . (26)

The convolution with a Gaussian RBF kernel is a technically convenient tool to map any
square integrable function to a Gaussian RKHS, as the following lemma shows:

Lemma 12 For any σ > 0 and any f ∈ L1

(
R

d
)
∩ L2

(
R

d
)
,

kσ ∗ f ∈ H√
2σ

and
‖ kσ ∗ f ‖H√

2σ
= ‖ f ‖L2 . (27)

Proof Using (16), then (26) and (13), followed by Parseval’s inequality (10), we compute:

‖ kσ ∗ f ‖2
H√

2σ
=

1

(2π)d

∫

Rd

|F [kσ ∗ f ] (ω)|2eσ2‖ω ‖2
dω

=
1

(2π)d

∫

Rd

|F [f ] (ω)|2e−σ2‖ω ‖2
eσ

2‖ω ‖2
dω

=
1

(2π)d

∫

Rd

|F [f ] (ω)|2dω

= ‖ f ‖2
L2
.
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The following technical lemma, used in the proof of the main theorem below, upper bounds
the difference between a RKHS norm and a L2 norm of a function smoothed by convolution:

Lemma 13 For any σ, τ > 0 that satisfy 0 < σ <
√

2τ , and for any f ∈ L1

(
R

d
)
∩L2

(
R

d
)
,

kτ ∗ f ∈ Hσ

and

‖ kτ ∗ f ‖2
Hσ

− ‖ kτ ∗ f ‖2
L2

≤ σ2

2τ2
‖ f ‖2

L2
. (28)

Proof Because 0 < σ <
√

2τ , Lemma 12 and (17) imply

kτ ∗ f ∈ H√
2τ ⊂ Hσ ,

and, using (19) and (27),

‖ kτ ∗ f ‖2
Hσ

− ‖ kτ ∗ f ‖2
L2

≤ σ2

2τ2

(
‖ kτ ∗ f ‖2

H√
2τ

− ‖ kτ ∗ f ‖2
L2

)

≤ σ2

2τ2
‖ kτ ∗ f ‖2

H√
2τ

=
σ2

2τ2
‖ f ‖2

L2
.

A final result we need is an estimate of the approximation properties of convolution
with the Gaussian kernel. Convolving a function with a Gaussian kernel with decreasing
bandwidth is known to provide an approximation of the original function under general
conditions. For example, the assumption f ∈ L1(R

d) is sufficient to show that ‖ kσ∗f−f ‖L1

goes to zero when σ goes to zero (see, for example Devroye and Lugosi, 2000). We provide
below a more quantitative estimate for the rate of this convergence under some assumption
on the modulus of continuity of f (see Definition 2), using methods from DeVore and Lorentz
(1993, Section 7.2).

Lemma 14 Let f be a bounded function in L1(R
d). Then for all σ > 0, the following holds:

‖ kσ ∗ f − f ‖L1 ≤ (1 +
√
d)ω(f, σ) ,

where ω(f, .) denotes the modulus of continuity of f in the L1 norm.
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Proof Using the fact that kσ is normalized, then Fubini’s theorem and then the definition
of ω, the following can be derived

‖ kσ ∗ f − f ‖L1 =

∫

Rd

∣∣∣∣
∫

Rd

kσ(t)[f(x+ t) − f(x)]dt

∣∣∣∣ dx

≤
∫

Rd

∫

Rd

kσ(t) |f(x+ t) − f(x)| dtdx

=

∫

Rd

kσ(t)

[∫

Rd

|f(x+ t) − f(x)| dx
]
dt

≤
∫

Rd

kσ(t)‖ f(.+ t) − f(.) ‖L1dt

≤
∫

Rd

kσ(t)ω(f, ‖ t ‖)dt .

Now, using the subadditivity property of ω (DeVore and Lorentz, 1993, Section 2.6), the
following inequality can be derived for any non-negative λ and δ

ω(f, λδ) ≤ (1 + λ)ω(f, δ) .

Applying this and also Hölder’s inequality leads to

‖ kσ ∗ f − f ‖L1 ≤
∫

Rd

(
1 +

‖ t ‖
σ

)
ω(f, σ)kσ(t)dt

= ω(f, σ)

[
1 +

1

σ

∫

Rd

‖ t ‖kσ(t)dt

]

≤ ω(f, σ)

[
1 +

1

σ

(∫

Rd

‖ t ‖2 1

(
√

2πσ)d
e

−‖ t ‖2
2σ2 dt

) 1
2

]

= ω(f, σ)



1 +
1

σ

(
d∑

i=1

∫

Rd

t2i
1

(
√

2πσ)d
e

−‖ t ‖2
2σ2 dt

) 1
2





= ω(f, σ)



1 +
1

σ

(
d∑

i=1

∫

Rd

t2i
1√
2πσ

e
−t2i
2σ2 dti

) 1
2





= ω(f, σ)

[
1 +

1

σ

√
d

(∫

Rd

u2 1√
2πσ

e
−u2

2σ2 du

) 1
2

]
.

The integral term is exactly the variance of a gaussian random variable, namely σ2. Hence
we end up with

‖ kσ ∗ f − f ‖L1 ≤ (1 +
√
d)ω(f, σ) .

12



4. Proof of Theorem 3

The proof of Theorem 3 is based on the following decomposition of the excess Rφ,0-risk for

the minimizer of the R̂φ,σ-risk:

Lemma 15 For any 0 < σ <
√

2σ1 and any sample (xi, yi)i=1,...,n, the minimizer f̂φ,σ of

R̂φ,σ satisfies:

Rφ,0(f̂φ,σ) −R∗
φ,0 ≤

[
Rφ,σ(f̂φ,σ) −R∗

φ,σ

]

+ [Rφ,σ(kσ1 ∗ fφ,0) −Rφ,0(kσ1 ∗ fφ,0)]

+
[
Rφ,0(kσ1 ∗ fφ,0) −R∗

φ,0

]
(29)

Proof The excess Rφ,0 risk decomposes as follows:

Rφ,0(f̂φ,σ) −R∗
φ,0 =

[
Rφ,0

(
f̂φ,σ

)
−Rφ,σ

(
f̂φ,σ

)]

+
[
Rφ,σ(f̂φ,σ) −R∗

φ,σ

]

+
[
R∗

φ,σ −Rφ,σ(kσ1 ∗ fφ,0)
]

+ [Rφ,σ(kσ1 ∗ fφ,0) −Rφ,0(kσ1 ∗ fφ,0)]

+
[
Rφ,0(kσ1 ∗ fφ,0) −R∗

φ,0

]
.

Note that by Lemma 12, kσ1 ∗fφ,0 ∈ H√
2σ1

⊂ Hσ ⊂ L2

(
R

d
)

which justifies the introduction
of Rφ,σ(kσ1 ∗ fφ,0) and Rφ,0(kσ1 ∗ fφ,0). Now, by definition of the different risks using
Equation 18, we have

Rφ,0

(
f̂φ,σ

)
−Rφ,σ

(
f̂φ,σ

)
= λ

(
‖ f̂φ,σ ‖2

L2
− ‖ f̂φ,σ ‖2

Hσ

)
≤ 0,

and

R∗
φ,σ −Rφ,σ(kσ1 ∗ fφ,0) ≤ 0.

