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Reproducing kernel Hilbert space (RKHS) methods provide a uni-
fied context for solving a wide variety of statistical modelling and
function estimation problems. We consider two such problems: We
are given a training set {yi, ti, i � 1, . . . , n}, where yi is the response
for the ith subject, and ti is a vector of attributes for this subject.
The value of yi is a label that indicates which category it came from.
For the first problem, we wish to build a model from the training
set that assigns to each t in an attribute domain of interest an
estimate of the probability pj(t) that a (future) subject with at-
tribute vector t is in category j. The second problem is in some sense
less ambitious; it is to build a model that assigns to each t a label,
which classifies a future subject with that t into one of the
categories or possibly ‘‘none of the above.’’ The approach to the
first of these two problems discussed here is a special case of what
is known as penalized likelihood estimation. The approach to the
second problem is known as the support vector machine. We also
note some alternate but closely related approaches to the second
problem. These approaches are all obtained as solutions to opti-
mization problems in RKHS. Many other problems, in particular the
solution of ill-posed inverse problems, can be obtained as solutions
to optimization problems in RKHS and are mentioned in passing.
We caution the reader that although a large literature exists in
all of these topics, in this inaugural article we are selectively
highlighting work of the author, former students, and other
collaborators.

1. Introduction

For this article we define ‘‘soft classification’’ as the problem
of classifying an object, based on a vector t of its attributes,

into one of two or more categories, where it is desired to estimate
the probability pj(x) that the correct identification is category j.
We define ‘‘hard classification’’ as the problem of classification
where these probabilities are not of primary interest, for exam-
ple, in cases where the object is easily classifiable by a human. An
example of the first problem might be: Given the medical record
of a subject, consisting of age, sex, blood pressure, body mass
index, cholesterol level, and other relevant variables, provide the
10-year probability of a heart attack. Here k � 2 (heart attack
or not), and one might want a soft classification model for use
in ‘‘evidence-based’’ medicine. The physician can refer to this
model and tell a patient, for example, that if they change some
of these variables by specific amounts they reduce the estimated
10-year risk of a heart attack by so much. Examples of the second
problem include character and speech recognition and the
recognition of objects in images. In these cases the potential for
highly accurate classification is there (because humans can do it),
but an estimate of the probability of correct classification is
generally of interest primarily as a tool in evaluating or com-
paring the efficacy of competing classifiers. There are, of course,
intermediate situations for which the probability of correct
classification is mostly high, but it is desired to identify examples
for which the classification may be dubious. Other examples
include cases for which the number of potential variables avail-
able for classification is much higher than the number of samples
available for study, i.e., gene expression data. In this case it might
be desired to estimate a probability, but there is not enough

information to do it accurately. A modest number of statistical
tools are available in the literature for soft classification, whereas
hard classification techniques are ubiquitous. Descriptions of
many of the latter techniques may be found in the Proceedings
of the Neural Information Processing Society available at http:��
nips.djvuzone.org.

Together with colleagues and students I have spent a number
of years developing tools for soft classification based on solving
optimization methods in reproducing kernel Hilbert spaces
(RKHS, to be described). The hard classification technique
known as support vector machines (SVMs; refs. 1–3) has recently
become popular in the classification literature and in practice.
Although the original arguments deriving the SVM were quite
different, it is well known that they may be obtained as solutions
to optimization problems in RKHS (see refs. 4–6).

In this inaugural article we compare and contrast hard and soft
classification methods that are obtained as solutions to optimi-
zation problems in RKHS with reference (essentially only) to
published and in-progress work by the present author and
collaborators despite the fact that there are many other impor-
tant papers. The focus here is on classification problems with a
small number of well defined categories, as opposed to problems
such as speech or handwriting recognition.

We will describe RKHS in terms that do not require under-
standing of Hilbert spaces. Then we will identify the optimization
problems of interest, those for penalized likelihood (soft classi-
fication) and SVMs (hard classification), give some examples,
and comment on problems of computing and tuning the methods
and the comparative advantages and disadvantages of both.
Other related (hard) classification methods will be noted also, as
will some of the other problems that can be solved via optimi-
zation problems in RKHS.

