
Journal of Machine Learning Research 10 (2009) 1–41 Submitted 05/08; Published xx/09

Graph Kernels

S.V. N. Vishwanathan vishy@stat.purdue.edu

Departments of Statistics and Computer Science
Purdue University
250 N University Street, West Lafayette, IN 47907-2066, USA

Nicol N. Schraudolph schraudolph@adaptivetools.com

adaptive tools AG
Canberra ACT 2602, Australia

Risi Kondor risi@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit
University College London
17 Queen Square, WC1N 3AR London, United Kingdom

Karsten M. Borgwardt karsten.borgwardt@tuebingen.mpg.de

Interdepartmental Bioinformatics Group,
Max Planck Institute for Developmental Biology and
Max Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tübingen, Germany

Editor: John Lafferty

Abstract

We present a unified framework to study graph kernels, special cases of which include the
random walk (Gärtner et al., 2003; Borgwardt et al., 2005), marginalized (Kashima et al.,
2003, 2004; Mahé et al., 2004), and geometric (Gärtner, 2002) graph kernels. Through
extensions of linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) and reduction to
a Sylvester equation, we construct an algorithm that improves the time complexity of kernel
computation from O(n6) to O(n3). When the graphs are sparse, conjugate gradient solvers
or fixed-point iterations bring our algorithm into the sub-cubic domain. Experiments on
graphs from bioinformatics and other application domains show that this can speed up
computing the kernel by an order of magnitude or more. We also show that rational
kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random
walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler,
1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al.
(2006) yet provably positive semi-definite.
Keywords: Linear Algebra in RKHS, Sylvester Equations, Bioinformatics, Rational
Kernels, Transducers, Semirings, Random Walks.

1. Introduction

Machine learning in domains such as bioinformatics (Sharan and Ideker, 2006), chemoin-
formatics (Bonchev and Rouvray, 1991), drug discovery (Kubinyi, 2003), web data mining
(Washio and Motoda, 2003), and social networks (Kumar et al., 2006) involves the study

c©2009 S.V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt.

Vishwanathan, Schraudolph, Kondor, and Borgwardt

−→

Figure 1: Left: Structure of E. coli protein fragment APO-BCCP87 (Yao et al., 1997), ID
1a6x in the Protein Data Bank (Berman et al., 2000). Right: Borgwardt et al.’s
(2005) graph representation for this protein fragment. Nodes represent secondary
structure elements, and edges encode neighborhood along the amino acid chain
(solid) resp. in Euclidean 3D space (dashed).

of relationships between structured objects. Graphs are natural data structures to model
such structures, with nodes representing objects and edges the relations between them. In
this context, one often encounters two questions: “How similar are two nodes in a given
graph?” and “How similar are two graphs to each other?”

In protein function prediction, for instance, one might want to predict whether a given
protein is an enzyme or not. Computational approaches infer protein function by finding
proteins with similar sequence, structure, or chemical properties. A very successful recent
method is to model the protein as a graph (see Figure 1), and assign similar functions to
similar graphs (Borgwardt et al., 2005). In Section 5.2 we compute graph kernels to measure
the similarity between proteins and enzymes represented in this fashion.

Another application featured in Section 5.2 involves predicting the toxicity of chemical
molecules by comparing their three-dimensional structure. Here the molecular structure is
modeled as a graph, and the challenge is to compute the similarity between molecules of
known and unknown toxicity.

Finally, consider the task of finding web pages with related content. Since documents
on the web link to each other, one can model each web page as the node of a graph, and
each link as an edge. Now the problem becomes that of computing similarities between
the nodes of a graph. Taking this one step further, detecting mirrored sets of web pages
requires computing the similarity between the graphs representing them.

Kernel methods (Schölkopf and Smola, 2002) offer a natural framework to study these
questions. Roughly speaking, a kernel k(x, x′) is a measure of similarity between objects
x and x′. It must satisfy two mathematical requirements: it must be symmetric, that is,
k(x, x′) = k(x′, x), and positive semi-definite (p.s.d.). Comparing nodes in a graph involves
constructing a kernel between nodes, while comparing graphs involves constructing a kernel
between graphs. In both cases, the challenge is to define a kernel that captures the semantics
inherent in the graph structure and is reasonably efficient to evaluate.

2

Graph Kernels

The idea of constructing kernels on graphs (i.e., between the nodes of a single graph)
was first proposed by Kondor and Lafferty (2002), and extended by Smola and Kondor
(2003). In contrast, in this paper we focus on kernels between graphs. The first such kernels
were proposed by Gärtner (2002) (geometric kernel) and Gärtner et al. (2003) (random walk
kernel), and later extended by Borgwardt et al. (2005). Much at the same time, the idea of
marginalized kernels (Tsuda et al., 2002) was extended to graphs by Kashima et al. (2003,
2004), and further refined by Mahé et al. (2004). Another algebraic approach to graph
kernels has appeared recently (Kondor and Borgwardt, 2008). A seemingly independent
line of research investigates the so-called rational kernels, which are kernels between finite
state automata based on the algebra of abstract semirings (Cortes et al., 2002, 2003, 2004).

The aim of this paper is twofold: on the one hand we present theoretical results showing
that all the above graph kernels are in fact closely related, on the other hand we present new
algorithms for efficiently computing such kernels. We begin by establishing some notation
and reviewing pertinent concepts from linear algebra and graph theory.

1.1 Paper Outline

The first part of this paper (Sections 2–5) elaborates on a recent conference publication
(Vishwanathan et al., 2007) to present a unifying framework for graph kernels encompassing
many known kernels as special cases, and to discuss connections to yet others. After defining
some basic concepts in Section 2, we describe the framework in Section 3, prove that it leads
to p.s.d. kernels, and discuss random walk, geometric, and marginalized graph kernels as
special cases. For ease of exposition we will work with real matrices in the main body
of the paper and relegate the RKHS extensions to Appendix A. In Section 4 we present
three efficient ways to compute random walk graph kernels, namely 1. via reduction to a
Sylvester equation, 2. using a conjugate gradient (CG) solver, and 3. using a fixed-point
iteration. Experiments on a variety of real and synthetic datasets in Section 5 illustrate the
computational advantages of our approach, which generally reduces the time complexity of
kernel computations from O(n6) to O(n3). The experiments of Section 5.3 were previously
presented at a bioinformatics symposium (Borgwardt et al., 2007).

The second part of the paper (Sections 6–7) draws further connections to existing kernels
on structured objects. In Section 6 we present a simple proof that rational kernels (Cortes
et al., 2002, 2003, 2004) are p.s.d., and show that specializing them to graphs yields random
walk graph kernels. In Section 7 we discuss the relation between R-convolution kernels
(Haussler, 1999) and various graph kernels, all of which can in fact be shown to be instances
of R-convolution kernels. Extending the framework through the use of semirings does not
always result in a p.s.d. kernel though; a case in point is the optimal assignment kernel
of Fröhlich et al. (2006). We establish sufficient conditions for R-convolution kernels in
semirings to be p.s.d., and provide a “mostly optimal assignment kernel” that is provably
p.s.d. We conclude in Section 8 with an outlook and discussion.

2. Preliminaries

Here we define the basic concepts and notation from linear algebra and graph theory that
will be used in the remainder of the paper.

3

Vishwanathan, Schraudolph, Kondor, and Borgwardt

2.1 Linear Algebra Concepts

We use ei to denote the ith standard basis vector (that is, a vector of all zeros with the ith

entry set to one), e to denote a vector with all entries set to one, 0 to denote the vector of
all zeros, and I to denote the identity matrix. When it is clear from the context we will not
mention the dimensions of these vectors and matrices.

Definition 1 Given real matrices A ∈ Rn×m and B ∈ Rp×q, the Kronecker product A⊗B ∈
Rnp×mq and column-stacking operator vec(A) ∈ Rnm are defined as

A⊗B :=

 A11B A12B . . . A1mB
...

...
...

...
An1B An2B . . . AnmB

 , vec(A) :=

 A∗1
...

A∗m

 ,
where A∗j denotes the jth column of A.

The Kronecker product and vec operator are linked by the well-known property (e.g., Bern-
stein, 2005, proposition 7.1.9):

vec(ABC) = (C>⊗A) vec(B). (1)

Another well-known property of the Kronecker product which we make use of is (Bernstein,
2005, proposition 7.1.6):

(A⊗B)(C ⊗D) = AC ⊗BD. (2)

Finally, the Hadamard product of two real matrices A,B ∈ Rn×m, denoted by A�B ∈
Rn×m, is obtained by element-wise multiplication. It interacts with the Kronecker product
via

(A⊗B)� (C ⊗D) = (A� C)⊗ (B �D). (3)

All the above concepts can be extended to a Reproducing Kernel Hilbert Space (RKHS)
(See Appendix A for details).

2.2 Graph Concepts

A graph G consists of an ordered set of n vertices V = {v1, v2, . . . , vn}, and a set of directed
edges E ⊂ V ×V . A vertex vi is said to be a neighbor of another vertex vj if they are
connected by an edge, i.e., if (vi, vj) ∈ E; this is also denoted vi ∼ vj . We do not allow self-
loops, i.e., (vi, vi) /∈ E for any i. A walk of length k on G is a sequence of indices i0, i1, . . . ik
such that vir−1 ∼ vir for all 1 ≤ r ≤ k. A graph is said to be strongly connected if any two
pairs of vertices can be connected by a walk. In this paper we will always work with strongly
connected graphs. A graph is said to be undirected if (vi, vj) ∈ E ⇐⇒ (vj , vi) ∈ E.

In much of the following we will be dealing with weighted graphs, which are a slight
generalization of the above. In a weighted graph, each edge (vi, vj) has an associated
weight wij > 0 signifying its “strength”. If vi and vj are not neighbors, then wij = 0. In
an undirected weighted graph wij = wji.

4

Graph Kernels

When G is unweighted, we define its adjacency matrix as the n×n matrix Ã with Ãij = 1
if vj ∼ vi, and 0 otherwise. For weighted graphs, Ãij = wji. While some authors would call
these matrices the transpose of the adjacency matrix, for our purposes the present defnitions
will be more convenient. For undirected graphs Ã is symmetric, and the two definitions
coincide. The diagonal entries of Ã are always zero.

The adjacency matrix has a normalized cousin, defined A := ÃD−1, which has the
property that each of its columns sums to one, and it can therefore serve as the transition
matrix for a stochastic process. Here, D is a diagonal matrix of node degrees, i.e., Dii = di =∑

j Ãij . A random walk on G is a process generating sequences of vertices vi1 , vi2 , vi3 , . . .
according to P(ik+1|i1, . . . ik) = Aik+1,ik , that is, the probability at vik of picking vik+1

next
is proportional to the weight of the edge (vik , vik+1

). The tth power of A thus describes
t-length walks, i.e., (At)ij is the probability of a transition from vertex vj to vertex vi via a
walk of length t. If p0 is an initial probability distribution over vertices, then the probability
distribution pt describing the location of our random walker at time t is pt = Atp0. The jth

component of pt denotes the probability of finishing a t-length walk at vertex vj . We will
use this intuition to define generalized random walk graph kernels.

Let X be a set of labels which includes the special label ζ. Every edge-labeled graph G
is associated with a label matrix X ∈ X n×n in which Xij is the label of the edge (vj , vi) and
Xij = ζ if (vj , vi) /∈ E. Let H be the RKHS induced by a p.s.d. kernel κ : X ×X → R, and
let φ : X → H denote the corresponding feature map, which we assume maps ζ to the zero
element of H. We use Φ(X) to denote the feature matrix of G (see Appendix A for details).
For ease of exposition we do not consider labels on vertices here, though our results hold
for that case as well. Henceforth we use the term labeled graph to denote an edge-labeled
graph.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic (denoted by G ∼= G′) if
there exists a bijective mapping g : V → V ′ (called the isomorphism function) such that
(vi, vj) ∈ E iff (g(vi), g(vj)) ∈ E′.

3. Random Walk Graph Kernels

Our generalized random walk graph kernels are based on a simple idea: given a pair of
graphs, perform random walks on both, and count the number of matching walks. We show
that this simple concept underlies random walk, marginalized, and geometric graph kernels.
In order to do this, we first need to introduce direct product graphs.

3.1 Direct Product Graphs

Given two graphs G(V,E) and G′(V ′, E′), their direct product G× is a graph with vertex
set

V× = {(vi, v′r) : vi ∈ V, v′r ∈ V ′}, (4)

and edge set

E× = {((vi, v′r), (vj , v′s)) : (vi, vj) ∈ E ∧ (v′r, v
′
s) ∈ E′}. (5)

In other words, G× is a graph over pairs of vertices from G and G′, and two vertices in G×
are neighbors if and only if the corresponding vertices in G and G′ are both neighbors; see

5

Vishwanathan, Schraudolph, Kondor, and Borgwardt

11' 21' 31'

34'

24'

14'

12'

22'

32'

13'23'33'

1

2

3

1' 2'

3'4'
X

Figure 2: Two graphs (top left & right) and their direct product (bottom). Each node of
the direct product graph is labeled with a pair of nodes (4); an edge exists in the
direct product if and only if the corresponding nodes are adjacent in both original
graphs (5). For instance, nodes 11′ and 32′ are adjacent because there is an edge
between nodes 1 and 3 in the first, and 1′ and 2′ in the second graph.