Hence, controlling Rφ,0(f̂φ,σ)−R∗
φ,0 boils down to controlling each of the three terms arising

from the previous split:

• The first term in (29) is usually referred to as the sample error or estimation error. The
control of such quantities has been the topic of much research recently, including for
example Tsybakov (1997); Mammen and Tsybakov (1999); Massart (2000); Bartlett
et al. (2005); Koltchinskii (2003); Steinwart and Scovel (2004). Using estimates of
local Rademacher complexities through covering numbers for the Gaussian RKHS
due to Steinwart and Scovel (2004), we prove below the following result

Lemma 16 For any σ > 0 small enough, let f̂φ,σ be the minimizer of the R̂φ,σ-risk
on a sample of size n, where φ is a convex loss function. For any 0 < p ≤ 2, δ > 0,

13



and x ≥ 1, the following holds with probability at least 1 − ex over the draw of the
sample:

Rφ,σ(f̂φ,σ) −Rφ,σ(fφ,σ) ≤ K1L

(√
κσφ (0)

λ

) 4
2+p ( 1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1

n

) 2
2+p

+K2L

(√
κσφ (0)

λ

)2(
1

σ

)d x

n
,

where K1 and K2 are positive constants depending neither on σ, nor on n.

• The second term in (29) can be upper bounded by

φ (0)σ2

2λσ2
1

.

Indeed, using Lemma 13, we have

Rφ,σ(kσ1 ∗ fφ,0) −Rφ,0(kσ1 ∗ fφ,0) = ‖ kσ1 ∗ fφ,0 ‖2
Hσ

− ‖ kσ1 ∗ fφ,0 ‖2
L2

≤ σ2

2σ2
1

‖ fφ,0 ‖2
L2
.

Since fφ,0 minimizes Rφ,0, we have Rφ,0 (fφ,0) ≤ Rφ,0 (0), which leads to ‖ fφ,0 ‖2
L2

≤
φ (0) /λ. Eventually, we have

Rφ,σ(kσ1 ∗ fφ,0) −Rφ,0(kσ1 ∗ fφ,0) ≤
φ (0)σ2

2λσ2
1

.

• The third term in (29) can be upper bounded by

(2λ‖ fφ,0 ‖L∞ + L (‖ fφ,0 ‖L∞)M)
(
1 +

√
d
)
ω (fφ,0, σ1) .

Indeed,

Rφ,0(kσ1 ∗ fφ,0) −Rφ,0(fφ,0)

= λ
[
‖ kσ1 ∗ fφ,0 ‖2

L2
− ‖ fφ,0 ‖2

L2

]
+ [EP [φ (Y (kσ1 ∗ fφ,0)(X))] − EP [φ (Y fφ,0(X))]]

= λ < kσ1 ∗ fφ,0 − fφ,0, kσ1 ∗ fφ,0 + fφ,0 >L2 +EP [φ (Y (kσ1 ∗ fφ,0)(X)) − φ (Y fφ,0(X))] .

Now, since ‖ kσ1 ∗ fφ,0 ‖L∞ ≤ ‖ fφ,0 ‖L∞ , then using Lemma 14, we obtain:

Rφ,0(kσ1 ∗ fφ,0) −Rφ,0(fφ,0) ≤ 2λ‖ fφ,0 ‖L∞‖ kσ1 ∗ fφ,0 − fφ,0 ‖L1

+L (‖ fφ,0 ‖L∞) EP [|(kσ1 ∗ fφ,0)(X) − fφ,0(X)|]
≤ (2λ‖ fφ,0 ‖L∞ + L (‖ fφ,0 ‖L∞)M)‖ kσ1 ∗ fφ,0 − fφ,0 ‖L1

≤ (2λ‖ fφ,0 ‖L∞ + L (‖ fφ,0 ‖L∞)M)
(
1 +

√
d
)
ω (fφ,0, σ1) ,

where M = supx∈Rd p(x) is supposed to be finite.

Now, Theorem 3 is proved by plugging the last three bounds in Equation 29.
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5. Proof of Lemma 16 (sample error)

In order to upper bound the sample error, it is useful to work with a set of functions as
“small” as possible, in a meaning made rigorous below. Although we study algorithms that
work on the whole RKHS Hσ a priori, let us first show that we can drastically “downsize”
it.

Indeed, recall that the marginal distribution of P in X is assumed to have a support
included in a compact X ⊂ R

d. The restriction of kσ to X , denoted kXσ , is a positive definite
kernel on X (Aronszajn, 1950) with RKHS defined by:

HX
σ =

{
f/X : f ∈ Hσ

}
, (30)

where f/X denotes the restriction of f to X , and RKHS norm:

∀fX ∈ HX
σ , ‖ f ‖HX

σ
= inf

{
‖ f ‖Hσ : f ∈ Hσ and f/X = fX

}
. (31)

For any fX ∈ HX
σ consider the following risks:

RX
φ,σ(fX ) = EP/X

[
φ
(
Y fX (X)

)]
+ λ‖ fX ‖2

HX
σ
,

R̂X
φ,σ(fX ) =

1

n

n∑

i=1

φ
(
Yif

X (Xi)
)

+ λ‖ fX ‖2
HX

σ
.

We first show that the sample error is the same in Hσ and HX
σ :

Lemma 17 Let fXφ,σ and f̂Xφ,σ be respectively the minimizers of RX
φ,σ and R̂X

φ,σ. Then it
holds almost surely that

Rφ,σ (fφ,σ) = RX
φ,σ

(
fXφ,σ

)
,

Rφ,σ

(
f̂φ,σ

)
= RX

φ,σ

(
f̂Xφ,σ

)
.

From Lemma 17 we deduce that a.s.,

Rφ,σ

(
f̂φ,σ

)
−Rφ,σ (fφ,σ) = RX

φ,σ

(
f̂Xφ,σ

)
−RX

φ,σ

(
fXφ,σ

)
, (32)

In order to upper bound this term, we use concentration inequalities based on local Rademacher
complexities (Bartlett et al., 2003, 2005; Steinwart and Scovel, 2004). In this approach, a
crucial role is played by the covering number of a functional class F under the empirical
L2-norm. Remember that for a given sample T = (X1, X2, . . . , Xn) and ǫ > 0, an ǫ-cover
for the empirical L2 norm, if it exists, is a family of function (fi)i∈I such that:

∀f ∈ F ,∃i ∈ I,



 1

n

n∑

j=1

(f (Xj) − fi (Xj))
2





1
2

≤ ǫ .

The covering number N (F , ǫ, L2(T )) is then defined as the smallest cardinal of an ǫ-cover.
We can now mention the following result, adapted to our notations and setting, that

exactly fits our need.
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Theorem 18 (Steinwart et al., 2005, Theorem 5.8.) For σ > 0, let Fσ be a convex
subset of HX

σ and let φ be a convex loss function. Define Gσ as follows:

Gσ :=
{
gf (x, y) = φ(yf(x)) + λ‖ f ‖2

HX
σ
− φ(yfXφ,σ(x)) − λ‖ fXφ,σ ‖2

HX
σ

: f ∈ Fσ

}
. (33)

where fXφ,σ minimizes RX
φ,σ over Fσ. Suppose that there are constants c ≥ 0 and B > 0 such

that, for all g ∈ Gσ,
EP

[
g2
]
≤ cEP [g] ,

and
‖ g ‖L∞ ≤ B .