2. RKHS
We first need to define positive definite functions. Let T be an
index set; for example T may be the unit interval or the unit cube,
Euclidean d-space, or a finite set, say {1, 2, . . . , N}. Let s, t �
T. K(s, t) is said to be (strictly) positive definite if, for any � and
any distinct t1, . . . , t� � T, the � � � matrix with j, k entry K(tj,
tk) is (strictly) positive definite, that is, �j,k ajakK(tj, tk) � 0 for
any nonzero a1, . . . , a�. Fix t� � T and let Kt�

(s) be the function
of s defined by Kt�

(s) � K(t�, s). If T � {1, . . . , N}, then this
function is simply an N vector; if T is the unit interval, then this
function is defined on the unit interval, etc. It is a theorem (see
ref. 7) that �Kt�

, Kt��
� � K(t�, t��) defines an inner product and

hence a distance (norm) on the class of all finite linear combi-
nations of functions of this form. (This relationship is also the
source of the term ‘‘reproducing kernel.’’) Thus this class of
functions has a geometry, which includes the notion of orthog-
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onal projections. �f � g�HK

2 � �f, f � �2 �f, g� 	 �g, g� and the
reader may think of �f, g��� f �HK

�g�HK
as the cosine of the angle

between f and g. The (uniquely determined) collection of all
finite linear combinations of these functions and their limits in
this norm constitute an RKHS, which is uniquely determined by
K. Hereafter this space will be called HK (see refs. 7 and 8). The
geometry of projecting one element of this space onto a subspace
of HK spanned by a finite number n of elements of HK proceeds
just as it would in projecting an element in Euclidean space onto
an n dimensional subspace using all the known inner products.

We describe RKHS at the above level of abstraction to
emphasize how general the concept is, but in the sequel we will
only be concerned with a couple of examples. A simple example
is a kernel K associated with the space of periodic functions on
[0, 1], which integrate to 0 and have square integrable second
derivative. It is K(s, t) � B2(s)B2(t)�(2!)2 � B4(�s � t�)�4!,
where s, t � [0, 1], and Bm is the mth Bernoulli polynomial (see
ref. 8) where other spline kernels may be found. The square
norm is known to be 
0

1 (f �(s))2ds, and the Kt�
are splines.

Another popular kernel is the Gaussian kernel, K(s, t) �
exp(�(1��2)�s � t�2) defined for s, t in Euclidean d space, Ed,
where the norm in the exponent is the Euclidean norm. Elements
of this space are generated from functions of the form ft�

(s) �
exp(�(1��2)�s � t��2), t� � Ed. The square norm of a function
in the RKHS associated with this space involves division of the
function’s squared Fourier transform by the Fourier transform
of the Gaussian function, but we do not need to know that here.
However, it is useful to know that tensor sums and products of
positive definite functions are also positive definite, which allows
building positive definite functions on tensor products of all
kinds of domains. The trivial case in T � Ed is K(s, t) � s�t, and
then HK is the d-dimensional space of homogeneous linear
functions, and �Kt�

�HK

2 � �t��Ed
2 . The original SVMs were linear

and corresponded to this case.
We are now ready to write a (very special case of) a general

lemma about optimization problems in RKHS (6).

Lemma. Given observations {yi, ti, i � 1, 2, . . . , n}, where yi is a
real number and ti � T, and given K and (possibly) given some
particular functions {�1, . . . , �M} on T, find f of the form f(s) �
�v�1

M dv�v(s) 	 h(s) where h � HK to minimize

If, y� �
1
n �

i�1

n

C�yi , f�ti�� � ��h�HK

2 , [1]

where C is a convex function of f(ti). It is assumed that the
minimizer of C(yi, f(ti)) in the span of the {�v} is unique. Then the
minimizer of I{f, y} has a representation of the form

f�s� � �
v�1

M

dv�v�s� � �
i�1

n

ciK�ti , s�. [2]

The coefficient vectors d � (d1, . . . , dM)� and c � (c1, . . . , cn)�
are found by substituting Eq. 2 into the first term in Eq. 1
and using the fact that ��i�1

n ciK(ti,�)�HK

2 � c�Knc, where Kn is the
n � n matrix with i, jth entry K(ti, tj). The minimization generally
has to be done numerically by an iterative descent method except
in the case where C is quadratic in f, in which case a linear system
has to be solved.

When K(�, �) is a smooth function of its arguments and n is
large, it has been found that excellent approximations to the
minimizer of Eq. 1 for various C can be found with functions of
the form

f�s� � �
v�1

M

dv�v�s� � �
j�1

L

cjK�tij , s�, [3]

where the ti1
, . . . , tiL

are a relatively small subset of t1, . . ., tn, thus
reducing the computational load. The ti1

, . . . , tiL
may be chosen

in various ways: as a random subset, by clustering the ti and
selecting from each cluster (9), or by a greedy algorithm (as for
example in ref. 10), depending on the problem.

