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Abstract

The problem of learning a semantic representation of a text document
from data is addressed, in the situation where a corpus of unlabeled
paired documents is available, each pair being formed by a short En-
glish document and its French translation. This representation can then
be used for any retrieval, categorization or clustering task, both in a stan-
dard and in a cross-lingual setting. By using kernel functions, in this case
simple bag-of-words inner products, each part of the corpus is mapped
to a high-dimensional space. The correlations between the two spaces
are then learnt by using kernel Canonical Correlation Analysis. A set
of directions is found in the first and in the second space that are max-
imally correlated. Since we assume the two representations are com-
pletely independent apart from the semantic content, any correlation be-
tween them should reflect some semantic similarity. Certain patterns of
English words that relate to a specific meaning should correlate with cer-
tain patterns of French words corresponding to the same meaning, across
the corpus. Using the semantic representation obtained in this way we
first demonstrate that the correlations detected between the two versions
of the corpus are significantly higher than random, and hence that a rep-
resentation based on such features does capture statistical patterns that
should reflect semantic information. Then we use such representation
both in cross-language and in single-language retrieval tasks, observing
performance that is consistently and significantly superior to LSI on the
same data.

1 Introduction

Most text retrieval or categorization methods depend on exact matches between words.
Such methods will, however, fail to recognize relevant documents that do not share words
with a users’ queries. One reason for this is that the standard representation models (e.g.
boolean, standard vector, probabilistic) treat words as if they are independent, although it
is clear that they are not. A central problem in this field is to automatically model term-



term semantic interrelationships, in a way to improve retrieval, and possibly to do so in an
unsupervised way or with a minimal amount of supervision. For example latent semantic
indexing (LSI) [3] has been used to extract information about co-occurrence of terms in the
same documents, an indicator of semantic relations, and this is achieved by singular value
decomposition (SVD) of the term-document matrix. The LSI method has also been adapted
to deal with the important problem of cross-language retrieval, where a query in a language
is used to retrieve documents in a different language. Using a paired corpus (a set of pairs
of documents, each pair being formed by two versions of the same text in two different
languages), after merging each pair into a single ’document’, we can interpret frequent co-
occurrence of two terms in the same document as an indication of cross-linguistic correla-
tion [8]. In this framework, a common vector-space, including words from both languages,
is created and then the training set is analysed in this space using SVD. This method, termed
CL-LSI, will be briefly discussed in Section 4. More generally, many other statistical and
linear algebra methods have been used to obtain an improved semantic representation of
text data over LSI [9][10]. In this study we address the problem of learning a semantic
representation of text from a paired bilingual corpus, a problem that is important both for
mono-lingual and cross-lingual applications. This problem can be regarded either as an un-
supervised problem with paired documents, or as a supervised monolingual problem with
very complex labels (i.e. the label of an english document could be its french counterpart).
In either way, the data can be readily obtained without an explicit labeling effort, and fur-
thermore there is not the loss of information due to compressing the meaning of a document
into a discrete label. We employ kernel Canonical Correlation Analysis (KCCA) [1] [7] to
learn a representation of text that captures aspects of its semantic. Given a paired bilingual
corpus, this method defines two embedding spaces for the documents of the corpus, one
for each language, and an obvious one-to-one correspondence between points in the two
spaces. KCCA then finds projections in the two embedding spaces for which the resulting
projected values are highly correlated. In other words, it looks for particular combinations
of words that appear to have the same co-occurrence patterns in the two languages. Our
hypothesis is that finding such correlations across a paired crosslingual corpus will locate
the underlying semantics, since we assume that the two languages are ’conditionally in-
dependent’, or that the only thing they have in common is their meaning. The directions
would carry information about the concepts that stood behind the process of generation of
the text and, although expressed differently in different languages, are, nevertheless, se-
mantically equivalent. Such directions are then used to calculate the coordinates of the
documents in a ’language independent’ way. Of course, particular statistical care is needed
for excluding ’spurious’ correlations. We show that the correlations we find are not the
effect of chance, and that the resulting representation significantly improves performance
of retrieval systems. We find that the correlation existing between certain sets of words
in English and French documents cannot be explained as a random correlation. Hence we
need to explain it by means of relations between the generative processes of the two ver-
sions of the documents, that we assume to be conditionally independent given the topic or
content. Under such assumptions, hence, such correlations detect similarities in content
between the two documents, and can be exploited to derive a semantic representation of
the text. Such representation is then used for retrieval tasks, providing better performance
than existing techniques. We first apply the method to crosslingual information retrieval,
comparing performance with a related approach based on latent semantic indexing (LSI)
described below [8]. Secondly, we treat the second language as a complex label for the
first language document and view the projection obtained by CL-KCCA as a semantic map
for use in a multilingual classification task with very encouraging results. From the com-
putational point of view, we detect such correlations by solving an eigenproblem, that is
avoiding problems like local minima, and we do so by using kernels.