Furthermore, assume that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN
(
B−1Gσ, ǫ, L2(T )

)
≤ aǫ−p (34)

for all ǫ > 0. Then there exists a constant cp > 0 depending only on p such that for all
n ≥ 1 and all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RX

φ,σ(f̂Xφ,σ) > RX
φ,σ(fXφ,σ) + cpǫ(n, a,B, c, x)

)
≤ e−x , (35)

where

ǫ(n, a,B, c, p, x) =
(
B +B

2p
2+p c

2−p
2+p

)(a
n

) 2
2+p

+ (B + c)
x

n
.

From the inequalities ‖ fXφ,σ ‖2
HX

σ
≤ φ(0)/λ and ‖ f̂Xφ,σ ‖2

HX
σ
≤ φ(0)/λ, we see that it is enough

to take

Fσ =

√
φ(0)

λ
BX

σ , (36)

where BX
σ is the unit ball of HX

σ , to derive a control of (32) from Theorem 18. In order to
apply this theorem we now provide uniform upper bounds over Gσ for the variance of g and
its uniform norm, as well as an upper bound on the covering number of Gσ.

Lemma 19 For all σ > 0, for all g ∈ Gσ,

EP

[
g2
]
≤
(
L

(√
κσφ(0)

λ

)
√
κσ + 2

√
λφ(0)

)2
2

λ
EP [g] . (37)

Lemma 20 For all σ > 0, for all g ∈ Gσ,

‖ g ‖L∞ ≤ 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+ φ(0) . (38)

Lemma 21 Let

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+ φ(0) . (39)

For all σ > 0, 0 < p ≤ 2, δ > 0, ǫ > 0, the following holds:

logN (B−1Gσ, ǫ, L2(T )) ≤ c2σ
−((1−p/2)(1+δ))dǫ−p , (40)

where c1 and c2 are constants that depend neither on σ, nor on ǫ (but they depend on p, δ,
d and λ).
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Combining now the results of Lemmas 19, 20 and 21 allows to apply Theorem 18 with Fσ

defined by (36), any p ∈ [0, 2], and the following parameters:

c =

(
L

(√
κσφ(0)

λ

)
√
κσ + 2

√
λφ(0)

)2
2

λ
,

α = 1 ,

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+ φ(0) ,

a = c2σ
−((1−p/2)(1+δ))d ,

from which we deduce Lemma 16.

Proof of Lemma 17 Because the support of P is included in X , the following trivial
equality holds:

∀f ∈ Hσ, EP [φ (Y f (X))] = EP/X

[
φ
(
Y f/X (X)

)]
. (41)

Using first the definition of the restricted RKHS (30), then (41) and (31), we obtain

RX
φ,σ

(
fXφ,σ

)
= inf

fX∈HX
σ

EP/X

[
φ
(
Y fX (X)

)]
+ λ‖ fX ‖HX

σ

= inf
f∈Hσ

EP/X

[
φ
(
Y f/X (X)

)]
+ λ‖ f/X ‖HX

σ

= inf
f∈Hσ

EP [φ (Y f (X))] + λ‖ f ‖Hσ

= Rφ,σ (fφ,σ) .

(42)

The same line or proof easily leads to Rφ,σ

(
f̂φ,σ

)
= RX

φ,σ

(
f̂Xφ,σ

)
, after observing that with

probability 1, Xi ∈ X for i = 1, . . . , n, and therefore:

∀f ∈ Hσ,
1

n

n∑

i=1

φ (Yif(Xi)) =
1

n

n∑

i=1

φ
(
Yif/X (Xi)

)
.

Proof of Lemma 19 We prove the uniform upper bound on the variances of the excess-loss
functions in terms of their expectation, using an approach similar to but slightly simpler
than Bartlett et al. (2003, Lemma 15) and Steinwart and Scovel (2004, Proposition 6.1).
First we observe, using (21) and the fact that Fσ ⊂

√
φ(0)/λBσ, that for any f ∈ Fσ,

‖ f ‖L∞ ≤ √
κσ‖ f ‖Hσ

≤
√
κσφ(0)

λ
.
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As a result, for any (x, y) ∈ X × {−1,+1},
| gf (x, y) | ≤ |φ (yf(x)) − φ (yfφ,σ(x)) | + λ

∣∣ ‖ f ‖2
Hσ

− ‖ fφ,σ ‖2
Hσ

∣∣

≤ L

(√
κσφ(0)

λ

)
| f(x) − fφ,σ(x) | + λ‖ f − fφ,σ ‖Hσ‖ f + fφ,σ ‖Hσ

≤
(
L

(√
κσφ(0)

λ

)
√
κσ + 2

√
λφ(0)

)
‖ f − fφ,σ ‖Hσ .

(43)

Taking the square on both sides of this inequality and averaging with respect to P leads to:

∀f ∈ Fσ, EP

[
g2
f

]
≤
(
L

(√
κσφ(0)

λ

)
√
κσ + 2

√
λφ(0)

)2

‖ f − fφ,σ ‖2
Hσ

. (44)

On the other hand, we deduce from the convexity of φ that for any (x, y) ∈ X × {−1,+1}
and any f ∈ Fσ:

φ(yf(x)) + λ‖ f ‖2
Hσ

+ φ(yfφ,σ(x)) + λ‖ fφ,σ ‖2
Hσ

2

≥ φ

(
yf(x) + yfφ,σ(x)

2

)
+ λ

‖ f ‖2
Hσ

+ ‖ fφ,σ ‖2
Hσ

2

= φ

(
y
f + fφ,σ

2
(x)

)
+ λ‖ f + fφ,σ

2
‖2
Hσ

+ λ‖ f − fφ,σ

2
‖2
Hσ

.

Averaging this inequality with respect to P rewrites:

Rφ,σ(f) +Rφ,σ (fφ,σ)

2
≥ Rφ,σ

(
f + fφ,σ

2

)
+ λ‖ f − fφ,σ

2
‖2
Hσ

≥ Rφ,σ (fφ,σ) + λ‖ f − fφ,σ

2
‖2
Hσ

,

where the second inequality is due to the definition of fφ,σ as a minimizer of Rφ,σ. Therefore
we get, for any f ∈ Fσ,

EP [gf ] = Rφ,σ(f) +Rφ,σ (fφ,σ)

≥ λ

2
‖ f − fφ,σ ‖2

Hσ
.

(45)

Combining (44) and (45) finishes the proof of Lemma 19

Proof of Lemma 20 Following a path similar to (43), we can write for any f ∈ Fσ and
any (x, y) ∈ X × {−1,+1}:

| gf (x, y) | ≤ |φ (yf(x)) − φ (yfφ,σ(x)) | + λ
∣∣ ‖ f ‖2

Hσ
− ‖ fφ,σ ‖2

Hσ

∣∣

≤ L

(√
κσφ(0)

λ

)
| f(x) − fφ,σ(x) | + λ

φ(0)

λ

≤ 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+ φ(0) .
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Proof of Lemma 21 Let us introduce the notations lφ◦f(x, y) = φ (y(f(x)) and Lφ,σ ◦f =
lφ ◦ f(x, y) + λ‖ f ‖2

HX
σ
, for f ∈ HX

σ and (x, y) ∈ X × {−1, 1}. We can then rewrite (33) as:

Gσ =
{
Lφ,σ ◦ f − Lφ,σ ◦ fXφ,σ : f ∈ Fσ

}
.