3. Penalized Likelihood Estimation: Two Categories
We first consider only two categories, or outcomes, labeled 1
and 0; for example, 1 is the outcome that a subject gets a
disease and 0 is the outcome that they do not. Let p(t) be the
probability that a subject with attribute vector t � T gets the
disease and define the log odds ratio f(t) � log[p(t)�(1 � p(t)].
The likelihood function for data {yi, ti} is p(ti) if yi � 1 and (1 �
p(ti)) if yi � 0, which may be written p(ti)yi (1 � p(ti))1�yi.
Substituting f(ti) into the likelihood function, we obtain the
negative log likelihood

L�yi , f�ti�� � �yi f�ti� � log�1 � e f�ti��. [4]

Given a training set {yi, ti, i � 1, . . . n}, an estimate for f
and hence p may be obtained by setting C(yi, f(ti)) in Eq. 1 to be
L(yi, f(ti)) of Eq. 4. This kind of penalized likelihood estimate
goes back at least to ref. 11.

Let t � [0, 1]d, the unit cube, and let t � (x1, . . ., xd) and ti �
(xi1, . . . , xid). Under general conditions we can expand any
integrable f(t) as follows: f(t) � � 	 �� f�(x�) 	 ���� f��(x�,
x�) 	 � � � 	 f��. . .(x1, . . . , xd), where the components satisfy side
conditions that make them identifiable and generalize the usual
side conditions for parametric ANOVA, that is, all averages with
respect to each x� are 0 (see ref. 12). The series is truncated in
some manner. By using weighted tensor sums and products of
reproducing kernels, the theory above may be generalized to
replace �� f �HK

2 in Eq. 1 by �� �� J�(f�) 	 ������� J��(f��) 	 � � �,
where J�, J��, . . . are square norms in the component subspaces.
Details may be found in refs. 8, 12, and 13. The ��, ���, . . . are
smoothing parameters to be chosen. The right panel in Fig. 1
gives the estimated 4-year risk of progression of diabetic reti-
nopathy based on data from the Wisconsin Epidemiologic Study
of Diabetic Retinopathy (WESDR) (14). The attribute vector is
t � (x1, x2, x3) � (duration of diabetes, glycosylated hemoglobin,
body mass index), and was observed in a group of n � 669
subjects at the start of the study, and the outcome (progression
or not) was observed at the 4-year followup and coded as y � 1
or 0. The plot was based on the model f(x1, x2, x3) � � 	 f1 (x1) 	
d2 x2 	 f3(x3) 	 f13(x1, x3). The figure is plotted for x2 fixed at
its median. The software that produced this analysis can be found
in the code GRKPACK (15). The method for choosing smoothing

Fig. 1. (Left) Data. (Right) Estimate of 4-year risk of progression of diabetic
retinopathy as a function of body mass index and duration for glycosylated
hemoglobin fixed at its median (from ref. 12).
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parameters behind this plot is discussed in ref. 12 (see also ref.
16). A later method, which is used in some subsequent work, is
called generalized approximate cross validation (GACV) (17,
18) and will be discussed further in Section 8. An important
problem is the selection of terms that are to be retained in the
model. This was done in an informal manner in ref. 12. A recent
approach to the problem of selecting terms is discussed in refs.
19 and 20.

This penalized likelihood method provides an estimate p� for
p which is known to converge to the true p as the sample size
becomes large, under various conditions, including a good choice
of the � (see refs. 13, 21, and 22).

4. SVM Classification: Two Categories
Suppose that we have two categories as before, but we are
interested only in making a decision as to which category a future
object with attribute vector t� is in. It will be convenient for this
purpose to change the coding. We let yi � 1 if the ith subject or
object from the training set is in the first category, and yi � �1
if it is in the second category. It can be shown that with this
coding the negative log likelihood function becomes

L�yi , f�ti�� � log�1 � e�yif�ti��. [5]