The KCCA machinery will be given in Section 3 and in Section 4 we will show how to
apply KCCA to cross-lingual retrieval while Section 4 describes the monolingual applica-



tions. Finally, results will be presented in Section 5.

2 Previous work

The use of LSI for cross-language retrieval was proposed by [8]. LSI uses a method from
linear algebra, singular value decomposition, to discover the important associative relation-
ships. An initial sample of documents is translated by human or, perhaps, by machine, to
create a set of dual-language training documents
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preprocessing documents a common vector-space, including words from both languages,
is created and then the training set is analysed in this space using SVD:���� � �� ��� ! �"$#&%('

(1)

where the ) -th column of
�

corresponds to document ) with its first set of coordinates giv-
ing the first language features and the second set the second language features. To translate
a new document (query) * to a language-independent representation one projects (folds-in)
its expanded (filled up with zero components related to another language) vector represen-
tation +* into the space spanned by the , first eigenvectors

 .-
: / *�0 1 %- +* . The similarity

between two documents is measured as the inner product between their projections. The
documents that are the most similar to the query are considered to be relevant.

3 Kernel Canonical Correlation Analysis

In this study our aim is to find an appropriate language-independent representation. Sup-
pose as for CL-LSI we are given aligned texts in, for simplicity, two languages, i.e., every
text in one language

�2�4365
is a translation of text

�7�4398
in another language or vice versa.

Our hypothesis is that having the corpus
��� � �����	��

mapped to a (some high-dimensional)
feature space : � as ;=< �>��? and corpus

���7�������	��
to : � as ;=< �7�@? (with A � and A � being

respectively the kernels of the two mappings, i.e. matrices of the inner products between
images of all the data points, [2]), we can learn (semantic) directions B � 3 : � and B � 3 : �
in those spaces so that the projections <CB �D' ;=< �>�E?F?F��
	G� and <@B �H' ;=< ���C?F?F��
	�� of input data im-
ages from the different languages would be maximally correlated. We have thus intuitively
defined a need for the notion of a kernel canonical : -correlation IHJ ( :  : �LK : � ) which
is defined as I J  MONQPRTSFUWV S�XZYE[ J�\Z]7^_^ <_<@B �`' ;=< �>�E?F? ' <@B �D' ;=< �7�@?F?_? MONQPRTSFUWV S�XZYE[ J a � <@B � ' ;=< � � ?F? <@B � ' ;=< � � ?F?b

a � <CB � ' ;=< � � ?_?�c aed <@B � ' ;=< � d ?_?�c
(2)

We search for B � and B � in the space spanned by the ; -images of the data points (repro-
ducing kernel Hilbert space, RKHS [2]): B �  agf�h f ;=< � f ? , B �  ajilk i ;=< � i ? . This
rewrites the numerator of (2) asm � <@B � ' ;=< � � ?F? <@B � ' ;=< � � ?F?  m � m

f
i h f k i <C;=< � f ? ' ;=< � � ?F? <C;=< � i ? ' ;=< � � ?_? h % A � A � k (3)

where h is the vector with components
� h f � and k the vector with components

� k i � . The
problem (2) can then be reformulated as

I7J gMONQPn V o h % A � A � kp
p A � h p�pqp�p A � k p�p (4)