The covering number of a set does not change when the set is translated by a constant,
therefore:

N
(
B−1Gσ, ǫ, L2(T )

)
= N

(
B−1Lφ,σ ◦ Fσ, ǫ, L2(T )

)
.

Denoting now [a, b] the set of constant functions with values between a and b, we deduce,
from the fact that λ‖ f ‖2

HX
σ
≤ φ(0) for f ∈ Fσ, that

B−1Lφ,σ ◦ Fσ ⊂ B−1lφ ◦ Fσ +
[
0, B−1φ(0)

]
.

Using the sub-additivity of the entropy we therefore get:

logN
(
B−1Gσ, 2ǫ, L2(T )

)
≤ logN

(
B−1lφ ◦ Fσ, ǫ, L2(T )

)
+ logN

([
0, B−1φ(0)

]
, ǫ, L2(T )

)
.

(46)
In order to upper bound the first term in the r.h.s. of (46), we observe that for any f ∈ Fσ

and x ∈ X ,

| f(x) | ≤ √
κσ‖ f ‖HX

σ
≤
√
φ(0)κσ

λ
,

and therefore a simple computation shows that, if u(x, y) = B−1φ(yf(x)) and u′(x, y) =
B−1φ(yf ′(x)) are two elements of B−1lφ ◦ Fσ (with f, f ′ ∈ Fσ), then for any sample T :

‖u− u′ ‖L2(T ) ≤ B−1L

(√
φ(0)κσ

λ

)
‖ f − f ′ ‖L2(T ) .

and therefore

logN
(
B−1lφ ◦ Fσ, ǫ, L2(T )

)
≤ logN



Fσ, BǫL

(√
φ(0)κσ

λ

)−1

, L2(T )





≤ logN



BX
σ , BǫL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
, L2(T )



 .

(47)

Recalling the definition of B in (39), we obtain:

BǫL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
≥ 2ǫ

√
κσ ,

and therefore

logN
(
B−1lφ ◦ Fσ, ǫ, L2(T )

)
≤ logN

(
BX

σ , 2ǫ
√
κσ, L2(T )

)
.
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The second term in the r.h.s. of (46) is easily upper bounded by:

logN
([

0, B−1φ(0)
]
, ǫ, L2(T )

)
≤ log

(
φ(0)

Bǫ

)
,

and we finally get:

logN
(
B−1Gσ, 2ǫ, L2(T )

)
≤ logN

(
BX

σ , 2ǫ
√
κσ, L2(T )

)
+ log

(
φ(0)

Bǫ

)
. (48)

We now need to upper bound the covering number of the unit ball in the RKHS. We make
use of the following result, proved by Steinwart and Scovel (2004, Theorem 2.1): if B̃X

σ

denotes the unit ball of the RKHS associated with the non-normalized Gaussian kernel
(24) on a compact set, then for all 0 < p ≤ 2 and all δ > 0 there exists a constant cp,δ,d

independent of σ such that for all ǫ̃ > 0 we have:

logN
(
B̃X

σ , ǫ̃, L2(T )
)
≤ cp,δ,dσ

(1−p/2)(1+δ)dǫ−p . (49)

Now, using (25), we observe that

BX
σ =

√
κσB̃X

σ ,

and therefore:

logN
(
BX

σ , 2ǫ
√
κσ, L2(T )

)
= logN

(√
κσB̃X

σ , 2ǫ
√
κσ, L2(T )

)

= logN
(
B̃X

σ , 2ǫ, L2(T )
)
.

(50)

Plugging (49) into (50), and (50) into (48) finally leads to the announced result, after ob-
serving that the second term in the r.h.s. of (48) becomes negligible compared to the first
one and can therefore be hidden in the constant for ǫ small enough.

6. Some properties of the L2-norm-regularized φ-risk (proofs of
Theorem 30 and Lemma 7)

In this section we investigate the conditions on the loss function φ under which the Bayes
consistency of the minimization of the regularized φ-risk holds. In the spirit of Bartlett et al.
(2003), we introduce a notion of classification-calibration for regularized loss functions φ,
and upper bound the excess risk of any classifier f in terms of its excess of regularized
φ-risk. We also upper-bound the L2-distance between f and fφ,0 in terms of the excess of
regularized φ-risk of f , which is useful to proove Bayes consistency in the one-class setting.

6.1 Classification Calibration

In the classical setting, Bartlett et al. (2003, Definition 1) introduce the following notion of
classification-calibrated loss functions:
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Definition 22 For any (η, α) ∈ [0, 1] × R, let the generic conditional φ-risk be defined by:

Cη(α) = ηφ(α) + (1 − η)φ(−α).

The loss function φ is said to be classification-calibrated if, for any η ∈ [0, 1]\{1/2}:

inf
α∈R:α(2η−1)≤0

Cη(α) > inf
α∈R

Cη(α)

The importance here is in the strict inequality, which implies in particular that if the global
infimum of Cη is reached at some point α, then α > 0 (resp. α < 0) if η > 1/2 (resp.
η < 1/2). This condition, that generalizes the requirement that the minimizer of Cη(α) has
the correct sign, is a minimal condition that can be viewed as a pointwise form of Fisher
consistency for classification. In our case, noting that for any f ∈ M, the L2-regularized
φ-risk can be rewritten as follows:

Rφ,0(f) =

∫

Rd

{
[η(x)φ(f(x)) + (1 − η(x))φ(−f(x))] p(x) + λf(x)2

}
dx ,

we introduce the regularized generic conditional φ-risk:

∀(η, ρ, α) ∈ [0, 1] × (0,+∞) × R, Cη,ρ (α) = Cη (α) +
λα2

ρ
,

as well as the related weighted regularized generic conditional φ-risk:

∀(η, ρ, α) ∈ [0, 1] × [0,+∞) × R, Gη,ρ (α) = ρCη (α) + λα2 .

This leads to the following notion of classification-calibration:

Definition 23 We say that φ is classification calibrated for the regularized risk, or R-
classification-calibrated, if for any (η, ρ) ∈ [0, 1]\{1/2} × (0,+∞)

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) > inf
α∈R

Cη,ρ(α)

The following result clarifies the relationship between the properties of classification-calibration
and R-classification-calibration.

Lemma 24 For any function φ : R → [0,+∞), φ(x) is R-classification-calibrated if and
only if for any t > 0, φ(x) + tx2 is classification-calibrated.

Proof For any φ : R → [0,+∞) and ρ > 0, let φ′(x) = φ(x) + λx2/ρ and C ′
η the

corresponding generic conditional φ′-risk. Then one easily gets, for any α ∈ R

C ′
η (α) = Cη,ρ (α) .

As a result, φ is R-classification-calibrated if and only if, for any ρ, φ′ is classification-
calibrated, which proves the lemma.
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Remark 25 Classification-calibration and R-classification-calibration are two different prop-
erties related to each other by Lemma 24, but none of them implies the other one. For
example, it can be shown that φ(x) = 1 on (−∞,−2], φ(x) = 2 on [−1, 1], φ(x) = 0 on
[2,+∞), and φ continous linear on [−2,−1] and [1, 2], defines a classification-calibrated
function which is not R-classification-calibrated. Conversely, the function φ(x) = ex for
x ≤ 0 and φ(x) = e−2x for x ≥ 0 can be shown to be R-classification-calibrated, but not
classification-calibrated.