Fig. 2 gives a plot of log(1 	 e�	) as a function of 	. Now we are
not interested in the complete function p(t) but only in obtaining
enough information to make a classification decision. In the
so-called standard case where the costs of both kinds of mis-
classification are equal and the training set is representative of
the population to be classified in the future, the optimal classifier
for a subject with attribute vector t� is determined by whether
p(t�) is greater or less than 1�2, equivalently, whether f(t�) is
positive or negative. A member of the training set with label yi
will be classified correctly by f�(ti) if 	i � yi f�(ti) is positive and
incorrectly if 	i is negative. Thus, if only classification is of
interest, one could consider letting C(yi, f(ti)) of Eq. 1 be the �
function [�yi f(ti)]�, where [	]� � 1 if 	 � 0 and 0 otherwise. Then
the first term on the right-hand side of Eq. 1 would simply count
the number of misclassified subjects in the training set. [�	]� is
plotted in Fig. 2. However, I of Eq. 1 with C the � function can
have multiple minima and is difficult to compute, because it is
not convex. Define the ‘‘plus’’ function (	)	 � 	 if 	 � 0 and 0
otherwise. The so-called hinge function (1 � 	)	 is also plotted
in Fig. 2 and is seen to be the closest convex upper bound to the
� function that has a slope of �1 at 0. Setting C(yi, f(ti)) in Eq.
1 to be (1 � yi f(ti))	 and setting M � 1 and �1 (s) � 1 in Eq.
2 results in the optimization problem, the minimizer of which is
known as an SVM. In the last few years the SVM has become
very popular in the machine learning community for classifica-
tion problems, because in practice it has been empirically

observed to provide excellent classification results in a wide
variety of applications. It is to be noted that once the reproducing
kernel K(s, t) is defined, the nature of the domain of s and t is not
relevant to the calculations, because only values of K(s, t) are
needed to define the SVM. Thus problems where s and t are in
a high dimensional space while only a small number of samples
are available may be treated, at least mathematically, in a unified
manner. Up until recently a theoretical understanding of what
the SVM was actually estimating was not available. Recently Lin
(23) has shown that if the RKHS is sufficiently rich, then under
certain circumstances the SVM is estimating the sign of (p �
1�2), equivalently, the sign of f. This is exactly what you need to
classify according to Bayes rule. This is illustrated in Fig. 3. To
obtain Fig. 3, Lin let p(t) � Pr(Y � 1�t) � 2t, for t � [0, 0.5]
and 1 � 2t for t � [0.5, 1]. Thus sign[p(t) � 1�2] � 1, t � (0.25,
0.75), �1, otherwise, which is also the desired sign of f �
log[p�(1 � p)]. n � 257 equally spaced values of ti on the unit
interval were selected, and yi was generated randomly to be 1
with probability p(ti) and �1 with probability 1 � p(ti). A
sufficiently rich spline kernel was chosen to compute the 25
SVMs in Fig. 3 for 25 values of log2� from �1 to �25, left to
right, top to bottom. It can be seen that for log2� in the
neighborhood of �13 to �18, the estimate is very close to signf.
� may be chosen by the GACV method for SVMs (see ref. 24 and
Section 8).

5. Penalized Likelihood Estimation: Multiple Categories
Suppose now that there are k 	 1 possible outcomes, with k �
1. Let pj(t), j � 0, 1, . . . , k be the probability that a subject with
attribute vector t is in category k, �j�0

k pj(t) � 1. The following
approach was proposed in ref. 25: Let f j(t) � log[pj(t)�p0(t)], j �
1, . . . , k. Then

pj�t� �
ef j�t�

1 � �
j�1

k

ef j�t�

, j � 1, . . . , k [6]

p0�t� �
1

1 � �
j�1

k

ef j�t�

. [7]

Fig. 2. SVM, likelihood, and misclassification functions compared.

Fig. 3. f� for 25 values of log2� from �1 to �25, left to right, top to bottom.
The SVM tends toward the sign of log[p�(1 
 p)] when tuned well, here for
log2� � �18. [Reproduced with permission from ref. 23 (Copyright 2002,
Kluwer).]
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The class label for the ith subject is coded as yi � (yi1, . . . , yik),
where yij � 1 if the ith subject is in class j and 0 otherwise. Letting
f � (f 1, . . . , f k) the negative log likelihood can be written as

L�y, f � � �
i�1

n ���
j�1

k

yijf j�ti� � log��
j�1

k

1 � ef j�ti���. [8]

f j � �
v � 1

M

dvj�v � h j,

where the hj can have an ANOVA decomposition as in Section
3. Generally the f j will have the same terms, with their own d,
c. Then ��h�HK