Figure 2 for an illustration. If Ã and Ã
′

are the respective adjacency matrices of G and G′,
then the adjacency matrix of G× is Ã× = Ã⊗ Ã

′
. Similarly, A× = A⊗A′.

Performing a random walk on the direct product graph is equivalent to performing a
simultaneous random walk on G and G′ (Imrich and Klavžar, 2000). If p and p′ denote
initial probability distributions over the vertices of G and G′, then the corresponding initial
probability distribution on the direct product graph is p× := p⊗p′. Likewise, if q and q′ are
stopping probabilities (that is, the probability that a random walk ends at a given vertex),
then the stopping probability on the direct product graph is q× := q ⊗ q′.

Let |V | =: n and |V ′| =: n′. If G and G′ are edge-labeled, we can associate a weight
matrix W× ∈ Rnn′×nn′ with G× using our extension of the Kronecker product (Definition 1)
into RKHS (Definition 11 in Appendix A):

W× = Φ(X)⊗ Φ(X ′). (6)

6

Graph Kernels

As a consequence of the definition of Φ(X) and Φ(X ′), the entries of W× are non-zero
only if the corresponding edge exists in the direct product graph. If we simply let H = R,
Φ(X) = Ã, and Φ(X ′) = Ã

′
then (6) reduces to Ã×, the adjacency matrix of the direct

product graph. Normalization can be incorporated by letting φ(Xij) = 1/di if (vj , vi) ∈ E
or zero otherwise.1 Then Φ(X) = A and Φ(X ′) = A′, and consequently W× = A×.

If the edges of our graphs take on labels from a finite set, without loss of generality
{1, 2, . . . , d}, we can let H be Rd endowed with the usual inner product. For each edge
(vj , vi) ∈ E we set φ(Xij) = el /di if the edge (vj , vi) is labeled l; all other entries of Φ(X)
are 0. Thus the weight matrix (6) has a non-zero entry iff an edge exists in the direct
product graph and the corresponding edges in G and G′ have the same label. Let lA denote
the normalized adjacency matrix of the graph filtered by the label l, that is, lAij = Aij if
Xij = l, and zero otherwise. Some simple algebra (omitted for the sake of brevity) shows
that the weight matrix of the direct product graph can then be written as

W× =
d∑
l=1

lA⊗ lA′. (7)

In Section 4 we will develop efficient methods to compute kernels defined using the weight
matrix of the direct product graph. The applicability and time complexity of a particular
method will depend on whether the graphs are unlabeled (W× = A×), have discrete edge
labels (7), or — in the most general case — employ an arbitrary edge kernel (6); see Table 1
for a summary.

3.2 Kernel Definition

As stated above, performing a random walk on the direct product graph G× is equivalent
to performing a simultaneous random walk on the graphs G and G′ (Imrich and Klavžar,
2000). Therefore, the ((i−1)n′+ r, (j−1)n′+ s)th entry of Ak× represents the probability of
simultaneous length k random walks on G (starting from vertex vj and ending in vertex vi)
and G′ (starting from vertex v′s and ending in vertex v′r). The entries of W× (6) represent
similarity between edges: The ((i−1)n′+r, (j−1)n′+s) entry of W k

× represents the similarity
between simultaneous length k random walks on G and G′, measured via the kernel function
κ. Given initial and stopping probability distributions p× and q× one can compute q>×W

k
×p×,

which is the expected similarity between simultaneous length k random walks on G and G′.
To define a kernel which computes the similarity between G and G′, one natural idea

is to simply sum up q>×W
k
×p× for all values of k. However, this sum might not converge,

leaving the kernel value undefined. To overcome this problem, we introduce appropriately
chosen non-negative coefficients µ(k), and define the kernel between G and G′ as

k(G,G′) :=
∞∑
k=1

µ(k) q>×W
k
×p×. (8)

This definition is very flexible and offers the kernel designer many parameters to adjust in
an application-specific manner: Appropriately choosing µ(k) allows one to (de-)emphasize

1. Strictly speaking this is not an edge-wise feature map anymore, since φ(Xij) depends on di as well as
Xij

7

Vishwanathan, Schraudolph, Kondor, and Borgwardt

walks of different lengths; if initial and stopping probabilities are known for a particular
application, then this knowledge can be incorporated into the kernel; and finally, appropriate
kernels or similarity measures between edges can be incorporated via the weight matrix W×.
Despite its flexibility, this kernel is guaranteed to be p.s.d. and — as we will see in Section
4 — can be computed efficiently by exploiting the special structure of W×. To show that
(8) is a valid p.s.d. kernel we need the following technical lemma:

Lemma 2 ∀ k ∈ N : W k
×p× = vec[Φ(X ′)kp′ (Φ(X)kp)>].

Proof By induction over k. Base case: k = 1. Observe that

p× = (p⊗ p′) vec(1) = vec(p′p>). (9)

Using (9) and Lemma 12 — which extends (1) into RKHS —W×p× can be written as

W×p× = [Φ(X)⊗ Φ(X ′)] vec(p′p>) = vec[Φ(X ′)p′p>Φ(X)>]

= vec[Φ(X ′)p′(Φ(X)p)>]. (10)

Induction from k to k+1: Using the induction assumptionW k
×p× = vec[Φ(X ′)kp′ (Φ(X)kp)>]

and Lemma 12 we obtain

W k+1
× p× = W×W

k
×p× = (Φ(X)⊗ Φ(X ′)) vec[Φ(X ′)kp′ (Φ(X)kp)>]

= vec[Φ(X ′)Φ(X ′)kp′ (Φ(X)kp)>Φ(X)>] (11)

= vec[Φ(X ′)k+1p′ (Φ(X)k+1p)>].

Base case (10) and induction (11) together imply Lemma 2 ∀ k ∈ N.

Lemma 3 If the coefficients µ(k) are such that (8) converges, then (8) defines a valid p.s.d.
kernel.

Proof Using Lemmas 12 and 2 we can write

q>×W
k
×p× = (q ⊗ q′)> vec[Φ(X ′)kp′ (Φ(X)kp)>]

= vec[q′>Φ(X ′)kp′ (Φ(X)kp)>q]

= (q>Φ(X)kp)>︸ ︷︷ ︸
ρk(G)>

(q′>Φ(X ′)kp′)︸ ︷︷ ︸
ρk(G′)

. (12)

Each individual term of (12) equals ρk(G)>ρk(G′) for some function ρk, and is therefore a
valid p.s.d. kernel. The lemma follows because the class of p.s.d. kernels is closed under
non-negative linear combinations and pointwise limits (Berg et al., 1984).

8

Graph Kernels

3.3 Special Cases

Kashima et al. (2004) define a kernel between labeled graphs via walks and their label
sequences. Recall that a walk of length t on G is a sequence of indices i1, i2, . . . it+1 such
that vik ∼ vik+1

for all 1 ≤ k ≤ t. In our setting (where we do not consider node labels),
the label sequence h = h1, . . . , ht associated with a walk is simply the sequence of edge
labels encountered during the walk. Let P denote a transition probability matrix, where
Pij denotes the probability of transition from node vi to node vj . For instance, P might
be the normalized adjacency matrix of G. Furthermore, let p and q denote starting and
stopping probabilities. Then one can compute the probability of a walk i1, i2, . . . it+1 and
hence the label sequence h associated with it as

p(h|G) := qit+1

t∏
j=1

Pij ,ij+1 pi1 . (13)

Now let φ̂ denote a feature map on edge labels, and define a kernel between label sequences
of length t by

κ(h, h′) :=
t∏
i=1

κ(hi, h′i) =
t∏
i=1

〈
φ̂(hi), φ̂(h′i)

〉
(14)

if h and h′ have the same length t, and zero otherwise. Using (13) and (14) we can define
a kernel between graphs via marginalization:

k(G,G′) :=
∑
h

∑
h′

κ(h, h′) p(h|G) p(h|G′). (15)

Kashima et al. (2004, Eq. 1.19) show that (15) can be written as

k(G,G′) = q>×(I−T×)−1p×, (16)

where T× = [vec(P) vec(P ′)>]� [Φ̂(X)⊗ Φ̂(X ′)]. (As usual, X and X ′ denote the edge label
matrices of G and G′, respectively, and Φ̂ the corresponding feature matrices.)

Although this kernel is differently motivated, it can be obtained as a special case of our
framework. Towards this end, assume µ(k) = λk for some λ > 0. We can then write

k(G,G′) =
∑
k

λkq>×W
k
×p× = q>×(I−λW×)−1p×. (17)

To recover the marginalized graph kernels let λ = 1, and define Φ(Xij) = PijΦ̂(Xij), in
which case W× = T×, thus recovering (16).

Given a pair of graphs, Gärtner et al. (2003) also perform random walks on both, but
then count the number of matching walks. Their kernel can be defined as (Gärtner et al.,
2003, Definition 6):

k(G,G′) =
n∑
i=1

n′∑
j=1

∞∑
k=1

λk[Ak×]ij . (18)

9

Vishwanathan, Schraudolph, Kondor, and Borgwardt

To obtain (18) in our framework, set µ(k) = λk, assume a uniform distribution over the
vertices of G and G′, i.e., pi = qi = 1/n and p′i = q′i = 1/n′, and let Φ(X) := A and
Φ(X ′) = A′. Consequently, p× = q× = e /(nn′), and W× = A×. This allows us to rewrite
(8) to obtain

k(G,G′) =
∞∑
k=1

λkq>×A
k
×p× =

1
n2n′2

n∑
i=1

n′∑
j=1

∞∑
k=1

λk[Ak×]ij , (19)

which recovers (18) to within a constant factor. Gärtner et al. (2003) also extend their kernel
to graphs with labels from a finite set by replacing A× in (18) with the weight matrix W×
from (7). The reduction to our framework extends to this setting in a straightforward
manner.

The kernels of Gärtner et al. (2003) differ from our definition (8) in a number of ways:
First, they employ a fixed exponential decay factor λ to down-weight the contribution of
long walks to the kernel.2 Second, they do not take starting or stopping probabilities into
account, and third, instead of our general weight matrix (6) which allows for kernels on
edges it only handles graphs whose labels are drawn from a finite set.

Finally, the so-called geometric kernel is defined as (Gärtner, 2002)

k(G,G′) =
n∑
i=1

n′∑
j=1

[eλA×]ij = e>eλA×e, (20)

using the matrix exponential. This is obtained in our framework by setting pi = qi = 1/n,
p′i = q′i = 1/n′, Φ(X) := A, Φ(X ′) = A′, and µ(k) = λk/k!, then proceeding as for (19).

4. Efficient Computation

Computing a random walk graph kernel essentially reduces to inverting the matrix (I−λW×).
If both G and G′ have n vertices, then (I−λW×) is an n2×n2 matrix. Given that the com-
plexity of inverting a matrix is essentially cubic in its dimensions, direct computation of
(17) would require O(n6) time. Below we develop methods based on Sylvester equations
(Section 4.1), conjugate gradients (Section 4.2), and fixed-point iterations (Section 4.3) that
can be used to speed up this computation. In Section 4.4 we show that the geometric kernel
can also be computed efficiently, and Section 4.5 introduces an approximation that can
further speed up the kernel computation for labeled graphs.

Table 1 summarizes our results, listing the worst-case time complexity of our methods
as a function of graph density and labeling. Exact computation of a kernel between dense,
unlabeled graphs (leftmost column) is cubic in the graph size (number of nodes) for all our
algorithms; for the iterative methods this must be multiplied by the number of iterations,
which is given by the effective rank r of the weight matrix W× for conjugate gradient, and
by (32) for fixed-point iterations.

For these two algorithms the cost increases by another factor of d for graphs with edge
labels from a finite set of d symbols or an edge kernel with d-dimensional feature map;

2. The choice of λ is critical: It must be small enough for the sum in (18) to converge, depending on the
spectrum of W× (Vishwanathan, 2002, Chapter 6).

10

Graph Kernels

Table 1: Worst-case time complexity (in O(·) notation) of our methods to compute graph
kernels, where n = size of graph (number of nodes), d = size of label set resp.
dimensionality of feature map, r = effective rank of W×, k = number of fixed-
point iterations (32), and k′ = number of power iterations (34).

sparsity dense sparse

edge labels none finite set finite-dim. ∞-dim.
any

Method (Section) W× = A⊗A′ (7) kernel (6)

Sylvester Equation (4.1) n3 unknown — —

Conjugate Gradient (4.2) rn3 rdn3 rn4 rn2

Fixed-Point Iterations (4.3) kn3 kdn3 kn4 kn2

Geometric Kernel (4.4) n3 n6 —

Nearest Kron. Product (4.5) 1 k′dn2 k′n4 k′n2

for an arbitrary edge kernel (whose feature map may be infinite-dimensional) this factor
becomes n. Our technique for fast computation of the geometric kernel does not apply to
labeled graphs, and the Sylvester equation method only if the labels come from a finite
set of symbols, and then with unknown time complexity. A nearest Kronecker product
approximation can be used, however, to approximate the direct product of labeled graphs
with a weight matrix that can be handled by any of our methods for unlabeled graphs. This
approximation requires k′ (34) iterations, each costing O(dn2) time when the labels come
from a finite set of d symbols, and O(n4) in general.