6.2 Classification-calibration of convex loss functions

The following lemma states the equivalence between classification calibration andR-classification
calibration for convex loss functions, and it gives a simple characterization of this property.

Lemma 26 For a convex function φ : R → [0,+∞), the following properties are equivalent:

1. φ is classification-calibrated,

2. φ is R-classification-calibrated,

3. φ is differentiable at 0 and φ′(0) < 0.

Proof The equivalence of the first and the third properties is shown in Bartlett et al. (2003,
Theorem 6). From this and lemma 24, we deduce that φ is R-classification-calibrated iff
φ(x) + tx2 is classification-calibrated for any t > 0, iff φ(x) + tx2 is differentiable at 0 with
negative derivative (for any t > 0, iff φ(x) is differentiable at 0 with negative derivative.
This proves the equivalence between the second and third properties.

6.3 Some properties of the minimizer of the Rφ,0-risk

When φ is convex, the function Cη(α) is a convex function of α (as a convex combination
of convex functions), and therefore Gη,ρ(α) is strictly convex and diverges to +∞ in −∞
and +∞; as a result, for any (η, ρ) ∈ [0, 1] × [0,+∞), there exists a unique α (η, ρ) that
minimizes Gη,ρ on R. It satisties the following inequality:

Lemma 27 If φ : R → [0,+∞) is a convex function, then for any (η, ρ) ∈ [0, 1] × [0,+∞)
and any α ∈ R,

Gη,ρ (α) −Gη,ρ (α (η, ρ)) ≥ λ (α− α (η, ρ))2 . (51)

Proof For any (η, ρ) ∈ [0, 1] × [0,+∞), the function Gη,ρ(α) is the sum of the convex
function ρCη(α) and of the strictly convex function λα2. Let us denote by C+

η (α) the
right-hand derivative of Cη at the point α (which is well defined for convex functions).
The right-hand derivative of a convex function being non-negative at a minimum, we have
(denoting α∗ = α (η, ρ)):

ρC+
η (α∗) + 2λα∗ ≥ 0 . (52)

Now, for any α > α∗, we have by convexity of Cη:

Cη(α) ≥ Cη (α∗) + (α− α∗)C
+
η (α∗) . (53)
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Moreover, by direct calculation we get:

λα2 = λα2
∗ + 2λα∗ (α− α∗) + λ (α− α∗)

2 . (54)

Mutliplying (53) by ρ, adding (54) and plugging (52) into the result leads to:

Gη,ρ (α) −Gη,ρ (α∗) ≥ λ (α− α∗)
2 .

By symetry, this inequality is also valid for α ≤ α∗.

From this result we obtain the following characterization and properties of the minimizer
of the Rφ,0-risk:

Theorem 28 If φ : R → [0,+∞) is a convex function, then the function fφ,0 : R
d → R

defined for any x ∈ R
d by

fφ,0(x) = α(η(x), ρ(x))

satisfies:

1. fφ,0 is measurable.

2. fφ,0 minimizes the Rφ,0-risk:

Rφ,0 (fφ,0) = inf
f∈M

Rφ,0(f) .

3. For any f ∈ M, the following holds:

‖ f − fφ,0 ‖2
L2

≤ 1

λ

(
Rφ,2(f) −R∗

φ,2

)
.

Proof From Lemma 27 and the fact that for any α ∈ R, the mapping (η, ρ) ∈ [0, 1] ×
[0,+∞) 7→ Gη,ρ(α) is continuous, we can deduce that the mapping (η, ρ) ∈ [0, 1]×[0,+∞) 7→
α (η, ρ) is continuous. Indeed, fix (η0, ρ0) ∈ [0, 1] × [0,+∞) and the corresponding α0 =
α (η0, ρ0); for any ǫ > 0, the mapping (η, ρ) 7→ Gη,ρ(α) is absolutely continuous on the
compact [α0 − ǫ, α0 + ǫ], and therefore there exists a neighborhood B of (η0, ρ0) such that
for any (η, ρ) ∈ B,

sup
α∈[α0−ǫ,α0+ǫ]

|Gη,ρ (α) −Gη0,ρ0 (α) | < λǫ2

3
.

In particular, this implies that for any (η, ρ) ∈ B,

Gη,ρ (α0 + ǫ) > Gη,ρ (α0) +
λǫ2

3
and Gη,ρ (α0 − ǫ) > Gη,ρ (α0) +

λǫ2

3

which implies, by convexity of Gη,ρ, that α (η, ρ) ∈ [α0 − ǫ, α0 + ǫ] as soon as (η, ρ) ∈ B,
therefore proving the continuity of (η, ρ) → α (η, ρ). As a result, fφ,0 is measurable as a
continuous fonction of two measurable functions η and ρ.

Now, we have by construction, for any f ∈ M:

∀x ∈ R
d, Gη(x),ρ(x) (fφ,0(x)) ≤ Gη(x),ρ(x) (f(x))
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which after integration leads to:

Rφ,0(fφ,0) ≤ Rφ,0(f) ,

proving the second statement of the theorem.
Finally, for any f ∈ M, rewriting (51) with α = f(x), ρ = ρ(x) and η = η(x) shows

that:
∀x ∈ R

d, Gη(x),ρ(x) (f(x)) −Gη(x),ρ(x) (fφ,0(x)) ≤ λ (f(x) − fφ,0(x))
2 ,

which proves the third statement of Theorem 28.

6.4 Relating the Rφ,0-risk with the classification error rate

In the “classical” setting (with a regularization parameter converging to 0), the idea of
relating the convexified risk to the true risk (more simply called risk) has recently gained a
lot of interest. Zhang (2004) and Lugosi and Vayatis (2004) upper bound the excess-risk by
some function of the excess φ-risk to prove consistency of various algorithms (and obtain
upper bounds for the rates of convergence of the risk to the Bayes risk). These ideas were
then generalized by Bartlett et al. (2003), which we now adapt to our framework.

Let us define, for any (η, ρ) ∈ [0, 1] × (0,+∞),

M (η, ρ) = min
α∈R

Cη,ρ(α) = Cη,ρ (α(η, ρ)) ,

and for any ρ > 0 the function ψρ defined for all θ in [0, 1] by

ψρ (θ) := φ(0) −M

(
1 + θ

2
, ρ

)
.

The following lemma summarizes a few properties of M and ψρ. Explicit computations for
some classifical loss functions are performed in Section 7.

Lemma 29 If φ : R → [0,+∞) is a convex function, then for any ρ > 0, the following
properties hold:

1. the function η 7→M(η, ρ) is symetric around 1/2, concave, and continuous on [0, 1];

2. ψρ is convex, continuous on [0, 1], nonnegative, increasing, and ψ(0) = 0;

3. if 0 < ρ < τ , then ψρ ≤ ψτ on [0, 1];

4. φ is R-classification-calibrated if and only if ψρ(θ) > 0 for θ ∈ (0, 1].

Proof For any ρ > 0, let

φρ(x) = φ(x) +
λx2

ρ
.