Once we have moved to a kernel defined feature space the extra flexibility introduced means
that there is a danger of overfitting. By this we mean that we can find spurious correlations
by using large weight vectors to project the data so that the two projections are completely
aligned. For example, if the data are linearly independent in both feature spaces we can
find linear transformations that map the input data to an orthogonal basis in each feature
space. It is now possible to find � perfect correlations between the two representations.
Using kernel functions will frequently result in linear independence of the training set, for
example, when using Gaussian kernels. It is clear therefore that we will need to introduce a
control on the flexibility of the projection mappings B � and B � . The simplest way to do this
by adding a multiple of the � -norm of the dual variables to the variances in the denominator,p�p A � h p�p c���� p
p h p
p c  p
p < A � ����� ? h p�p c (5)

so that
p
p A � h p�p is replaced by

p�p < A � ���	� ? h p
p , and similarly for
p�p A � h p�p :IqJ jM�NWPn V o h % A � A � kp�p < A � ���
� ? h p�pqp�p < A � ����� ? k p�p (6)

Differentiating the expression under
MONQP

in (4) with respect to h , taking into account that�� p
p ��p
p  �
��� � ��� and equating the derivative to zero we obtainA � A � k p
p < A � ���
� ? h p
p c�� h % A � A � k < A � ���
� ? c h �� (7)

We note that h can be normalised so that
p�p < A � ����� ? h p�p �� . Similar operations for kyield analogous equations that together with (7) can be written in a matrix form:���  I � � (8)

where I is the average per point correlation between projections <CB � ' ;=< �2?_? and <CB � ' ;=< �D?F? :
h % A � A � k , and

�  � � A � A �A � A � � � 'G���� <@A � ���	� ? c �
� <@A � ����� ? c � ' �  � hk � (9)

Equation (8) is known as a generalised eigenvalue problem.The standard approach to the
solution of (8) in the case of a symmetric

�
is to perform incomplete Cholesky decom-

position of the matrix
�

:
� �� % �

and define � �� � which allows us, after simple
transformations, to rewrite it as a standard eigenvalue problem

��� % � � � � �  I!� . We will
discuss how to choose

�
in Section 5.

It is easy to see that if h or k changes sign in (8), I also changes sign. Thus, the spectrum
of the problem (8) has paired positive and negative values between

� �
and

�
.

4 Applications of KCCA

Cross-linguistic retrieval with KCCA. The kernel CCA procedure identifies a set of pro-
jections from both languages into a common semantic space. This provides a natural frame-
work for performing cross-language information retrieval. We first select a number " of
semantic dimensions,

�$# " # � , with largest correlation values I . To process an in-
coming query * we expand * into the vector representation for its language %* and project
it onto the " canonical : -correlation components: / *�0 �& %('L% %* using the appropriate
vector for that language, where

&
is � K " matrix whose columns are the first solutions

of (8) for the given language sorted by eigenvalue in descending order. Here we assumed
that <E;=<*) ? ' ;=<+%* ?F? is simply ) % %* where

'
is the training corpus in the given language:'  < ��� � c ,-,-, � � ?

or
'  < �q� � c.,/,-, � � ?

.

Using the semantic space in text categorisation. The semantic vectors in the given lan-
guage 0  ' &

can be exported and used in some other application, for example, Support



Table 1: Statistics for ’House debates’ of the 36 �
�

Canadian Parliament proceedings corpus.

SENTENCE
PAIRS

ENGLISH
WORDS

FRENCH
WORDS

TRAINING 948K 14,614K 15,657K
TESTING 1 62K 995K 1067K

Vector Machine classification. We first find common features of the training data used to
extract the semantics and the data used to train SVM classifier, cut the features that are not
common and compute the new kernel which is the inner product of the projected data:A � < � � ' � d ?  � %� 0 0 % � d (10)

The term-term relationship matrix 0 0 %
can be computed only once and stored for further

use in the SVM learning process and classification.

5 Experiments

Experimental setup. Following [8] we conducted a series of experiments with the Hansard
collection [4] to measure the ability of CL-LSI and CL-KCCA for any document from a
test collection in one language to find its mate in another language. The whole collec-
tion consists of 1.3 million pairs of aligned text chunks (sentences or smaller fragments)
from the 36 �

�
Canadian Parliament proceedings. In our experiments we used only the

’house debates’ part for which statistics are given in Table 3. As a testing collection we
used only ’testing 1’. The raw text was split into sentences with Adwait Ratnaparkhi’s
MXTERMINATOR and the sentences were aligned with I. Dan Melamed’s GSA tool (for
details on the collection and also for the source see [4]).