Finally, when the graphs are sparse (i.e., only have O(n) edges each; rightmost column
in Table 1) our iterative methods (conjugate gradient, fixed-point, and nearest Kronecker
product) take only O(n2) time per iteration, regardless of how the graphs are labeled.
We cannot authoritatively state the time complexity for sparse graphs of solving Sylvester
equations or performing spectral decompositions (for the geometric kernel).

4.1 Sylvester Equation Methods

Consider the following equation, commonly known as the Sylvester or Lyapunov equation:

M = SMT +M0. (21)

Here, S, T,M0 ∈ Rn×n are given and we need for solve for M ∈ Rn×n. These equations can
be readily solved in O(n3) time with freely available code (Gardiner et al., 1992), such as
Matlab’s dlyap method. Solving the generalized Sylvester equation

M =
d∑
i=1

SiMTi +M0 (22)

11

Vishwanathan, Schraudolph, Kondor, and Borgwardt

involves computing generalized simultaneous Schur factorizations of d symmetric matrices
(Lathauwer et al., 2004). Although technically involved, this can also be solved efficiently,
albeit at a higher computational cost. The computational complexity of this generalized
factorization is at present unknown.

We now show that for graphs with discrete edge labels, whose weight matrix W× can be
written as (7), the problem of computing the graph kernel (17) can be reduced to solving
the following generalized Sylvester equation:

M =
d∑
i=1

λ iA′M iA> +M0, (23)

where vec(M0) = p×. We begin by flattening (23):

vec(M) = λ

d∑
i=1

vec(iA′M iA>) + p×. (24)

Using Lemma 12 (which extends (1) into an RKHS) we can rewrite (24) as

(I−λ
d∑
i=1

iA⊗ iA′) vec(M) = p×, (25)

use (7), and solve (25) for vec(M):

vec(M) = (I−λW×)−1p×. (26)

Multiplying both sides of (26) by q>× yields

q>×vec(M) = q>×(I−λW×)−1p×. (27)

The right-hand side of (27) is the graph kernel (17). Given the solution M of the
Sylvester equation (23), the graph kernel can be obtained as q>×vec(M) in O(n2) time. The
same argument applies for unlabeled graphs by simply setting d = 1, which turns (23) into a
simple Sylvester equation. Since solving that only takes O(n3) time, computing the random
walk graph kernel in this fashion is much faster than the O(n6) time required by the direct
approach.

One drawback of this strategy is that Sylvester equation solvers are quite sophisticated
and typically available only as black-box library routines, which limits their applicability.
Matlab’s dlyap solver, for instance, does not exploit sparsity, and only handles the cases
d = 1 and d = 2. A solver for the simple Sylvester equation (21) can still be used to efficiently
compute kernels between labeled graphs though by employing the nearest Kronecker product
approximation (Section 4.5).

4.2 Conjugate Gradient Methods

Given a matrix M and a vector b, conjugate gradient (CG) methods solve the system
of equations Mx = b efficiently (Nocedal and Wright, 1999). While they are designed

12

Graph Kernels

for symmetric p.s.d. matrices, CG solvers can also be used to solve other linear systems
efficiently. They are particularly efficient if the matrix is rank deficient, or has a small
effective rank, that is, number of distinct eigenvalues. Furthermore, if computing matrix-
vector products is cheap — because M is sparse, for instance — the CG solver can be sped
up significantly (Nocedal and Wright, 1999). Specifically, if computing Mv for an arbitrary
vector v requires O(m) time, and the effective rank of M is r, then a CG solver takes O(r)
iterations, and hence only O(rm) time, to solve Mx = b.

The graph kernel (17) can be computed by a two-step procedure: First we solve the
linear system

(I−λW×)x = p×, (28)

for x, then we compute q>×x. We now focus on efficient ways to solve (28) with a CG
solver. Recall that if G and G′ contain n vertices each then W× is an n2×n2 matrix.
Naively, multiplying W by some vector y inside the CG algorithm requires O(n4) operations.
However, by our extension of the vec-ABC formula (1) into RKHS (Lemma 12), introducing
the matrix Y ∈ Rn×n with y = vec(Y), and recalling that W× = Φ(X) ⊗ Φ(X ′), by
Lemma 12 we can write

W×y = (Φ(X)⊗ Φ(X ′)) vec(Y) = vec(Φ(X ′)Y Φ(X)>). (29)

If φ(·) ∈ Rd then the above matrix-vector product can be computed in O(dn3) time. If
Φ(X) and Φ(X ′) are sparse, then Φ(X ′)Y Φ(X)> can be computed yet more efficiently: If
there are O(n) non-ζ entries in Φ(X) and Φ(X ′), then computing (29) takes only O(n2)
time.

4.3 Fixed-Point Iterations

Fixed-point methods begin by rewriting (28) as

x = p× + λW×x. (30)

Now, solving for x is equivalent to finding a fixed point of (30) taken as an iteration (Nocedal
and Wright, 1999). Letting xt denote the value of x at iteration t, we set x0 := p×, then
compute

xt+1 = p× + λW×xt (31)

repeatedly until ‖xt+1 − xt‖ < ε, where ‖ · ‖ denotes the Euclidean norm and ε some pre-
defined tolerance. This is guaranteed to converge if all eigenvalues of λW× lie inside the unit
disk; this can be ensured by setting λ < |ξ1|−1, where ξ1 is the largest-magnitude eigenvalue
of W×. Assuming that each iteration of (31) contracts x to the fixpoint by a factor of λξ1,
we converge to within ε of the fixpoint in k iterations, where

k = O

(
ln ε

lnλ+ ln |ξ1|

)
. (32)

The above is closely related to the power method used to compute the largest eigenvalue
of a matrix (Golub and Van Loan, 1996); efficient preconditioners can also be used to

13

Vishwanathan, Schraudolph, Kondor, and Borgwardt

speed up convergence (Golub and Van Loan, 1996). Since each iteration of (31) involves
computation of the matrix-vector product W×xt, all speed-ups for computing the matrix-
vector product discussed in Section 4.2 are applicable here. In particular, we exploit the
fact that W× is a sum of Kronecker products to reduce the worst-case time complexity to
O(dn3) per iteration in our experiments, in contrast to Kashima et al. (2004) who computed
the matrix-vector product explicitly.

4.4 Geometric Kernel

We now turn our attention to Gärtner’s (2002) geometric kernel (20). If G and G′ are unla-
beled graphs with n vertices, then A× is an n2×n2 matrix, therefore a naive implementation
of the geometric kernel takes O(n6) time. We now show how to reduce this to O(n3).

Lemma 4 The geometric kernel (20) between two unlabeled graphs with n vertices each can
be computed in O(n3) time.

Proof Let A = PDP> denote the spectral decomposition of A, that is, columns of P are
the eigenvectors of A and D is a diagonal matrix of corresponding eigenvalues (Stewart,
2000). Similarly A′ = P ′D′P ′>. The spectral decomposition of an n×n matrix can be
computed efficiently in O(n3) time (Golub and Van Loan, 1996).

Using Propositions 7.1.10, 7.1.6, and 7.1.3 of Bernstein (2005) it is easy to show that
the spectral decomposition of A× is (P ⊗ P ′)(D ⊗D′)(P ⊗ P ′)>. Furthermore, the matrix
exponential eλA× can be written as (P ⊗P ′) eλD⊗D′(P ⊗P ′)> (Bernstein, 2005, proposition
11.2.3). This and (2) allow us to rewrite (20) as

k(G,G′) = (e⊗ e)>(P ⊗ P ′) eλD⊗D′(P ⊗ P ′)>(e⊗ e)

= (e>P ⊗ e>P ′) eλD⊗D
′
(P>e ⊗P ′>e). (33)

The proof follows by observing that each of the three terms in (33) as well as their product
can be computed in O(n2) time.

Lemma 4 applies only to the computation of the geometric kernel between unlabeled graphs.
The key technical difficulty in extending it to labeled graphs is that a sum of matrices in
the exponent cannot be separated unless they commute, i.e., generally eA+B 6= eAeB unless
AB = BA. We can use the nearest Kronecker product (Section 4.5), however, to compute
an approximate geometric kernel between labeled graphs.

4.5 Nearest Kronecker Product Approximation

As we have seen above, some of our fast methods for computing random walk graph kernels
may become computationally expensive, or not even be available, for labeled graphs, in
particular when the number d of distinct labels is large or a general edge kernel is employed.
In such cases we can find the nearest Kronecker product to W×, i.e., compute matrices S
and T such that W× ≈ S ⊗ T , then use any of our methods on S ⊗ T as if it were the
adjacency matrix of a direct product of unlabeled graphs.

Finding the nearest Kronecker product approximating a matrix such as W× is a well-
studied problem in numerical linear algebra, and efficient algorithms which can exploit the

14

Graph Kernels

sparsity of W× are available (Pitsianis, 1992; Van Loan, 2000). Formally, these methods
minimize the Frobenius norm ‖W×−S⊗T‖F by computing the largest singular value of Ŵ×,
a permuted version of W×. We employ the power method3 for this purpose, each iteration
of which entails computing the matrix-vector product Ŵ×vec(T ′), where T ′ ∈ Rn×n is the
current approximation of T . The result of the matrix-vector product is then reshaped into
an n×n matrix to form T ′ for the next iteration (Pitsianis, 1992). It is easy to see that
computing Ŵ× vec(T ′) requires O(n4) time.

If W× can be written as a sum of d Kronecker products (7), then so can Ŵ× (Pitsianis,
1992; Van Loan, 2000), and the cost per iteration hence drops to O(dn2). Furthermore, if
the two graphs are sparse with O(n) edges each, then W× will have O(n2) non-zero entries,
and each iteration only takes O(n2) time. The number k′ of iterations required is

k′ = O

(
lnn

ln |ξ1| − ln |ξ2|

)
, (34)

where ξ1 and ξ2 are the eigenvalues of W× with largest resp. second-largest magnitude.

5. Experiments

Numerous studies have applied random walk graph kernels to problems such as protein
function prediction (Borgwardt et al., 2005) and chemoinformatics (Kashima et al., 2004).
In our experiments we therefore focus on the runtime of computing the kernels, rather than
their utility in any given application. We present three sets of experiments: First, we study
the scaling behaviour of our algorithms on random graphs. Second, we assess the practical
impact of our algorithmic improvement on four real-world datasets whose size mandates fast
kernel computation. Third, we devise novel methods for protein-protein interaction (PPI)
network comparison using graph kernels. The algorithmic challenge here is to efficiently
compute kernels on large sparse graphs.

The baseline for comparison in all our experiments is the direct approach of Gärtner et al.
(2003), implemented via a sparse LU factorization; this already runs orders of magnitude
faster on our datasets than a dense (i.e., non-sparse) implementation. Our code was written
in Matlab Release 2008a, and all experiments were run under Mac OS X 10.5.5 on an Apple
Mac Pro with a 3.0 GHz Intel 8-Core processor and 16 GB of main memory. We employed
Lemma 12 to speed up matrix-vector multiplication for both CG and fixed-point methods
(cf. Section 4.2), and used the function dlyap from Matlab’s control toolbox to solve the
Sylvester equation. By default, we used a value of λ = 10−4, and set the convergence
tolerance for both CG solver and fixed-point iteration to 10−6. For the real-world datasets,
the value of λ was chosen to ensure that the random walk graph kernel converges. Since
our methods are exact and produce the same kernel values (to numerical precision), we only
report the CPU time of each algorithm.

5.1 Random Graphs

The aim here is to study the scaling behaviour of our algorithms as a function of graph size
and sparsity. We generated several sets of random graphs. For the first set we began with

3. Lanczos iterations are typically faster but more difficult to handle numerically.

15

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Figure 3: Time to compute a 10×10 kernel matrix on random graphs with n nodes and
3n edges as a function of the graph size n. Left: The Sylvester equation (Sylv.),
conjugate gradient (CG), and fixed-point iteration (FP) approaches compared to
the dense and sparse direct method. The thin straight lines indicate O(n6) (black
dots) resp. O(n3) (red dashes) scaling. Right: Kashima et al.’s (2004) fixed-point
iteration (original) compared to our version, which exploits Lemma 12 (vec-trick).

an empty graph of n = 2k nodes, where k = 2, 3, . . . , 10, randomly added 3n edges, then
checked the graph’s connectivity. For each k we repeated this process until we had collected
10 strongly connected random graphs.

The time required to compute the 10×10 kernel matrix between these graphs for each
value of n is shown in Figure 3 (left). We see that the direct approach scales asymptotically
as O(n6) in both the dense and the sparse implementation. For a graph of 64 nodes the
direct approach already takes over half an hour (sparse) resp. 3 hours (dense) of CPU time.
Our Sylvester equation (Sylv.), conjugate gradient (CG) and fixed-point iteration (FP)
methods, by contrast, all scale as O(n3), and can thus be applied to far larger graphs.