The corresponding generic conditional φρ-risk C
′
η satisfies

C ′
η (α) = Cη,ρ (α)
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φρ being convex, the first two points are direct consequences of Bartlett et al. (2003, Lemma
5 & 7).

To prove the third point, it suffices to observe that for 0 < ρ ≤ τ we have for any
(η, α) ∈ [0, 1] × R:

Cη,ρ(α) − Cη,τ (α) = λα2

(
1

ρ
− 1

τ

)
≥ 0,

which implies, by taking the minimum in α:

M (η, ρ) ≥M (η, τ) ,

and therefore, for θ ∈ [0, 1]

ψρ (θ) ≤ ψτ (θ) .

Finally, by lemma 26, φ is R-classification-calibrated iff φρ is classification-calibrated (be-
cause both properties are equivalent to saying that φ is differentiable at 0 and φ′(0) < 0),
iff ψρ(θ) > 0 for θ ∈ (0, 1] by Bartlett et al. (2003, Lemma 4).

We are now in position to state a first result to relate the excess Rφ,2-risk to the excess-risk.
The dependence on ρ(x) generates difficulties compared with the “classical” setting, which
forces us to separate the low density regions from the rest in the analysis.

Theorem 30 Suppose φ is a convex classification-calibrated function, and for any ǫ > 0,
let

Aǫ =
{
x ∈ R

d : ρ(x) ≤ ǫ
}
.

For any f ∈ M the following holds:

R(f) −R∗ ≤ inf
ǫ>0

{
P (Aǫ) + ψ−1

ǫ

(
Rφ,0 (f) −R∗

φ,0

)}
(55)

Proof First note that for convex classification-calibrated functions, ψǫ is continuous and
strictly increasing on [0, 1], and is therefore invertible, which justifies the use of ψ−1

ǫ in (55).
Fix now a function f ∈ M, and let U(x) = 1 if f(x) (2η(x) − 1) < 0, 0 otherwise (U is the
indicator function of the set where f and the optimal classifier disagree). For any ǫ > 0, if
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we define Bǫ = R
d\Aǫ, we can compute:

Rφ,0 (f) −R∗
φ,0 =

∫

Rd

[
Cη(x),ρ(x) (f(x)) −M (η(x), ρ(x))

]
ρ(x)dx

≥
∫

Rd

[
Cη(x),ρ(x) (f(x)) −M (η(x), ρ(x))

]
U(x)ρ(x)dx

≥
∫

Rd

[φ(0) −M (η(x), ρ(x))]U(x)ρ(x)dx

=

∫

Rd

ψρ(x) (| 2η(x) − 1 |)U(x)ρ(x)dx

≥
∫

Bǫ

ψρ(x) (| 2η(x) − 1 |)U(x)ρ(x)dx

≥
∫

Bǫ

ψǫ (| 2η(x) − 1 |)U(x)ρ(x)dx

=

∫

Bǫ

ψǫ (U(x) | 2η(x) − 1 |) ρ(x)dx

= P (Bǫ)

∫

Bǫ

ψǫ (U(x) | 2η(x) − 1 |) ρ(x)

P (Bǫ)
dx

≥ P (Bǫ)ψǫ

(
1

P (Bǫ)

∫

Bǫ

| 2η(x) − 1 |U(x)ρ(x)dx

)

≥ ψǫ

(∫

Bǫ

| 2η(x) − 1 |U(x)ρ(x)dx

)

= ψǫ

(∫

Rd

| 2η(x) − 1 |U(x)ρ(x)dx−
∫

Aǫ

| 2η(x) − 1 |U(x)ρ(x)dx

)

≥ ψǫ

(∫

Rd

| 2η(x) − 1 |U(x)ρ(x)dx− P (Aǫ)

)

= ψǫ (R(f) −R∗ − P (Aǫ)) ,

where the successive (in)equalities are respectively justified by: (i) the definition of Rφ,0

and the second point of Theorem 28; (ii) the fact that U ≤ 1; (iii) the fact that when f and
2η−1 have different signs, then Cη,ρ (f) ≥ Cη,ρ (0) = φ (0); (iv) the definition of ψρ; (v) the
obvious fact that Bǫ ⊂ R

d; (vi) the observation that, by definition, ρ is larger than ǫ on Bǫ,
and the third point of Lemma 29; (vii) the fact that ψǫ(0) = 0 and U(x) ∈ {0, 1}; (viii) a
simple division and multiplication by P (Bǫ) > 0; (ix) Jensen’s inequality; (x) the convexity
of ψǫ and the facts that ψ(0) = 0 and P (Bǫ) < 1; (xi) the fact that Bǫ = R

d\Aǫ; (xii) the
upper bound | 2η(x) − 1 |U(x) ≤ 1 and the fact that ψǫ is increasing; and (xiii) a classical
inequality that can be found, e.g., in Devroye et al. (1996, Theorem 2.2). Composing each
side by the strictly increasing function ψ−1

ǫ leads to the announced result.

Theorem 4 is just a corollary of the previous Theorem:

Corollary 31 If φ is a convex (R-)classification-calibrated loss function, then for any
probability P whose marginal in X is absolutely continuous with respect to the Lebesgue
measure, and every sequence of functions fi ∈ M, limn→+∞Rφ,0 (fi) = R∗

φ,0 implies
limn→+∞R (fi) = R∗.
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Proof For any δ > 0, choosing ǫ small enough to ensure P (Aǫ) < δ/2, and N ∈ N such
that for any n > N ,

Rφ,0 (fn) −R∗
φ,0 < ψǫ

(
δ

2

)

ensures, by Theorem 30, that for any n > N , R(fn) −R∗ < δ.

This important result shows that any consistency result for the regularized φ-risk implies
consistency for the true risk, that is, convergence to the Bayes risk. Besides, convergence
rates for the regularized φ-risk towards its minimum translate into convergence rates for
the risk towards the Bayes risk thanks to (55).

6.5 Refinments under Low noise Assumption

When the distribution P satisfies a low noise assumption as defined in section 2, we have
the following result:

Theorem 32 Let φ be a convex loss function such that there exist (κ, β, ν) ∈ (0,+∞)3

satisfying:

∀ (ǫ, u) ∈ (0,+∞) × R, ψ−1
ǫ (u) ≤ κuβǫ−ν .

Then for any distribution P with low density exponent γ, there exist constant (K, r) ∈
(0,+∞) such that for any f ∈ M with an excess regularized φ-risk upper bounded by r the
following holds:

R(f) −R∗ ≤ K
(
Rφ,0 (f) −R∗

φ,0

) βγ
γ−ν .

Proof Let (c2, ǫ0) ∈ (0,+∞)2 such that

∀ǫ ∈ [0, ǫ0], P (Aǫ) ≤ c2ǫ
γ , (56)

and define

r = ǫ
γ+ν

β

0 κ
− 1

β c
1
β

2 . (57)

Given any function f ∈ M such that δ = Rφ,0 (f) −R∗
φ,0 ≤ r, let

ǫ = κ
1

γ+ν c
− 1

γ+ν

2 δ
β

γ+ν . (58)

Because δ ≤ r, we can upper bound ǫ by:

ǫ ≤ κ
1

γ+ν c
− 1

γ+ν

2 r
β

γ+ν

= ǫ0.