The text chunks were split into ’paragraphs’ based on ’***’ delimiters and these ’para-
graphs’ were treated as separate documents. After removing stop-words in both French and
English parts and rare words (i.e. appearing less than three times) we obtained

� � ��� K � ���	��

term-by-document ’English’ matrix and

��� � � K � �����
 ’French’ matrix (we also removed
a few documents that appeared to be problematic when split into paragraphs). As these
matrices were still too large to perform SVD and KCCA on them, we split the whole col-
lection into 14 chunks of about 910 documents each and conducted experiments separately
with them, measuring the performance of the methods each time on a 917-document test
collection. The results were then averaged. We have also trained the CL-KCCA method
on randomly reassociated French-English document pairs and observed accuracy of about� , � � on test data which is far lower than results on the non-random original data. It is worth
noting that CL-KCCA behaves differently from CL-LSI over the full scale of the spectrum.
When CL-LSI only increases its performance with more eigenvectors taken from the lower
part of spectrum (which is, somewhat unexpectedly, quite different from its behaviour in
the monolinguistic setting), CL-KCCA’s performance, on the contrary, tends to deteriorate
with the dimensionality of the semantic subspace approaching the dimensionality of the
input data space.

The partial Singular Value Decomposition of the matrices was done using Matlab’s ’svds’
function and full SVD was performed using the ’kernel trick’ discussed in the previous
section and ’svd’ function which took about 2 minutes to compute on Linux Pentium III
1GHz system for a selection of 1000 documents. The Matlab implementation of KCCA
using the same function, ’svd’, which solves the generalised eigenvalue problem through
Cholesky incomplete decomposition, took about 8 minutes to compute on the same data.

Mate retrieval. The results are presented in Tables 2 and 3. Only one - mate document in
French was considered as relevant to each of the test English documents which were treated



Table 2: Average accuracy of top-rank (first retrieved) English � French retrieval, %�
100 200 300 400 FULL

CL-LSI 84 ��� 91 ��� 93 ��� 95 ��� 97 ���
CL-KCCA 98 ��� 99 ��� 99 ��� 99 ��� 99 ���

Table 3: Average precision of English � French retrieval over set of fixed recalls
(
� , ��' � , � ' ,/,-, ' � , � ), %�

100 200 300 400 FULL

CL-LSI 73 ��� 78 ��� 80 ��� 82 ��� 82 ���
CL-KCCA 91 �	� 91 �	� 91 �	� 91 �	� 87 ��


as queries and the relative number of correctly retrieved documents was computed (Table
2) along with average precision over fixed recalls:

� , � , � , � , ,/,-, , � , � (Table 3). Very similar
results (omitted here) were obtained when French documents were treated as queries and
English as test documents. As one can see from the Tables 2 and 3 CL-KCCA seems to
capture most of the semantics in the first few components achieving

� 
� accuracy with as
little as 100 components when CL-LSI needs all components for a similar figure.

Selecting the regularization parameter. The regularization parameter
�

(5) not only
makes the problem (8) well-posed numerically, but also provides control over capacity of
the function space where the solution is being sought. The larger values of

�
are, the

less sensitive the method to the input data is, therefore, the more stable (less prone to
finding spurious relations) the solution becomes. We should thus observe an increase of
”reliability” of the solution. We measure the ability of the method to catch useful sig-
nal by comparing the solutions on original input and ”random” data. The ”random” data
is constructed by random reassociations of the data pairs, for example, <�� ' ^ N���� <�� ?_? de-
notes English-French parallel corpus which is obtained from the original English-French
aligned collection by reshuffling the French (equivalently, English) documents. Suppose,���  A � � & � < � � '_� c ? denotes the (positive part of) spectrum of the KCCA solution on
the paired dataset < � � ' � c ? . If the method is overfitting the data it will be able to find
perfect correlations and hence

p
p � � A � � & � < � c � '_� c c ? p�p�� �`'where
�

is the all-one vec-
tor. We therefore use this as a measure to assess the degree of overfitting. Three graphs
in Figure 1 show the quantities

p�p � � A � � & � <�� ' ^ N���� <�� ?F?�p
p , p
p � � A � � & � <�� ' � ?�p
p , andp�p � � A � � & � <�� ' ^ N���� <�� ?_? p�p as functions of the regularization parameter
�

. For small
values of

�
the spectrum of all the tests is close to the all-one spectrum (the spectrumA � � & � <�� ' � ? ). This indicates overfitting since the method is able to find correlations
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Figure 1: Quantities
p
p � � A � � & � <�� ' ^ N���� <�� ?F? p�p (left),

p
p � � A � � & � <�� ' � ? p�p (middle)
and

p�p � � A � � & � <�� ' ^ N���� <�� ?_? p�p (right) as functions of the regularization parameter
�

.
Note that the scale of the centre graph is very different to that of the other two.



even in randomly associated pairs. As
�

increases the spectrum of the randomly associated
data becomes far from all-one, while that of the paired documents remains correlated. This
observation can be exploited for choosing the optimal value of

�
. From the middle and

right graphs in Figure 1 this value could be derived as lying somewhere between
�

and � .
For the experiments reported in this study we used the value of

� , � .

Pseudo query test. To perform a more realistic test we generated short queries, which
are most likely to occur in search engines, that consisted of the 5 most probable words
from each test document. The relevant documents were the test documents themselves in
monolinguistic retrieval (English query - English document) and their mates in the cross-
linguistic (English query - French document) test. Table 4 shows the relative number of
correctly retrieved as top-ranked English documents for English queries (left) and the rela-
tive number of correctly retrieved documents in the top ten ranked (right). Table 5 provides
analogous results but for cross-linguistic retrieval.

Table 4: English � English top-ranked retrieval accuracy, % (left) and English � English
top-ten retrieval accuracy, % (right)�

100 200 300 400 full 100 200 300 400 full
cl-lsi 53 �	� 60 ��� 64 ��� 66 ��� 70 ��� 82 ��� 86 ��� 88 ��� 89 ��� 91 ���
cl-kcca 60 ��� 63 ��� 70 ��� 71 ��� 73 ��� 90 ��� 93 ��� 94 ��� 95 ��� 95 ���

Table 5: English � French top-ranked retrieval accuracy, % (left) and English-French top-
ten retrieval accuracy, % (right)

�
100 200 300 400 full 100 200 300 400 full

cl-lsi 30 ��� 38 ��� 42 �	� 45 ��� 49 ��� 67 ��� 75 �	� 79 �	� 81 �	� 84 ���
cl-kcca 68 ��� 75 ��� 78 ��� 79 ��� 81 ��� 94 ��� 96 ��� 97 ��� 98 ��� 98 ���

Text categorisation using semantics learned on a completely different corpus. The se-
mantics (300 vectors) extracted from the Canadian Parliament corpus (Hansard) was used
in Support Vector Machine (SVM) text classification [2] of Reuters-21578 corpus [5]
(Table 6). In this experimental setting the intersection of vector spaces of the Hansards,
5159 English words from the first 1000-French-English-document training chunk, and
Reuters ModApt split, 9962 words from the 9602 training and 3299 test documents
had 1473 words. The extracted "  � � � KCCA vectors from English and French parts
(raw ’KCCA’ of Table 6) and 300 eigenvectors from the same data (raw ’CL-LSI’) were
used in the SVM f ��� � � [6] with the kernel (10) to classify the Reuters-21578 data. The
experiments were averaged over 10 runs with 5% each time randomly chosen fraction of
training data as the difference between bag-of-words and semantic methods is more con-
trasting on smaller samples. Both CL-KCCA and CL-LSI perform remarkably well when
one considers that they are based on just 1473 words. In all cases CL-KCCA outperforms
the bag-of-words kernel.

6 Conclusions

We have presented a novel procedure for extracting semantic information in an unsuper-
vised way from a bilingual corpus, and we have used it in text retrieval applications. Our
main findings are that: the correlation existing between certain sets of words in english and
french documents cannot be explained as random correlations. Hence we need to explain



Table 6: � � value, %, averaged over 10 subsequent runs of SVM classifier with original
Reuters-21578 data (’bag-of-words’) and preprocessed using semantics (300 vectors)
extracted from the Canadian Parliament corpus by various methods.

CLASS EARN ACQ GRAIN CRUDE

BAG-OF-WORDS 81 � � 57 ��� 33 ��� 13 ���
CL-KCCA 90 �	� 75 ��
 43 ��� 38 ��� �
CL-LSI 77 ��� 52 ��� 64 ��� 
 40 �	�

it by means of relations between the generative processes of the two versions of the docu-
ments. The correlations detect similarities in content between the two documents, and can
be exploited to derive a semantic representation of the text. The representation is then used
for retrieval tasks, providing better performance than existing techniques.
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