We also examined the impact of Lemma 12 on enhancing the runtime performance of
the fixed-point iteration approach as originally proposed by Kashima et al. (2004). For this
experiment, we again computed the 10×10 kernel matrix on the above random graphs, once
using the original fixed-point iteration, and once using fixed-point iteration enhanced by
Lemma 12. As Figure 3 (right) shows, our approach consistently outperforms the original
version, sometimes by over an order of magnitude.

For the next set of experiments we fixed the graph size at 32 nodes (the largest size
that the direct method could handle comfortably), and randomly added edges until the fill
factor (i.e., the number of non-zero entries in the adjacency matrix) reached x%, where
x = 5, 10, 20, 30, . . . , 100. For each x, we generated 10 such graphs and computed the
10×10 kernel matrix between them. Figure 4 (left) shows that as expected, the sparse
direct method is faster than its dense counterpart for small fill factors but slower for larger
ones. Both however are consistently outperformed by our three methods, which are up to
three orders of magnitude faster.

16

Graph Kernels

Figure 4: Time to compute a 10×10 kernel matrix on random graphs as a function of
their fill factor. Left: The dense and sparse direct method on 32-node graphs,
compared to our Sylvester equation (Sylv.), conjugate gradient (CG), and fixed
point iteration (FP) approaches. Right: Our approaches on larger graphs with
256 nodes, where the direct method is infeasible.

To better understand how our algorithms take advantage of sparsity, we generated a set
of larger random graphs (with 256 nodes) by the same procedure as before, but with a geo-
metric progression of fill factors: x = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100. The direct methods
are infeasible here. The CPU times taken by our algorithms to compute a 10×10 kernel
matrix is shown in Figure 4 (right). The runtime of the Sylvester equation solver is fairly
independent of the fill factor because our black-box dlyap solver does not exploit sparsity
in the adjacency matrices. Both conjugate gradient and fixed point iteration methods, by
contrast, have runtimes roughly proportional to the fill factor. Although they are therefore
typically much faster than our Sylvester equation solver, it is interesting to note that the
latter is fastest on dense graphs. We thus predict that a sparse Sylvester equation solver,
if available, could provide the most efficient way to compute graph kernels.

5.2 Real-World Datasets

Our next set of experiments used four real-world datasets: Two sets of molecular compounds
(MUTAG and PTC), and two datasets describing protein tertiary structure (Protein and
Enzyme). Graph kernels provide useful measures of similarity for all of these. We now
briefly describe each dataset, and discuss how graph kernels are applicable.

Chemical Molecules. Toxicity of chemical molecules can be predicted to some degree
by comparing their three-dimensional structure. We employed graph kernels to measure
similarity between molecules from the MUTAG and PTC datasets (Toivonen et al., 2003).
The average number of nodes per graph in these datasets is 17.72 resp. 26.70; the average
number of edges is 38.76 resp. 52.06.

17

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Table 2: Time to compute kernel matrix for unlabeled graphs from various datasets.

dataset MUTAG PTC Enzyme Protein

nodes/graph 17.7 26.7 32.6 38.6

edges/node 2.2 1.9 3.8 3.7

#graphs 100 230 100 417 100 600 100 1128

Sparse 31” 1’45” 45” 7’23” 1’52” 1h21’ 23’23” 2.1d*

Sylvester 10” 54” 28” 7’33” 31” 23’28” 5’25” 11h29’

Conj. Grad. 23” 1’29” 26” 4’29” 14” 10’00” 45” 39’39”

Fixed-Point 8” 43” 15” 2’38” 5” 5’44” 43” 22’09”
∗extrapolated number of days; run did not finish in time available.

Protein Graphs. A standard approach to protein function prediction involves classifying
proteins into enzymes and non-enzymes, then further assigning enzymes to one of the six
top-level classes of the Enzyme Commission (EC) hierarchy. Towards this end, Borgwardt
et al. (2005) modeled a dataset of 1128 proteins as graphs in which vertices represent
secondary structure elements, and edges represent neighborhood within the 3-D structure
or along the amino acid chain, as illustrated in Figure 1.

Comparing these graphs via a modified random walk graph kernel and classifying them
with a Support Vector Machine (SVM) led to function prediction accuracies competitive
with state-of-the-art approaches (Borgwardt et al., 2005). We used Borgwardt et al.’s (2005)
data to test the efficacy of our methods on a large dataset. The average number of nodes
and edges per graph in this data is 38.57 resp. 143.75. We used a single label on the edges,
and the delta kernel to define similarity between edges.

Enzyme Graphs. We repeated the above experiment on an enzyme graph dataset, also
due to Borgwardt et al. (2005). This dataset contains 600 graphs, with 32.63 nodes and
124.27 edges on average. Graphs in this dataset represent enzymes from the BRENDA
enzyme database (Schomburg et al., 2004). The biological challenge on this data is to
correctly assign the enzymes to one of the EC top-level classes.

5.2.1 Unlabeled Graphs

For this experiment, we computed kernels taking into account only the topology of the
graph, i.e., we did not consider node or edge labels. Table 2 lists the CPU time required to
compute the full kernel matrix for each dataset, as well as — for comparison purposes — a
100×100 submatrix. The latter is also shown graphically in Figure 5 (left).

On these unlabeled graphs, conjugate gradient and fixed-point iteration — sped up via
Lemma 12 — are consistently faster than the sparse direct method. The Sylvester equation
approach is very competitive on smaller graphs (outperforming CG on MUTAG) but slows
down with increasing number of nodes per graph. Even so, the Sylvester equation approach
still outperforms the sparse direct method under most conditions.

18

Graph Kernels

5.2.2 Labeled Graphs

For this experiment, we compared graphs with edge labels. Note that node labels can
be dealt with by concatenating them to the edge labels of adjacent edges. On the two
protein datasets we employed a linear kernel to measure similarity between edge labels
representing distances (in Ångströms) between secondary structure elements. On the two
chemical datasets we used a delta kernel to compare edge labels reflecting types of bonds
in molecules; for the Sylvester equation approach we then employed the nearest Kronecker
product approximation. We report CPU times for the full kernel matrix as well as a 100×100
submatrix in Table 3; the latter is also shown graphically in Figure 5 (right).

On labeled graphs, the conjugate gradient and the fixed-point iteration always outper-
form the sparse direct approach, more so on the larger graphs and with the linear kernel.
The Sylvester equation approach (at least with the Sylvester solver we used) cannot take
advantage of sparsity, but still manages to perform almost as well as the sparse direct
method.

5.3 Protein-Protein Interaction Networks

In our third experiment, we used random walk graph kernels to tackle a large-scale problem
in bioinformatics involving the comparison of fairly large protein-protein interaction (PPI)
networks. Using a combination of human PPI and clinical microarray gene expression data,
the task is to predict the disease outcome (dead or alive, relapse or no relapse) of cancer
patients. As before, we set λ = 0.001 and the convergence tolerance to 10−6 for all our
experiments reported below.

5.3.1 Co-Integration of Gene Expression and PPI Data

We co-integrated clinical microarray gene expression data for cancer patients with known
human PPI from Rual et al. (2005). Specifically, a patient’s gene expression profile was
transformed into a graph as follows: A node was created for every protein which — according
to Rual et al. (2005) — participates in an interaction, and whose corresponding gene expres-
sion level was measured on this patient’s microarray. We connect two proteins in this graph

Table 3: Time to compute kernel matrix for labeled graphs from various datasets.

kernel delta, d=7 delta, d=22 linear, d=1

dataset MUTAG PTC Enzyme Protein

#graphs 100 230 100 417 100 600 100 1128

Sparse 42” 2’44” 1’07” 14’22” 1’25” 57’43” 12’38” 1.1d*

Sylvester 1’08” 6’05” 1’06” 18’20” 2’13” 76’43” 19’20” 11h19’

Conj. Grad. 39” 3’16” 53” 14’19” 20” 13’20” 41” 57’35”

Fixed-Point 25” 2’17” 37” 7’55” 10” 6’46” 25” 31’09”
∗extrapolated number of days; run did not finish in time available.

19

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Figure 5: Time (in seconds on a log-scale) to compute 100×100 kernel matrix for unlabeled
(left) resp. labeled (right) graphs from several datasets, comparing the conven-
tional sparse method to our fast Sylvester equation, conjugate gradient (CG),
and fixed-point iteration (FP) approaches.

by an edge if Rual et al. (2005) list these proteins as interacting, and both genes are up-
resp. downregulated with respect to a reference measurement. Each node bears the name
of the corresponding protein as its label.

This approach of co-integrating PPI and gene expression data is built on the assumption
that genes with similar gene expression levels are translated into proteins that are more
likely to interact. Recent studies confirm that this assumption holds significantly more
often for co-expressed than for random pairs of proteins (Fraser et al., 2004; Bhardwaj
and Lu, 2005). To measure similarity between these networks in a biologically meaningful
manner, we compare which groups of proteins interact and are co-regulated in each patient.
For this purpose, a random walk graph kernel is the natural choice, as a random walk in
this graph represents a group of proteins in which consecutive proteins along the walk are
co-expressed and interact. As each node bears the name of its corresponding protein as its
node label, the size of the product graph is at most that of the smaller of the two input
graphs.

5.3.2 Composite Graph Kernel

The presence of an edge in a graph signifies an interaction between the corresponding nodes.
In chemoinformatics, for instance, edges indicate chemical bonds between two atoms; in PPI
networks, edges indicate interactions between proteins. When studying protein interactions
in disease, however, the absence of a given interaction can be as significant as its presence.
Since existing graph kernels cannot take this into account, we propose to modify them
appropriately. Key to our approach is the notion of a complement graph:

Definition 5 Let G = (V,E) be a graph with vertex set V and edge set E. Its complement
Ḡ = (V, Ē) is a graph over the same vertices but with complementary edges Ē := (V ×V)\E.

20

Graph Kernels

Table 4: Average time to compute kernel matrix on protein-protein interaction networks.

dataset Leukemia Breast Cancer

kernel vanilla composite vanilla composite

Sparse 24” 52” 39” 1’19”

Sylvester 11’55” 24’02” 19’59” 43’32”

Conj. Grad. 6” 13” 12” 26”

Fixed-Point 4” 7” 7” 13”

In other words, the complement graph consists of exactly those edges not present in the
original graph. Using this notion we define the composite graph kernel

kcomp(G,G′) := k(G,G′) + k(Ḡ, Ḡ′). (35)

This deceptively simple kernel leads to substantial gains in performance in our experiments
comparing co-integrated gene expression/protein-protein interaction networks.

5.3.3 Datasets

Leukemia. Bullinger et al. (2004) provide a dataset of microarrays of 119 leukemia pa-
tients. Since 50 patients survived after a median follow-up time of 334 days, always pre-
dicting a lethal outcome here would result in a baseline prediction accuracy of 1 - 50/119 =
58.0%. Co-integrating this data with human PPI, we found 2,167 proteins from Rual et al.
(2005) for which Bullinger et al. (2004) report expression levels among the 26,260 genes
they examined.

Breast Cancer. This dataset consists of microarrays of 78 breast cancer patients, of
which 44 had shown no relapse of metastases within 5 years after initial treatment (van’t
Veer et al., 2002). Always predicting survival thus gives a baseline prediction accuracy
of 44/78 = 56.4% on this data. When generating co-integrated graphs, we found 2,429
proteins from Rual et al. (2005) for which van’t Veer et al. (2002) measure gene expression
out of the 24,479 genes they studied.

5.3.4 Results

The CPU runtimes of our conjugate gradient, fixed-point, and Sylvester equation approaches
to graph kernel computation on the cancer patients modeled as graphs is contrasted with
that of the direct sparse method in Table 4. Using the computed kernel and a support vector
machine (SVM) we tried to predict the survivors, either with a “vanilla” graph kernel (17),
or our composite graph kernel (35) in 10-fold cross-validation.

On both datasets, our fast graph kernel computation methods result in a speed gain.
With respect to prediction accuracy, the vanilla random walk graph kernel performs slightly
better than the baseline classifier on one task (Leukemia: 59.2 % vs 58.0 %), and gives
identical results on the other (Breast Cancer: both 56.4 %). The composite graph kernel

21

Vishwanathan, Schraudolph, Kondor, and Borgwardt

attains 5 percentage points above baseline in both experiments (Leukemia: 63.3 %; Breast
cancer: 61.5 %).

The vanilla kernel suffers from its inability to measure network discrepancies, the paucity
of the graph model employed, and the fact that only a small minority of genes could be
mapped to interacting proteins; due to these problems, its accuracy remains close to the
baseline. The composite kernel, by contrast, also models missing interactions. With it,
even our simple graph model, which only considers 10% of the genes examined in both
studies, is able to capture some relevant biological information, which in turn leads to
better classification accuracy on these challenging datasets (Warnat et al., 2005).

6. Rational Kernels

Rational kernels (Cortes et al., 2004) were conceived to compute similarity between variable-
length sequences and, more generally, weighted automata. For instance, the output of
a large-vocabulary speech recognizer for a particular input speech utterance is typically
a weighted automaton compactly representing a large set of alternative sequences. The
weights assigned by the system to each sequence are used to rank different alternatives
according to the models the system is based on. It is therefore natural to compare two
weighted automata by defining a kernel.