This implies, by (56), that

P (Aǫ) ≤ c2ǫ
γ

≤ κ
γ

γ+ν c
ν

γ+ν

2 δ
βγ

γ+ν .
(59)
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On the other hand,

ψ−1
ǫ (δ) ≤ κδβǫ−ν

= κ
γ

γ+ν c
ν

γ+ν

2 δ
βγ

γ+ν .
(60)

Combining theorem 30 with (59) and (60) leads to the result claimed with the constant r
defined in (57) and

K = 2κ
γ

γ+ν c
ν

γ+ν

2 .

7. The case of SVM

7.1 1-SVM

Let φ(α) = max (1 − α, 0). Then we easily obtain, for any (η, ρ) ∈ [−1, 1] × (0,+∞):

Cη,ρ(α) =






η (1 − α) + λα2/ρ if α ∈ (−∞,−1]

η (1 − α) + (1 − η) (1 + α) + λα2/ρ if α ∈ [−1, 1]

(1 − η) (1 + α) + λα2/ρ if α ∈ [1,+∞).

This shows that Cη,ρ is strictly deacreasing on (−∞,−1] and strictly increasing on [1,+∞);
as a result it reaches its minimum on [−1, 1]. Its derivative on this interval is equal to:

∀α ∈ (−1, 1), C ′
η,ρ(α) =

2λα

ρ
+ 1 − 2η.

This shows that Cη,ρ reaches its minimum at the point:

α (η, ρ) =






−1 if η ≤ 1/2 − λ/ρ

(η − 1/2) ρ/λ if η ∈ [1/2 − λ/ρ, 1/2 + λ/ρ]

1 if η ≥ 1/2 − λ/ρ

and that the value of this minimum is equal to:

M (η, ρ) =






2η + λ/ρ if η ≤ 1/2 − λ/ρ

1 − ρ (η − 1/2)2 /λ if η ∈ [1/2 − λ/ρ, 1/2 + λ/ρ]

2 (1 − η) + λ/ρ if η ≥ 1/2 + λ/ρ

From this we deduce that for all (ρ, θ) ∈ (0,+∞) × [−1, 1]:

ψρ (θ) =

{
ρθ2/(4λ) if 0 ≤ θ ≤ 2λ/ρ,

θ − λ/ρ if 2λ/ρ ≤ θ ≤ 1

whose inverse function is

ψ−1
ρ (u) =

{√
4λu/ρ if 0 ≤ u ≤ λ/ρ,

u+ λ/ρ if u ≥ λ/ρ.
(61)
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7.2 2-SVM

Let φ(α) = max (1 − α, 0)2. Then we obtain, for any (η, ρ) ∈ [−1, 1] × (0,+∞):

Cη,ρ(α) =






η (1 − α)2 + λα2/ρ if α ∈ (−∞,−1]

η (1 − α)2 + (1 − η) (1 + α)2 + λα2/ρ if α ∈ [−1, 1]

(1 − η) (1 + α)2 + λα2/ρ if α ∈ [1,+∞).

This shows that Cη,ρ is strictly deacreasing on (−∞,−1] and strictly increasing on [1,+∞);
as a result it reaches its minimum on [−1, 1]. Its derivative on this interval is equal to:

∀α ∈ (−1, 1), C ′
η,ρ(α) = 2

(
1 +

λ

ρ

)
α+ 1 − 2η.

This shows that Cη,ρ reaches its minimum at the point:

α (η, ρ) = (2η − 1)
ρ

λ+ ρ
.

and that the value of this minimum is equal to:

M (η, ρ) = 1 − (2η − 1)2
ρ

λ+ ρ
.

From this we deduce that for all (ρ, θ) ∈ (0,+∞) × [−1, 1]:

ψρ (θ) =
ρ

λ+ ρ
θ2

whose inverse function is

ψ−1
ρ (u) =

√(
1 +

λ

ρ

)
u. (62)

Remark 33 The minimum of Cη,ρ begin reached on (−1, 1) for any (η, ρ) ∈ [0, 1]×(0,+∞),
the result would be identical for any convex loss function φ′ that is equal to (1 − α)2 on
(−∞, 1). Indeed, the corresponding function C ′

η,ρ would coincide with Cη,ρ on (−1, 1) and
would be no smaller than Cη,ρ outside of this interval; it would therefore have the same
minimal value reached at the same point, and consequently the same function M and ψ.
This is for example the case with the loss function used in LS-SVM, φ′(α) = (1 − α)2

We can now summarize the upper bounds on the excess-risk obtained for 1− class and
2 − class SVM.

Theorem 34 Let φ1(α) = max (1 − α, 0) and φ2(α) = max (1 − α, 0)2. Then for any
distribution P with low density exponent γ, there exist constant (K1,K2, r1, r2) ∈ (0,+∞)4

such that for any f ∈ M with an excess regularized φ1-risk upper bounded by r1 the following
holds:

R(f) −R∗ ≤ K1

(
Rφ1,0(f) −R∗

φ1,0

) γ
2γ+1 ,

and if the excess regularized φ2-risk upper bounded by r2 the following holds:

R(f) −R∗ ≤ K2

(
Rφ2,0(f) −R∗

φ2,0

) γ
2γ+1 ,
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Proof Starting with φ1(α) = max (1 − α, 0), let us follow the proof of theorem 32 by taking
β = ν = 1/2 and κ = 2

√
λ. For r defined as in (57), let us choose

r1 = min

(
r,

(
c2λ

γ+ν

κ2
γ+ν

β

) 1
β+γ+ν

)
.

For a function f ∈ M, choosing ǫ as in (58), δ ≤ r1 implies

δ ≤
(
c2λ

γ+ν

κ2
γ+ν

β

) 1
β+γ+ν

=
(
ǫ−(γ+ν)2

− γ+ν
β λγ+νδβ

) 1
β+γ+ν

and therefore:

δ2
− 1

β ≤ λ

ǫ
.

This ensures by (61) that for u = δ2
− 1

β , one indeed has

ψ−1
ρ (u) = κuβǫ−ν ,

which allows the rest of the proof, in particular (57), to be valid. This proves the result for
φ1, with

K1 = 2 × 2
2γ

2γ+1λ
γ

2γ+1 c
1

2γ+1

2 .

For φ2(α) = max (1 − α, 0)2 we can observe from (62) that, for any ǫ ∈ (0, ǫ0],

ψ−1
ǫ (u) ≤

√
(λ+ ǫ0)

u

ρ
.

and the proof of theorem 32 leads to the claimed result with r2 = r defined in (57), and

K2 = 2 × (λ+ ǫ0)
γ

2γ+1 c
1

2γ+1

2 .

Remark 35 We note here that ǫ can be chosen as small as possible in order to move the
constant K2 as close as possible to its lower bound:

K̄2 = 2 × λ
γ

2γ+1 c
1

2γ+1

2 .

but the counterpart of decreasing K2 is to decrease r2 too, by (57). We also notice the
constant corresponding to the 1-SVM loss function is larger than that of the 2-SVM loss

function, by a factor of up to 2
2γ

2γ+1
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8. Consistency of One-class SVM for Density Level Set Estimation

In this section we focus on the one-class case: η is identically equal to 1, and P is just
considered as a distribution on R

d. The aim is to estimate a density level set of level µ, for
some µ > 0:

Cµ :=
{
x ∈ R

d : ρ (x) ≥ µ
}

(63)

The estimator that is considered here is the plug-in density level set estimator associated
with f̂σ, denoted by Ĉµ:

Ĉµ :=
{
x ∈ R

d : 2λf̂σ (x) ≥ µ
}

(64)

Recall that the asymptotic behaviour of f̂σ in the one-class case is given in Theorem 8: f̂σ

converge to ρλ, which is proportionnal to the density ρ truncated at level 2λ. Taking into
account the behaviour of ρλ, we only consider the situation where 0 < µ < 2λ < sup(ρ) =
M . ρ is still assumed to have a compact support S ⊂ X . To assess the quality of Ĉµ, we use
the so-called excess mass functional, first introduced by Hartigan (1987), which is defined
for any subset C of R

d as follows:

HP (C) := P (C) − µLeb (C) . (65)

Note that HP is defined with respect to both P and µ, and that it is maximized by Cµ.

Hence, the quality of an estimate Ĉ depends here on how its excess mass is close to this of
Cµ.
The following lemma relates the L2 convergence of a density estimator to the consistence of
the associated plug-in density level set estimator, with respect to the excess mass criterion:

Lemma 36 Let P be a probability distribution on R
d with compact support S ⊂ X . Assume

that P is absolutely continuous with respect to the Lebesgue’s measure, and let ρ denote its
associated density function. Consider a density estimate ρ̂ defined on R

d. Then the following
holds

HP (Cµ) −HP (Ĉ) ≤ K5‖ ρ̂− ρ ‖L2 , (66)

where Ĉ is the level set of ρ̂ at level µ, and K5 is a positive constant depending only on µ
and on ρ.

Proof To proof the lemma, it is convenient to first build an artificial classification problem
using the density function ρ and the desired level µ, then to relate the excess-risk involved
in this classification problem to the excess-mass involved in the original one-class problem.
Let us consider the following joint distribution Q defined by its marginal density function

q(x) =

{
mρ(x) + (1 −m) 1

Leb(S) if x ∈ S ,

0 otherwise ,
(67)

and by its regression function

η′(x) =
mρ(x)

mρ(x) + (1 −m) 1
Leb(S)

, (68)
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where m is chosen such that

η′(x) =
ρ(x)

ρ(x) + µ
, (69)

that is

m =
1

1 + µLeb(S)
. (70)

In words, in the above artificial classification problem, the initial distribution P stands for
the marginal distribution of the positive class, and the negative class is generated by the
uniform distribution over the support of P . The mixture coefficient m is determined by the
initialy desired density level µ. The corresponding Bayes classifier, which is the plug-in rule
associated with η′, is denoted by h∗.
Furthermore let us define η̂′ = ρ̂/ (ρ̂+ µ), which stands for an estimate of η′ in our artificial
classification problem, and ĥ as the plug-in classifier associated with η̂′: ĥ = sign (2η̂′ − 1).
Then it is straightforward that h∗ is the indicator function of Cµ, and that ĥ is the indicator

function of Ĉ. Moreover

R(ĥ) −R(h∗) = m
(
HP (C∗) −HP (Ĉ)

)
.

Indeed,

R(ĥ) = Q(ĥ(X) 6= Y )

= Q(Y = −1)Q(ĥ(X) = 1|Y = −1) +Q(Y = 1)Q(ĥ(X) = −1|Y = 1)

= (1 −m)
Leb

(
Ĉ
)

Leb (S)
+m(1 − P (Ĉ)) ,

and, similarly,

R(h∗) = (1 −m)
Leb (Cµ)

Leb (S)
+m(1 − P (Cµ)) , (71)

which prooves the claim.
Now, the following can be derived, starting from an equality that can be found in Devroye
et al. (1996):

R(ĥ) −R(h∗) = 2EQ

[∣∣∣∣ η
′ − 1

2

∣∣∣∣ 1ĥ 6=h∗

]

≤ 2EQ

[∣∣ η′ − η̂′
∣∣2
]1/2

= 2µ

(∫

Rd

( |ρ̂(x) − ρ(x)|
(ρ̂(x) + µ)(ρ(x) + µ)

)2

q(x)dx

)1/2

≤ 2µ
√
A

(∫

Rd

( |ρ̂(x) − ρ(x)|
(ρ̂(x) + µ)(ρ(x) + µ)

)2

dx

)1/2

≤ 2

√
A

µ
‖ ρ̂− ρ ‖L2 ,
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where A is a positive uniform upper bound on q(x). Combining the previous equality with
the last inequality concludes the proof.

We could just directly apply this lemma to f̂σ, ρλ and the distribution associated with ρλ,
but this would not give the consistency of f̂σ with respect to the excess mass HP . The
following lemma implies that the plug-in density level set estimator at level 0 < µ < 2λ
based on the one-class SVM estimator is indeed consistent with respect to the excess mass
defined with P .

Theorem 37 Let f̂ be a squared integrable function that estimates ρλ (as defined in Equa-
tion 9). Let 0 < µ < 2λ. Let Ĉ denote the level set of 2λf̂ at level µ. Then

HP (Cµ) −HP (Ĉ) ≤ K6‖ f̂ − ρλ ‖L2 (72)

where K6 > 0 depends neither on σ, nor on n.

Proof Let us introduce the following density estimator:

ρ̂ = 2λf̂σ + ρ̃λ , (73)

where the function ρ̃λ is defined as follows:

ρ̃λ =

{
ρ(x) − 2λ if ρ(x) ≥ 2λ ,

0 otherwise,
(74)

and let C̃ denote its associated plug-in density level set estimate at level µ. It can be

checked that ρ̂− ρ = 2λ
(
f̂ − ρλ

)
, implying that

‖ ρ̂− ρ ‖L2 = 2λ‖ f̂ − ρλ ‖L2 . (75)

Hence, using Lemma 36, we have

HP (Cµ) −HP

(
C̃
)
≤ 2λc‖ f̂σ − ρλ ‖L2 , (76)

leading to

HP (Cµ) −HP (Ĉ) ≤ 2λc‖ f̂σ − ρλ ‖L2 +
∣∣∣HP (Ĉ) −HP (C̃)

∣∣∣ . (77)

The last thing to do is to bound
∣∣∣HP (Ĉ) −HP (C̃)

∣∣∣. Since P has a bounded density w.r.t.

the Lebesgue’s measure,

∣∣∣HP (Ĉ) −HP (C̃)
∣∣∣ ≤ (µ+M)Leb

(
Ĉ∆Ĉµ

)
. (78)
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By construction, if C2λ denotes the density level set at level 2λ, we have Ĉ ∩C2λ = C̃ ∩C2λ

and 2λf̂ ≥ µ =⇒ ρ̂ ≥ µ. Hence

Leb
(
Ĉ∆Ĉµ

)
=

∫

C2λ

1{2λf̂<µ ∧ ρ̂≥µ}

≤
∫

C2λ

1{2λf̂<µ}

≤
∫

C2λ

2λ− 2λf̂

2λ− µ
1{2λf̂<µ}

≤ 1

2λ− µ

(∫

C2λ

(
2λρλ − 2λf̂

)2
)1/2

≤ 2λ

2λ− µ
‖ f̂ − ρλ ‖L2 .

This concludes the proof.
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