As discussed in Section 3, random walk graph kernels have a very different basis: They
compute the similarity between two random graphs by matching random walks. Here the
graph itself is the object to be compared, and we want to find a semantically meaningful
kernel. Contrast this with a weighted automaton, whose graph is merely a compact repre-
sentation of the set of variable-length sequences which we wish to compare. Despite these
differences we find, somewhat surprisingly, that rational kernels and random walk graph
kernels are actually closely related.

To understand the connection recall that every random walk on a labeled graph produces
a sequence of edge labels encountered during the walk. Viewing the set of all label sequences
generated by random walks on a graph as a language, one can design a weighted transducer
which accepts this language, with the weight assigned to each label sequence being the
probability of a random walk generating this sequence. In this section we formalize this
observation and thus establish connections between rational kernels on transducers (Cortes
et al., 2004) and random walk graph kernels. In particular, we show that composition
of transducers is analogous to computing product graphs, and that rational kernels on
weighted transducers may be viewed as generalizations of random walk graph kernels to
weighted automata. In order to make these connections explicit we adapt slightly non-
standard notation for weighted transducers, extensively using matrices and tensors wherever
possible.

6.1 Semirings

At the most general level, weighted transducers are defined over semirings. In a semiring
addition and multiplication are generalized to abstract operations ⊕̄ and �̄ with the same
distributive properties:

Definition 6 (Mohri, 2002) A semiring is a system (K, ⊕̄, �̄, 0̄, 1̄) such that

22

Graph Kernels

1. (K, ⊕̄, 0̄) is a commutative monoid in which 0̄ ∈ K is the identity element for ⊕̄ (i.e.,
for any x, y, z ∈ K, we have x ⊕̄ y ∈ K, (x ⊕̄ y) ⊕̄ z = x ⊕̄(y ⊕̄ z), x ⊕̄ 0̄ = 0̄ ⊕̄x = x
and x ⊕̄ y = y ⊕̄x);

2. (K, �̄, 1̄) is a monoid in which 1̄ is the identity operator for �̄ (i.e., for any x, y, z ∈ K,
we have x �̄ y ∈ K, (x �̄ y) �̄ z = x �̄(y �̄ z), and x �̄ 1̄ = 1̄ �̄x = x);

3. �̄ distributes over ⊕̄, i.e., for any x, y, z ∈ K,

(x ⊕̄ y) �̄ z = (x �̄ z) ⊕̄(y �̄ z)
and z �̄(x ⊕̄ y) = (z �̄x) ⊕̄(z �̄ y);

4. 0̄ is an annihilator for �̄: ∀x ∈ K, x �̄ 0̄ = 0̄ �̄x = 0̄.

Thus, a semiring is a ring that may lack negation. (R,+, ·, 0, 1) is the familiar semiring of
real numbers. Other examples include

Boolean: ({False,True},∨,∧,False,True);

Logarithmic: (R∪{−∞}, ⊕̄ln,+,−∞, 0), where ∀x, y ∈ K : x ⊕̄ln y := ln(ex + ey);

Tropical: (R∪{−∞},max,+,−∞, 0).

Linear algebra operations such as matrix addition and multiplication as well as Kronecker
products can be carried over to a semiring in a straightforward manner. For instance, for
M,M ′ ∈ Kn×n we have

[M �̄M ′]i,j =

n⊕
k=1

Mik �̄M ′kj . (36)

The (⊕̄, �̄) operations in some semirings can be mapped into ordinary (+, ·) operations
by applying an appropriate morphism:

Definition 7 Let (K, ⊕̄, �̄, 0̄, 1̄) be a semiring. A function ψ : K→ R is a morphism if

ψ(x ⊕̄ y) = ψ(x) + ψ(y);
ψ(x �̄ y) = ψ(x) · ψ(y);
ψ(0̄) = 0 and ψ(1̄) = 1.

In the following, by ’morphism’ we will always mean a morphism from a semiring to the real
numbers. Not all semirings have such morphisms: For instance, the logarithmic semiring
has a morphism — namely, the exponential function — but the tropical semiring does not
have one. If the semiring has a morphism ψ, applying it to the matrix product (36), for
instance, yields

ψ([M �̄M ′]i,j) = ψ

(n⊕
k=1

Mik �̄M ′kj
)

=
n∑
k=1

ψ(Mik �̄M ′kj) =
n∑
k=1

ψ(Mik) · ψ(M ′kj). (37)

23

Vishwanathan, Schraudolph, Kondor, and Borgwardt

As in Appendix A, we can extend the morphism ψ to matrices (and analogously to vectors)
by defining [Ψ(M)]ij := ψ(Mij). We can then write (37) concisely as

Ψ(M �̄M ′) = Ψ(M)Ψ(M ′). (38)

6.2 Weighted Transducers

Loosely speaking, a transducer is a weighted automaton with an input and an output
alphabet. We will work with the following slightly specialized definition:4

Definition 8 A weighted finite-state transducer T over a semiring (K, ⊕̄, �̄, 0̄, 1̄) is a 5-
tuple T = (Σ, Q,H, p, q), where Σ is a finite input-output alphabet, Q is a finite set of n
states, p ∈ Kn is a vector of initial weights, q ∈ Kn is a vector of final weights, and H is a
four-dimensional tensor in Kn×|Σ|×|Σ|×n which encodes transitions and their corresponding
weights.

For a, b ∈ Σ we will use the shorthand Hab to denote the n×n slice H∗ab∗ of the transition
tensor, which represents all valid transitions on input symbol a emitting the output symbol
b. The output weight assigned by T to a pair of strings α = a1a2 . . . al and β = b1b2 . . . bl is

[[T]](α, β) = q> �̄Ha1b1 �̄Ha2b2 �̄ . . . �̄Halbl �̄ p. (39)

A transducer is said to accept a pair of strings (α, β) if it assigns non-zero output weight to
them, i.e., [[T]](α, β) 6= 0̄. A transducer is said to be regulated if the output weight it assigns
to any pair of strings is well-defined in K. Since we disallow ε transitions, our transducers
are always regulated.

The inverse of T = (Σ, Q,H, p, q), denoted by T−1, is obtained by transposing the input
and output labels of each transition. Formally, T−1 = (Σ, Q,H>, p, q) where H>ab := Hba.
The composition of two transducers T = (Σ, Q,H, p, q) and T ′ = (Σ, Q′, H ′, p′, q′) is a
transducer T× = T ◦ T ′ = (Σ, Q×, H×, p×, q×), where Q× = Q × Q′, p× = p ⊗̄ p′,5 q× :=
q ⊗̄ q′, and (H×)ab =

⊕̄
c∈ΣHac ⊗̄H ′cb. It can be shown that

[[T×]](α, β) = [[T ◦ T ′]](α, β) =
⊕
γ

[[T]](α, γ) �̄[[T ′]](γ, β). (40)

Composing T with its inverse yields T ◦ T−1 = (Σ, Q×Q,H∗, p ⊗̄ p, q ⊗̄ q), where H∗ab =⊕̄
c∈ΣHac ⊗̄Hbc. There exists a general and efficient algorithm for composing transducers

which takes advantage of the sparseness of the input transducers (Mohri et al., 1996; Pereira
and Riley, 1997).

6.3 Weighted Automata

A weighted automaton is a transducer with identical input and output symbols. The tran-
sition matrix of a weighted automaton is therefore a three-dimensional tensor in Kn×|Σ|×n.

4. We disallow ε transitions, and use the same alphabet for both input and output. Furthermore, in a
departure from tradition, we represent the transition function as a four-dimensional tensor.

5. We use ⊗̄ to denote the Kronecker product using the semiring operation �̄, in order to distinguish it
from the regular Kronecker product ⊗.

24

Graph Kernels

As before, we will use the shorthand Ha to denote the n×n slice H∗a∗ of the transition
tensor, which represents all valid transitions on the input symbol a emitting output sym-
bolx a. If Σ contains d symbols, then by specializing (39) it is easy to see that a weighted
automaton accepts a string α = a1a2 . . . al with weight

[[T]](α) = q> �̄Ha1 �̄Ha2 �̄ . . . �̄Hal
�̄ p. (41)

The composition of two weighted automata T = (Σ, Q,H, p, q) and T ′ = (Σ, Q′, H ′, p′, q′)
is an automaton T× = T ◦ T ′ = (Σ, Q×, H×, p×, q×), where Q× = Q × Q′, p× = p ⊗̄ p′,
q× := q ⊗̄ q′, and (H×)a = Ha ⊗̄H ′a. The composition operation is also defined for a
weighted automaton W and a transducer T :

[[W ◦ T]](α, β) = [[W]](α) �̄[[T]](α, β). (42)

Every random walk on a labeled graph results in a sequence of edge labels encountered
during the walk. The set of all label sequences generated by random walks on a given graph
is a language. One can construct a weighted automaton which accepts this language as
follows: Use the standard semiring (R,+, ·, 0, 1), let the alphabet Σ consist of the labels
{1, . . . , d} of the graph, and identify the nodes of the graph with the states of the weighted
automaton. Let the starting and stopping probabilities p and q on the graph equal those of
the weighted automaton, and complete the construction by identifying for each l ∈ Σ the
label-filtered adjacency matrix lA of the graph with Hl, the transition tensor of the weighted
automaton for that symbol.

Under the above mapping (41) has a natural interpretation: The weight assigned by the
automaton to a string of symbols is the probability of encountering the corresponding labels
while performing a random walk on the corresponding labeled graph. The composition of
weighted automata, when specialized to labeled graphs, is equivalent to computing a direct
product graph.

An unlabeled graph corresponds to a weighted automaton whose input-output alphabet
contains exactly one symbol, and which therefore only accepts strings of the form ak =
aa . . . a. The transition matrix of such a graph (equivalently, its adjacency matrix) is a
2-dimensional tensor in Kn×n. If A denotes the adjacency matrix of a graph G, then the
output weight assigned by G to ak is [[G]](ak) = q>AA . . . Ap = q>Akp.

6.4 The Rational Kernel for Strings

Given a weighted transducer T and a function ψ : K→ R, the rational kernel between two
strings α = a1a2 . . . al and β = b1b2 . . . bl is defined as (Cortes et al., 2004):

k(α, β) := ψ ([[T]](α, β)) . (43)

Cortes et al. (2004) show that a generic way to obtain p.s.d. rational kernels is to replace
T in (43) by T ◦ T−1, and let ψ be a semiring morphism. We now present an alternate
proof which uses properties of the Kronecker product. Since ψ is a semiring morphism, by
specializing (39) to T ◦ T−1, we can write k(α, β) = ψ

(
[[T ◦ T−1]](α, β)

)
as

Ψ(q ⊗̄ q)>Ψ

(⊕
c1

Ha1c1 ⊗̄Hb1c1

)
. . .Ψ

(⊕
cl

Halcl ⊗̄Hblcl

)
Ψ(p ⊗̄ p). (44)

25

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Rules analogous to (38) give us

Ψ

(⊕
c∈Σ

Hac ⊗̄Hbc

)
=
∑
c∈Σ

Ψ(Hac)⊗Ψ(Hbc). (45)

Using (45) we can rewrite (44) as∑
c1c2...cl

Ψ(q)> ⊗Ψ(q)> (Ψ(Ha1c1)⊗Ψ(Hb1c1)) . . . (Ψ(Halcl)⊗Ψ(Hblcl)) Ψ(p)⊗Ψ(p). (46)

Finally, successively applying (2) to (46) yields

k(α, β) =
∑

c1c2...cl

(
Ψ(q)>Ψ(Ha1c1) . . .Ψ(Halcl)Ψ(p)

)
︸ ︷︷ ︸

ρ(α)

(
Ψ(q)>Ψ(Hb1c1) . . .Ψ(Hblcl)Ψ(p)

)
︸ ︷︷ ︸

ρ(β)

,

(47)

Each term of (47) equals ρ(α) ρ(β) for some scalar function ρ, and is therefore a valid p.s.d.
kernel. Since p.s.d. kernels are closed under addition and pointwise limits (Berg et al.,
1984), k(α, β) is a valid p.s.d. kernel.

6.5 The Rational Kernel for Weighted Automata

Rational kernels on strings can be naturally extended to weighted automata S and U via
(Cortes et al., 2004):

k(S,U) = ψ

⊕
α,β

[[S]](α) �̄[[T]](α, β) �̄[[U]](β)

= ψ

⊕
α,β

[[S ◦ T ◦ U]](α, β)

 , (48)

where we obtained (48) by using (42) twice. If ψ is a semiring morphism, then we can use
Definition 7 to rewrite (48) as

k(S,U) =
∑
α,β

ψ ([[S ◦ T ◦ U]](α, β)) . (49)

Since p.s.d. kernels are closed under addition and pointwise limits, if ψ ([[S ◦ T ◦ U]](α, β))
is a p.s.d. kernel for any given α and β, then so is (49).

6.6 Recovering Random Walk Graph Kernels

In order to recover random walk graph kernels we use the standard (R,+, ·, 0, 1) ring as
our semiring, and hence set ψ to be the identity function. Next we set the transducer T to
simply transform any input string of length k into an identical output string with weight
µ(k) ≥ 0. With these restrictions (49) can be written as

k(S,U) =
∑
α

µ(|α|)[[S ◦ U]](α), (50)

26

Graph Kernels

where |α| denotes the length of α. Let us rearrange (50) to

k(S,U) =
∑
k

µ(k)

(∑
a1,a2,...,ak

[[S ◦ U]](a1, a2, . . . , ak)

)
. (51)

Specializing the definition of ◦ to weighted automata, and letting Ha (resp. H ′a) denote the
transition tensor of S (resp. U), we can rewrite (51) as

k(S,U) =
∑
k

µ(k)

 ∑
a1,a2,...,ak∈Σk

(q ⊗ q′)>(Ha1 ⊗H ′a1
) . . . (Hak

⊗H ′ak
)(p⊗ p′)

=
∑
k

µ(k)(q ⊗ q′)>
 ∑
a1,a2,...,ak∈Σk

(Ha1 ⊗H ′a1
) . . . (Hak

⊗H ′ak
)

 (p⊗ p′)

=
∑
k

µ(k)(q ⊗ q′)>
(∑
a∈Σ

Ha ⊗H ′a

)
. . .

(∑
a∈Σ

Ha ⊗H ′a

)
(p⊗ p′)

=
∑
k

µ(k)(q ⊗ q′)>
(∑

a

Ha ⊗H ′a

)k
(p⊗ p′). (52)

Next, we identify Ha (resp. H ′a) with the label-filtered adjacency matrix aA (resp. aA′) of a
graph G (resp. G′) with discrete edge labels. It easy to see that H× :=

∑
aHa ⊗H ′a is the

weight matrix (7) of the direct product of G and G′. Letting p× = p⊗ p′ and q× = q ⊗ q′,
(52) reduces to

k(G,G′) =
∑
k

µ(k) q>×H
k
× p×, (53)

which recovers the random walk graph kernel (8) with W× = H×.
The generality of the rational kernel comes at a computational cost: Even when re-

stricted as in (50), it requires the composition S ◦ U of two transducers, which takes up to
O((|QS |+ |ES |)(|QU |+ |EU |)) time, where |Q| is the number of states and |E| the number
of transitions (Cortes et al., 2004, Section 4.1). In our setting |Q| = n, the number of nodes
in the graph, and |E| is the number of its edges, which can be of O(n2). The worst-case
time complexity of the composition operation is therefore O(n4). Contrast this with the
O(n3) worst-case complexity for computing the random walk kernel that we achieve via the
methods described in Section 4.

Thus even though random walk graph kernels can be considered a special case of rational
kernels, the algorithms for computing them differ: We have succeeded in leveraging our
narrower framework into lower computational complexity. Our key insight is that we never
explicitly construct the composition (i.e., direct product graph) to compute the kernel.

For ease of exposition we derived (53) by setting T to be an identity transducer. Instead,
one can use a weighted transducer which allows for more flexible matching between strings
in the alphabet. Basically, the transducer now plays the role of the kernel function κ, and
this in turn leads to a more flexible similarity matrix W×.

27

Vishwanathan, Schraudolph, Kondor, and Borgwardt

There is one important difference between graph kernels and rational kernels. Graph
kernels can handle arbitrary edge kernels, including continuous edge labels via the weight
matrix W×. In contrast, rational kernels, which were designed to work with strings and
automata, assume that the alphabet (set of labels) is finite. As we saw above, they can
incorporate flexible similarity matrices W× in this setting, but cannot handle continuous
edge labels. Furthermore, extending rational kernels to deal with labels mapped to an
RKHS remains an open problem.

7. R-convolution Kernels

Haussler’s (1999) R-convolution kernels provide a generic way to construct kernels for dis-
crete compound objects. Let x ∈ X be such an object, and x := (x1, x2, . . . , xD) denote a
decomposition of x, with each xi ∈ X i. We can define a boolean predicate

R : X ×X → {True,False}, (54)

where X := X 1× . . .×XD and R(x,x) is True whenever x is a valid decomposition of x.
Now consider the inverse of (54), the set of all valid decompositions of an object:

R−1(x) := {x|R(x,x) = True}. (55)

Like Haussler (1999) we assume that (55) is countable. We define the R-convolution ? of
the kernels κ1, κ2, . . . , κD with κi : X i×X i → R to be

k(x, x′) = κ1 ? κ2 ? . . . ? κD(x, x′) :=
∑

x∈R−1(x)

x′∈R−1(x′)

µ(x,x′)
D∏
i=1

κi(xi, x′i), (56)

where µ denotes a set of non-negative coefficients on X×X , which ensures that the sum
in (56) converges.6 Haussler (1999) showed that k(x, x′) is p.s.d. and hence admissible
as a kernel (Schölkopf and Smola, 2002), provided that all the individual κi are. The
deliberate vagueness of this setup in regard to the nature of the underlying decomposition
leads to a rich framework: Many different kernels can be obtained by simply changing the
decomposition.

7.1 Graph Kernels as R-Convolutions

To apply R-convolution kernels to graphs, one decomposes the graph into smaller substruc-
tures, and builds the kernel based on similarities between those components. Most graph
kernels are — knowingly or not — based on R-convolutions; they mainly differ in the way
they decompose the graph for comparison and the similarity measure they use to compare
the components.

Gärtner et al. (2003) observed that a hypothetical graph kernel which takes all sub-
structures (i.e., subgraphs) of a graph into account could be used to determine whether
two graphs G and G′ are isomorphic: Simply compute d(G,G′) := k(G,G)−k(G,G′); since

6. Haussler (1999) implicitly assumed this sum to be well-defined, hence did not use µ in his definition.

28

Graph Kernels

any structural difference between the graphs would yield a non-zero d(G,G′), they are iso-
morphic iff d(G,G′) = 0. The graph isomorphism problem, however, is widely believed to
be not solvable in polynomial time (Garey and Johnson, 1979). The choice of substructures
used in defining a graph kernel is therefore generally motivated by runtime considerations.

Random walks provide a straightforward graph decomposition that — as we have seen in
Section 4 — leads to kernels that can be computed efficiently. To see that our random walk
graph kernel (8) is indeed an R-convolution kernel, note that the definition of our weight
matrix (6) and the RKHS Kronecker product (Definition 11) imply

[W×](i−1)n′+r, (j−1)n′+s = [Φ(X)⊗ Φ(X ′)](i−1)n′+r, (j−1)n′+s

=
〈
φ(vi, vj), φ(v′r, v

′
s)
〉
H =: κ((vi, vj), (v′r, v

′
s)), (57)

where κ is our edge kernel. We can thus expand (8) by explicitly taking all paths through
the repeated matrix products, giving

k(G,G′) :=
∞∑
k=1

µ(k) q>×W
k
×p× =

∞∑
k=1

µ(k) q>×

(k∏
i=1

W×

)
p×

=
∞∑
k=1

µ(k)
∑

v0,v1,...vk∈V
v′0,v

′
1,...v

′
k∈V ′

qvk
q′v′k

(k∏
i=1

κ((vi−1, vi), (v′i−1, v
′
i))
)
pv0 p

′
v′0
. (58)

This is easily identified as an instance of the R-convolution kernel (56), where the decom-
position is into all equal-length sequences v,v′ of nodes from V and V ′, respectively, and

µ(v,v′) := µ(|v|) qv|v|q
′
v′|v|
pv0 p

′
v′0
, (59)

where | · | in (59) denotes the length of a sequence. Finally, note that by definition of our
edge kernel κ, only pairs of sequences that are both actual walks on their respective graphs
will make a non-zero contribution to (58).

Random walk graph kernels as proposed by Gärtner et al. (2003) likewise decompose a
graph into random walks, but then employ a delta kernel between nodes. Borgwardt et al.
(2005), on the other hand, use a kernel defined on both nodes and edges. The marginalized
graph kernels of Kashima et al. (2004) are closely related but subtly different in that they
decompose the graph into all possible label sequences generated by a walk. Mahé et al.
(2004) extend this approach in two ways: They enrich the labels via the so-called Morgan
index, and modify the kernel definition to prevent tottering, that is, the generation of
high similarity scores by multiple, similar, small substructures. Both these extensions are
particularly relevant for chemoinformatics applications.

Further afield, Horvath et al. (2004) decompose a graph into cyclic patterns, then count
the number of common cyclic patterns which occur in both graphs. Their kernel is plagued
by computational issues; in fact they show that computing the cyclic pattern kernel of a
general graph is NP-hard. They consequently restrict their attention to practical problem
classes where the number of simple cycles is bounded.

Ramon and Gärtner (2003) consider subtree patterns to define graph kernels. Starting
from a given node v, a tree is created by adding all the nodes that can be reached from v in

29

Vishwanathan, Schraudolph, Kondor, and Borgwardt

1, . . . , h steps, where h is the height of the tree. If more than one walk connects two nodes,
then each one of these is used to define a distinct subtree. This means that the same node
is counted several times, thus leading to tottering. Furthermore, the number of candidate
trees grows exponentially with the height of the subtree under consideration, thus severely
limiting the depth of graph structure one can probe at reasonable computational cost.

Borgwardt and Kriegel (2005) define a kernel (60) based on shortest paths. They repre-
sent a graph G = (V,E) by a complete graph S = (V, Ē) over the same vertices, wherein the
weight of each edge in Ē equals the length of the shortest path between the corresponding
nodes in G. Their shortest path kernel is then defined as

ksp(G,G′) =
∑
e∈Ē

∑
e′∈Ē′

κ(e, e′), (60)

where κ is any kernel defined on the edges of S and S′.
Shervashidze et al. (2009) use subgraphs of fixed size to define kernels. Their key idea

is to represent the graph by a normalized frequency vector which counts the frequency of
occurrence of various fixed-size subgraphs. The kernel is then simply computed as the dot
product between these vectors.

Other decompositions of graphs which are well suited for particular application domains
include molecular fingerprints based on various types of depth-first searches (Ralaivola et al.,
2005) and structural elements such as rings or functional groups (Fröhlich et al., 2006).

7.2 R-Convolutions in Abstract Semirings

There have been a few attempts to extend the R-convolution kernel (56) to abstract semir-
ings, by defining:

k(x, x′) :=
⊕

x∈R−1(x)

x′∈R−1(x′)

µ(x,x′) �̄
D⊙
i=1

κi(xi, x′i). (61)

The optimal assignment graph kernel of Fröhlich et al. (2006) is motivated along these lines,
using the tropical semiring. It can be defined as

k(x, x′) = max
x∈R−1(x)

x′∈R−1(x′)

(
µ(x,x′) +

D∑
i=1

κi(xi, x′i)
)
. (62)

Unfortunately (62) is not always p.s.d. (Vert, 2008). The problem is that the class of p.s.d.
kernels is not closed under the max operation (Berg et al., 1984).

For semirings that have a morphism ψ to the reals, however, we can rewrite (61) as

ψ(k(x, x′)) =
∑

x∈R−1(x)

x′∈R−1(x′)

µ(x,x′)
D∏
i=1

ψ(κi(xi, x′i)). (63)

30

Graph Kernels

Comparing (63) with (56) makes it clear that ψ ◦k is p.s.d. and hence admissible if all ψ ◦κi
are. This can be used to construct p.s.d. R-convolution kernels in such semirings.

For instance, take the logarithmic semiring (R∪{−∞}, ⊕̄ln,+,−∞, 0) augmented with
an inverse temperature parameter β > 0, so that x ⊕̄ln y := ln(eβx + eβy)/β. This has the
morphism ψ(x) = eβx. We can thus specialize (63) to define

k(x, x′) :=
∑

x∈R−1(x)

x′∈R−1(x′)

eβκ(x,x′), where κ(x,x′) := µ(x,x′) +
D∑
i=1

κi(xi, x′i), (64)

which is a valid p.s.d. kernel if all eβκi are. Note that if κi is a p.s.d. kernel, then since
β > 0 so is βκi, and since p.s.d. kernels are closed under exponentiation (Genton, 2001,
Equation 5) so is eβκi .

What makes (64) interesting is that when the temperature approaches zero (β →∞), the
augmented logarithmic semiring approaches the tropical semiring, as x ⊕̄ln y → max(x, y).
We thus obtain a kernel that approximates (an exponentiated version of) the optimal as-
signment kernel (62) yet is provably p.s.d. Since at low temperatures the value of (64) is
dominated by the optimal assignment, one might call it the “mostly optimal assignment
kernel.”

The finite range of floating-point computer arithmetic unfortunately limits how low
a temperature (64) can be used with in practice, though this can be greatly extended via
suitable software, such as the extnum C++ class (http://darwin.nmsu.edu/molb_resources/
bioinformatics/extnum/extnum.html).

8. Discussion and Outlook

As evidenced by the large number of recent papers, random walk graph kernels and marginal-
ized graph kernels have received considerable research attention. Although the connections
between these two kernels were hinted at by Kashima et al. (2004), no effort was made to
pursue this further. Our aim in presenting a unified framework for random walk, marginal-
ized, and geometric graph kernels that combines the best features of previous formulations
is to highlight the similarities as well as the differences between these approaches. Further-
more, it allows us to use extended linear algebra in an RKHS to efficiently compute all these
kernels by exploiting common structure inherent in these problems.

As more and more graph-structured data (e.g., molecular structures and protein inter-
action networks) becomes available in fields such as biology, web data mining, etc., graph
classification will gain importance over the coming years. Hence there is a pressing need to
speed up the computation of similarity metrics on graphs. We have shown that sparsity,
low effective rank, and Kronecker product structure can be exploited to greatly reduce the
computational cost of graph kernels; taking advantage of other forms of structure in W× re-
mains a computational challenge. Now that the computation of random walk graph kernels
is viable for practical problem sizes, it will open the doors for their application in hitherto
unexplored domains.

A major deficiency of random walk graph kernels is that the admissible range of values
of the decay parameter λ in (17) depends on the spectrum of the weight matrix W×. Since

31

http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html
http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html

Vishwanathan, Schraudolph, Kondor, and Borgwardt

this is typically unknown, in practice one often resorts to very low values of λ— but this
makes the contributions of higher-order terms (corresponding to long walks) to the kernel
negligible. In fact in many applications a naive kernel which simply computes the average
kernel between all pairs of edges in the two graphs has performance comparable to the
random walk graph kernel.

Trying to remedy this situation by normalizing the matrices involved leads to another
phenomenon called tottering (Mahé et al., 2004). Roughly speaking tottering occurs when
short self-repeating walks make a disproportionately large contribution to the kernel value.
Consider two adjacent vertices v and v′ in a graph. Because of tottering, contributions
due to walks of the form v → v′ → v → . . . dominate the kernel value. Unfortunately a
kernel using self-avoiding walks (walks which do not visit the same vertex twice) cannot be
computed in polynomial time.

A natural question to ask is the following: Since diffusion can be viewed as a continuous
time limit of random walks, can the ideas behind the random walk kernel be extended to
diffusion? Unfortunately, the Laplacian of the product graph does not decompose into the
Kronecker product of the Laplacian matrices of the constituent graphs; this rules out a
straightforward extension.

Although rational kernels have always been viewed as distinct from graph kernels, we
have shown that in fact these two research areas are closely related. It is our hope that
this will facilitate cross-pollination of ideas such as the use of semirings and transducers
in defining graph kernels. We also hope that tensor and matrix notation become more
prevalent in the transducer community.

It is fair to say that R-convolution kernels are the mother of all kernels on structured
data. It is enlightening to view various graph kernels as instances of R-convolution kernels
since this brings into focus the relevant decomposition used to define a given kernel, and the
similarities and differences between various kernels. Extending R-convolutions to abstract
semirings, however, does not always result in a valid p.s.d. kernel. We have shown that a
morphism to the reals is sufficient to successfully transport an R-convolution kernel into a
semiring; whether it is necessary remains an open problem.

We do not believe that the last word on graph comparison has been said yet. Thus far,
simple decompositions like random walks have been used to compare graphs. This is mainly
driven by computational considerations and not by the application domain at hand. The
algorithmic challenge of the future is to integrate higher-order structures such as spanning
trees in graph comparisons, and to compute such kernels efficiently.

Acknowledgments

We thank Markus Hegland and Tim Sears for enlightening discussions, Alex Smola for
pointing out that the optimal assignment kernel may fail to be p.s.d., and the anonymous
reviewers for their detailed comments and suggestions which greatly helped improve this
paper.

This work was supported by NICTA, funded by the Australian Government through
the Backing Australia’s Ability and Centre of Excellence programs, by the IST Program of
the European Community under the FP7 Network of Excellence, ICT-216886-NOE, by the
German Ministry for Education, Science, Research and Technology (BMBF) under grant

32

Graph Kernels

No. 031U112F within the BFAM (Bioinformatics for the Functional Analysis of Mammalian
Genomes) project, part of the German Genome Analysis Network (NGFN), and by NIH
grant GM063208-05 “Tools and Data Resources in Support of Structural Genomics.”

References

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer,
New York, 1984.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

N. Bhardwaj and H. Lu. Correlation between gene expression profiles and protein-protein
interactions within and across genomes. Bioinformatics, 21(11):2730–2738, June 2005.

D. Bonchev and D. H. Rouvray, editors. Chemical Graph Theory: Introduction and Funda-
mentals, volume 1. Gordon and Breach Science Publishers, London, UK, 1991.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In Proceedings of the
International Conference on Data Mining, pages 74–81, 2005.

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-
P. Kriegel. Protein function prediction via graph kernels. In Proceedings of Intelligent
Systems in Molecular Biology (ISMB), Detroit, USA, 2005. http://www.stat.purdue.

edu/~vishy/papers/BorOngSchVisetal05.pdf.

K. M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schraudolph. Graph
kernels for disease outcome prediction from protein-protein interaction networks. In R. B.
Altman, A. K. Dunker, L. Hunter, T. Murray, and T. E. Klein, editors, Proceedings of the
Pacific Symposium of Biocomputing 2007, Maui Hawaii, January 2007. World Scientific.

L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. F. Schlenk, R. Tibshirani, H. Dohner, and
J. R. Pollack. Use of gene-expression profiling to identify prognostic subclasses in adult
acute myeloid leukemia. New England Journal of Medicine, 350(16):1605–1616, Apr 2004.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, volume 14, Cam-
bridge, MA, 2002. MIT Press.

C. Cortes, P. Haffner, and M. Mohri. Positive definite rational kernels. In B. Schölkopf
and M. K. Warmuth, editors, Procedings of the Annual Conference on Computational
Learning Theory, pages 41–56, 2003.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms. Journal of
Machine Learning Research, 5:1035–1062, 2004.

33

http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf
http://www.stat.purdue.edu/~vishy/papers/BorOngSchVisetal05.pdf

Vishwanathan, Schraudolph, Kondor, and Borgwardt

H. B. Fraser, A. E. Hirsh, D. P. Wall, and M. B. Eisen. Coevolution of gene expression
among interacting proteins. Proceedings of the National Academy of Science USA, 101
(24):9033–9038, Jun 2004.

H. Fröhlich, J. K. Wegner, F. Siker, and andreas Zell. Kernel functions for attributed
molecular graphs — a new similarity based approach to ADME prediction in classification
and regression. QSAR and Combinatorial Science, 25(4):317–326, 2006.

J. D. Gardiner, A. L. Laub, J. J. Amato, and C. B. Moler. Solution of the Sylvester matrix
equation AXB> + CXD> = E. ACM Transactions on Mathematical Software, 18(2):
223–231, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Series of Books in Mathematical Sciences. W. H. Freeman, 1979.

T. Gärtner. Exponential and geometric kernels for graphs. In NIPS workshop on unreal
data, principles of modeling nonvectorial data, 2002.

T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. In B. Schölkopf and M. K. Warmuth, editors, Proceedings of the Annual
Conference on Computational Learning Theory, pages 129–143. Springer, 2003.

M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of
Machine Learning Research, 2:299–312, 2001.

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-
99-10, Computer Science Department, UC Santa Cruz, 1999.

T. Horvath, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph mining.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining
(KDD), pages 158–167, 2004.

W. Imrich and S. Klavžar. Product Graphs, Structure and Recognition. Wiley, 2000.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
Proceedings of the International Conference on Machine Learning, pages 321–328, San
Francisco, CA, 2003. Morgan Kaufmann.

H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. In K. Tsuda, B. Schölkopf,
and J. Vert, editors, Kernels and Bioinformatics, pages 155–170, Cambridge, MA, 2004.
MIT Press.

R. Kondor and K. Borgwardt. The skew spectrum of graphs. In Proceedings of the Inter-
national Conference on Machine Learning, pages 496–503. ACM, 2008.

R. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the International Conference on Machine Learning, pages 315–322, San
Francisco, CA, 2002. Morgan Kaufmann.

34

Graph Kernels

H. Kubinyi. Drug research: myths, hype and reality. Nature Reviews: Drug Discovery, 2
(8):665–668, August 2003.

R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks.
In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 611–617. ACM, 2006. ISBN
1-59593-339-5.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle. Computation of the canonical decom-
position by means of a simultaneous generalized Schur decomposition. SIAM Journal on
Matrix Analysis and Applications, 26(2):295–327, 2004.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized
graph kernels. In Proceedings of the Twenty-First International Conference on Machine
Learning, pages 552–559, 2004.

M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata, Languages and Combinatorics, 7(3):321–350, 2002.

M. Mohri, F. C. N. Pereira, and M. D. Riley. Weighted automata in text and speech
processing. In A. Kornai, editor, Extended Finite State Models of Language: Proceedings
of the ECAI’96 Workshop, pages 46–50, 1996.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Re-
search. Springer, 1999.

F. C. N. Pereira and M. D. Riley. Speech recognition by composition of weighted finite
automata. In Finite-State Language Processing, pages 431–453. MIT Press, 1997.

N. P. Pitsianis. The Kronecker Product in Approximation and Fast Transform Generation.
PhD thesis, Department of Computer Science, Cornell University, 1992.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical informat-
ics. Neural Networks, 18(8):1093–1110, October 2005.

J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. Technical re-
port, First International Workshop on Mining Graphs, Trees and Sequences (held with
ECML/PKDD’03), 2003.

J. F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, et al. Towards
a proteome-scale map of the human protein-protein interaction network. Nature, 437
(7062):1173–1178, Oct 2005.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg.
Brenda, the enzyme database: updates and major new developments. Nucleic Acids
Research, 32D:431–433, Jan 2004.

35

Vishwanathan, Schraudolph, Kondor, and Borgwardt

R. Sharan and T. Ideker. Modeling cellular machinery through biological network compar-
ison. Nature Biotechnology, 24(4):427–433, Apr 2006.

N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient
graphlet kernels for large graph comparison. In M. Welling and D. van Dyk, editors,
Proceedings of the International Workshop on Artificial Intelligence and Statistics. Society
for Artificial Intelligence and Statistics, 2009.

A. J. Smola and R. Kondor. Kernels and regularization on graphs. In B. Schölkopf and
M. K. Warmuth, editors, Proceedings of the Annual Conference on Computational Learn-
ing Theory, Lecture Notes in Comput. Sci., pages 144–158, Heidelberg, Germany, 2003.
Springer-Verlag.

G. W. Stewart. Decompositional approach to matrix computation. Computing in Science
and Engineering, 2(1):50–59, February 2000.

H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical evaluation
of the predictive toxicology challenge 2000-2001. Bioinformatics, 19(10):1183–1193, July
2003.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioinformat-
ics, 18 (Suppl. 2):S268–S275, 2002.

C. F. Van Loan. The ubiquitous Kronecker product. Journal of Computational and Applied
Mathematics, 123(1–2):85–100, 2000.

L. J. van’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, et al. Gene expression
profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.

J.-P. Vert. The optimal assignment kernel is not positive definite. Technical Report
0801.4061v1, arXiv, May 2008. http://aps.arxiv.org/pdf/0801.4061v1.

S. V. N. Vishwanathan. Kernel Methods: Fast Algorithms and Real Life Applications. PhD
thesis, Indian Institute of Science, Bangalore, India, November 2002. http://www.stat.
purdue.edu/~vishy/papers/Vishwanathan02.pdf.

S. V. N. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast computation of graph
kernels. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Infor-
mation Processing Systems 19, Cambridge MA, 2007. MIT Press.

P. Warnat, R. Eils, and B. Brors. Cross-platform analysis of cancer microarray data im-
proves gene expression based classification of phenotypes. BMC Bioinformatics, 6:265,
Nov 2005.

T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explo-
rations, 5(1):59–68, 2003.

X. Yao, D. Wei, C. Soden Jr., M. F. Summers, and D. Beckett. Structure of the carboxy-
terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-
CoA carboxylase. Biochemistry, 36:15089–15100, 1997.

36

http://aps.arxiv.org/pdf/0801.4061v1
http://www.stat.purdue.edu/~vishy/papers/Vishwanathan02.pdf
http://www.stat.purdue.edu/~vishy/papers/Vishwanathan02.pdf

Graph Kernels

Appendix A. Extending Linear Algebra to RKHS

It is well known that any continuous, symmetric, positive definite kernel κ : X ×X →
R has a corresponding Hilbert space H, called the Reproducing Kernel Hilbert Space or
RKHS, which induces a feature map φ : X → H satisfying κ(x, x′) = 〈φ(x), φ(x′)〉H. The
natural extension of this so-called feature map to matrices is Φ: X n×m→ Hn×m defined
[Φ(A)]ij := φ(Aij). In what follows, we use Φ to lift tensor algebra from X to H, extending
various matrix products to the RKHS, and proving some of their their useful properties.
Straightforward extensions via the commutativity properties of the operators have been
omitted for the sake of brevity.

A.1 Matrix Product

Definition 9 Let A ∈ X n×m, B ∈ Xm×p, and C ∈ Rm×p. The matrix products Φ(A)Φ(B) ∈
Rn×p and Φ(A)C ∈ Hn×p are given by

[Φ(A)Φ(B)]ik :=
∑
j

〈φ(Aij), φ(Bjk)〉H and [Φ(A)C]ik :=
∑
j

φ(Aij)Cjk.

It is straightforward to show that the usual properties of matrix multiplication — namely
associativity, transpose-commutativity, and distributivity with addition — hold for Defini-
tion 9 above, with one exception: associativity does not hold if the elements of all three
matrices involved belong to the RKHS. In other words, given A ∈ X n×m, B ∈ Xm×p, and
C ∈ X p×q, generally [Φ(A)Φ(B)]Φ(C) 6= Φ(A)[Φ(B)Φ(C)]. The technical difficulty is that
in general

〈φ(Aij), φ(Bjk)〉H φ(Ckl) 6= φ(Aij) 〈φ(Bjk), φ(Ckl)〉H . (65)

Further examples of statements like (65), involving properties which do not hold when
extended to an RKHS, can be found for the other matrix products at (67) and (74) below.

Definition 9 allows us to state a first RKHS extension of the vec(ABC) formula (1):

Lemma 10 If A ∈ Rn×m, B ∈ Xm×p, and C ∈ Rp×q, then

vec(AΦ(B)C)) = (C>⊗A) vec(Φ(B)) ∈ X nq×1 .

Proof Analogous to Lemma 12 below.

A.2 Kronecker Product

Definition 11 Let A ∈ X n×m and B ∈ X p×q. The Kronecker product Φ(A) ⊗ Φ(B) ∈
Rnp×mq is defined as

[Φ(A)⊗ Φ(B)](i−1)p+k,(j−1)q+l := 〈φ(Aij), φ(Bkl)〉H .

37

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Similarly to (65) above, for matrices in an RKHS

∗ (Φ(A)⊗ Φ(B))(Φ(C)⊗ Φ(D)) = (Φ(A) Φ(C))⊗ (Φ(B) Φ(D)) (66)

does not necessarily hold. The technical problem with (66) is that generally

〈φ(Air), φ(Bks)〉H 〈φ(Crj), φ(Dsl)〉H 6= 〈φ(Air), φ(Crj)〉H 〈φ(Bks), φ(Dsl)〉H . (67)

In Section A.3 we show that analogous properties (Lemmas 14 and 15) do hold for the
heterogeneous Kronecker product between RKHS and real matrices.

Definition 11 gives us a second extension of the vec(ABC) formula (1) to RKHS:

Lemma 12 If A ∈ X n×m, B ∈ Rm×p, and C ∈ X p×q, then

vec(Φ(A)B Φ(C)) = (Φ(C)>⊗ Φ(A)) vec(B) ∈ Rnq×1 .

Proof We begin by rewriting the kth column of Φ(A)BΦ(C) as

[Φ(A)BΦ(C)]∗k = Φ(A)
∑
j

B∗j φ(Cjk) =
∑
j

φ(Cjk)Φ(A)B∗j

= [φ(C1k)Φ(A), φ(C2k)Φ(A), . . . φ(Cnk)Φ(A)]

B∗1
B∗2

...
B∗n

︸ ︷︷ ︸

vec(B)

= ([φ(C1k), φ(C2k), . . . φ(Cnk)]⊗ Φ(A)) vec(B). (68)

To obtain Lemma 12 we stack up the columns of (68):

vec(Φ(A)B Φ(C)) =

 φ(C11) φ(C21) . . . φ(Cn1)

...
...

. . .
...

φ(C1n) φ(C2n) . . . φ(Cnn)

⊗ Φ(A)

 vec(B)

= (Φ(C)>⊗ Φ(A)) vec(B).

Direct computation of the right-hand side of Lemma 12 requires nmpq kernel evaluations;
when m, p, and q are all O(n) this is O(n4). If H is finite-dimensional, however — in other
words, if the feature map can be taken to be φ : X → Rd with d <∞— then the left-hand
side of Lemma 12 can be obtained in O(n3d) operations. Our efficient computation schemes
in Section 4 exploit this observation.

38

Graph Kernels

A.3 Heterogeneous Kronecker Product

Definition 13 Let A ∈ X n×m and B ∈ Rp×q. The heterogeneous Kronecker product Φ(A)⊗
B ∈ X np×mq is given by

[Φ(A)⊗B](i−1)p+k,(j−1)q+l = φ(Aij)Bkl.

Recall that the standard Kronecker product obeys (2); here we prove two extensions:

Lemma 14 If A ∈ X n×m, B ∈ X p×q, C ∈ Rm×o, and D ∈ Rq×r, then

(Φ(A)⊗ Φ(B))(C ⊗D) = (Φ(A)C)⊗ (Φ(B)D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗ Φ(B))(C ⊗D)](i−1)p+k,(j−1)q+l =
∑
r,s

〈φ(Air), φ(Bks)〉HCrjDsl

=
〈∑

r

φ(Air)Crj ,
∑
s

φ(Bks)Dsl

〉
H

= 〈[Φ(A)C]ij , [Φ(B)D]kl〉H
= [(Φ(A)C)⊗ (Φ(B)D)](i−1)p+k,(j−1)q+l

Lemma 15 If A ∈ X n×m, B ∈ Rp×q, C ∈ Xm×o, and D ∈ Rq×r, then

(Φ(A)⊗B)(Φ(C)⊗D) = (Φ(A) Φ(C))⊗ (BD).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)(Φ(C)⊗D)](i−1)p+k,(j−1)q+l =
∑
r,s

〈φ(Air)Bks, φ(Crj)Dsl〉H

=
∑
r

〈φ(Air), φ(Crj)〉H
∑
s

BksDsl

= [Φ(A) Φ(C)]ij [BD]kl
= [(Φ(A) Φ(C))⊗ (BD)](i−1)p+k,(j−1)q+l

Using the heterogeneous Kronecker product, we can state four more RKHS extensions of
the vec-ABC formula (1):

39

Vishwanathan, Schraudolph, Kondor, and Borgwardt

Lemma 16 If A ∈ X n×m, B ∈ Rm×p, and C ∈ Rp×q, then

vec(Φ(A)BC) = (C>⊗ Φ(A)) vec(B) ∈ X nq×1 .

Proof Analogous to Lemma 12.

Lemma 17 If A ∈ Rn×m, B ∈ Rm×p, and C ∈ X p×q, then

vec(ABΦ(C)) = (Φ(C)>⊗A) vec(B) ∈ X nq×1 .

Proof Analogous to Lemma 12.

Lemma 18 If A ∈ X n×m, B ∈ Xm×p, and C ∈ Rp×q, then

vec(Φ(A) Φ(B)C) = (C>⊗ Φ(A)) vec(Φ(B)) ∈ Rnq×1 .

Proof Analogous to Lemma 12.

Lemma 19 If A ∈ Rn×m, B ∈ Xm×p, and C ∈ X p×q, then

vec(AΦ(B) Φ(C)) = (Φ(C)>⊗A) vec(Φ(B)) ∈ Rnq×1 .

Proof Analogous to Lemma 12.

Note that there is no analogous lemma for vec(Φ(A) Φ(B) Φ(C)) since this term is not
well-defined due to non-associativity (65).

A.4 Kronecker Sum

A concept closely related to the Kronecker product is that of the Kronecker sum, which is
defined for real matrices A ∈ Rn×m and B ∈ Rp×q as

A⊕B := A⊗ Ipq + Inm⊗B, (69)

with Inm (resp. Ipq) denoting the n×m (resp. p×q) identity matrix. Many of its properties
can be derived from those of the Kronecker product. Unlike the Kronecker product, however,
the Kronecker sum of two matrices in an RKHS is a matrix in the RKHS. From Definition 1
and (69) we find that

[A⊕B](i−1)p+k,(j−1)q+l := Aijδkl + δijBkl. (70)

We can extend (70) to RKHS, defining analogously:

40

Graph Kernels

Definition 20 Let A ∈ X n×m and B ∈ X p×q. The Kronecker sum Φ(A)⊕Φ(B) ∈ X np×mq
is defined as

[Φ(A)⊕ Φ(B)](i−1)p+k,(j−1)q+l := φ(Aij)δkl + δijφ(Bkl).

In other words, in an RKHS the Kronecker sum is defined just as in (69):

Φ(A)⊕ Φ(B) = Φ(A)⊗ IB + IA⊗Φ(B), (71)

where IM denotes the real-valued identity matrix of the same dimensions (not necessarily
square) as matrix M . In accordance with Definition 13, the result of (71) is an RKHS
matrix.

The equivalent of the vec-ABC formula (1) for Kronecker sums is:

(A⊕B) vec(C) = (A⊗ IB + IA⊗B) vec(C)
= (A⊗ IB) vec(C) + (IA⊗B) vec(C)

= vec(IB CA>) + vec(BC I>A) (72)

= vec(IB CA>+BC I>A).

This also works for matrices in an RKHS:

Lemma 21 If A ∈ X n×m, B ∈ X p×q, and C ∈ X q×m, then

(Φ(A)⊕ Φ(B)) vec(Φ(C)) = vec(IB Φ(C) Φ(A)>+ Φ(B) Φ(C) I>A) ∈ Rnp×1 .

Proof Analogous to (72), using Lemmas 18 and 19.

Furthermore, we have two valid heterogeneous forms that map into the RKHS:

Lemma 22 If A ∈ X n×m, B ∈ X p×q, and C ∈ Rq×m, then

(Φ(A)⊕ Φ(B)) vec(C) = vec(IB C Φ(A)>+ Φ(B)C I>A) ∈ X np×1 .

Proof Analogous to (72), using Lemmas 16 and 17.

Lemma 23 If A ∈ Rn×m, B ∈ Rp×q, and C ∈ X q×m, then

(A⊕B) vec(Φ(C)) = vec(IB Φ(C)A>+B Φ(C) I>A) ∈ X np×1 .

Proof Analogous to (72), using Lemma 10.

41

Vishwanathan, Schraudolph, Kondor, and Borgwardt

A.5 Hadamard Product

While the extension of the Hadamard (element-wise) product to an RKHS is not required
to implement our fast graph kernels, the reader may find it interesting in its own right.

Definition 24 Let A,B ∈ X n×m and C ∈ Rn×m. The Hadamard products Φ(A)�Φ(B) ∈
Rn×m and Φ(A)� C ∈ Hn×m are given by

[Φ(A)� Φ(B)]ij = 〈φ(Aij), φ(Bij)〉H and [Φ(A)� C]ij = φ(Aij)Cij .

We prove two extensions of (3):

Lemma 25 If A ∈ X n×m, B ∈ X p×q, C ∈ Rn×m, and D ∈ Rp×q, then

(Φ(A)⊗ Φ(B))� (C ⊗D) = (Φ(A)� C)⊗ (Φ(B)�D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗ Φ(B))� (C ⊗D)](i−1)p+k,(j−1)q+l = 〈φ(Aij), φ(Bkl)〉HCijDkl

= 〈φ(Aij)Cij , φ(Bkl)Dkl〉H
= 〈[Φ(A)� C]ij , [Φ(B)�D]kl〉H
= [(Φ(A)� C)⊗ (Φ(B)�D)](i−1)p+k,(j−1)q+l

Lemma 26 If A ∈ X n×m, B ∈ Rp×q, C ∈ X n×m, and D ∈ Rp×q, then

(Φ(A)⊗B)� (Φ(C)⊗D) = (Φ(A)� Φ(C))⊗ (B �D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)� (Φ(C)⊗D)](i−1)p+k,(j−1)q+l = 〈φ(Aij)Bkl, φ(Cij)Dkl〉H
= 〈φ(Aij), φ(Cij)〉HBklDkl

= [Φ(A)� Φ(C)]ij [B �D]kl
= [(Φ(A)� Φ(C))⊗ (B �D)](i−1)p+k,(j−1)q+l

As before,

∗ (Φ(A)⊗ Φ(B))� (Φ(C)⊗ Φ(D)) = (Φ(A)� Φ(C))⊗ (Φ(B)� Φ(D)) (73)

does not necessarily hold, the difficulty with (73) being that in general,

〈φ(Aij), φ(Bkl)〉H 〈φ(Cij), φ(Dkl)〉H 6= 〈φ(Aij), φ(Cij)〉H 〈φ(Bkl), φ(Dkl)〉H . (74)

42

	Introduction
	Paper Outline

	Preliminaries
	Linear Algebra Concepts
	Graph Concepts

	Random Walk Graph Kernels
	Direct Product Graphs
	Kernel Definition
	Special Cases

	Efficient Computation
	Sylvester Equation Methods
	Conjugate Gradient Methods
	Fixed-Point Iterations
	Geometric Kernel
	Nearest Kronecker Product Approximation

	Experiments
	Random Graphs
	Real-World Datasets
	Unlabeled Graphs
	Labeled Graphs

	Protein-Protein Interaction Networks
	Co-Integration of Gene Expression and PPI Data
	Composite Graph Kernel
	Datasets
	Results

	Rational Kernels
	Semirings
	Weighted Transducers
	Weighted Automata
	The Rational Kernel for Strings
	The Rational Kernel for Weighted Automata
	Recovering Random Walk Graph Kernels

	R-convolution Kernels
	Graph Kernels as R-Convolutions
	R-Convolutions in Abstract Semirings

	Discussion and Outlook
	Extending Linear Algebra to RKHS
	Matrix Product
	Kronecker Product
	Heterogeneous Kronecker Product
	Kronecker Sum
	Hadamard Product