2 in Eq. 1 is replaced by

�
j�1

k �
�

�j� Jj��h �
j � � �

���

�j�� Jj���h ��
j � � · · ·. [9]

Fig. 4 is based on 10-year mortality data of a group of n � 646
subjects from the WESDR study. Their age (x1), glycosylated
hemoglobin (x2), and systolic blood pressure (x3) were (among
other things) recorded at baseline, and they were divided into
four categories with respect to their status after 10 years, as 0 �
alive, 1 � died of diabetes, 2 � died of heart disease, and 3 �
died of other causes. Each of the f j, j � 1, 2, 3 was modeled as
f j(x1, x2, x3) � � j 	 f 1

j (x1) 	 f 2
j (x2) 	 f 3

j (x3) 	 f 23
j (x2, x3). The

pj, j � 0, . . . , 3 were estimated by minimizing I(y, f) � Eq. 8 	
Eq. 9, and the multiple smoothing parameters were estimated by
the GACV for polychotomous data (25). For the figure, x2 and
x3 were set at their medians, and the differences between
adjacent curves, from bottom to top, are probabilities for
categories 0, 1, 2, and 3, respectively.

6. SVMs: Multiple Categories
Thus far, we have been assuming that the observational or
training data {yi, ti} is a representative sample from the popu-
lation of interest. We return to the classification-only problem,
now with several categories. If the cost of misclassification is the
same for each of the categories of interest, then the optimum
classifier would choose category k if pk(t) is larger than p�(t) for
each � not equal to k. We first consider the so-called standard
case, where the cost of misclassification is the same for each
category, and as before the training sample is representative. In
the next section we will consider the nonstandard case, for which
these conditions are relaxed. Many classification problems in-
volve more than two categories, and most authors use some
version of one-versus-many or multiple pairwise comparisons
(see refs. 1 and 26 for example). Recently a generalization of the
SVM that treats all categories simultaneously and symmetrically
has been obtained in ref. 27, called the multicategory SVM
(MSVM). In the MSVM we have k categories labeled as j �
1, . . . , k. The class label yi will be coded as a k dimensional
vector with 1 in the jth position if example i is in category j and
�(1�k�1) otherwise. For example yi � (1, �(1�k�1),. . .,
�(1�k�1)) indicates that the ith example is in category 1. We
define a k-tuple of separating functions f(t) � (f 1(t), . . . , f k(t)),
with each f j � dj 	 hj with hj � HK, and which will be required
to satisfy a sum-to-zero constraint, �j�1

k f j(t) � 0, for all t in T.
Note that unlike the estimate of Section 5, all categories are
treated symmetrically.

Let Ljr � 1, r � j, Ljj � 0, j, r � 1, . . . , k. Let cat(yi) � j if
yi is from category j. Then, if yi is from category j, Lcat(yi)r � 0
if r � j and 1 otherwise. Then the MSVM is defined as the vector
of functions f� � (f �

1, . . . , f �
k), with each hk in HK satisfying the

sum-to-zero constraint, which minimizes

1
n �

i�1

n �
r�1

k

Lcat�yi�r�f
r�ti� 
 yir�	 � � �

j�1

k

�hj�HK

2 . [10]

Generalizations of the penalty term are possible if necessary.
It can be shown that the k � 2 case reduces to the usual
two-category SVM just discussed, and it is shown in ref. 27 that
the target for the MSVM is f(t) � (f 1(t), . . . , f k(t)) with f j(t) �
1 if pj(t) is bigger than the other pl(t) and f j(t) � �(1�k�1)
otherwise. Fig. 5 describes a simulated example to suggest this
result. In Upper Left are given pj(t), j � 1, 2, 3, and in Upper
Right, Lower Right, and Lower Left the three optimum f j are
superimposed on the pj. The f j take on only the values 1 and
�(1�2) � �(1�k�1). For the experiment n � 200, values of ti

were chosen according to a uniform distribution on the unit
interval, and the class labels were generated according to the pj.
Fig. 6 gives the estimated f 1, f 2, and f 3. The Gaussian kernel was
used. In Fig. 6 Left � and � were chosen with the knowledge of
the ‘‘right’’ answer. It is strongly suggestive that the target
functions are as claimed. In Fig. 6 Right, both � and �2 were
chosen by the GACV for the MSVM, given in refs. 28 and 29,
which is a generalization of the GACV for the two-category
SVM previously given in refs. 24 and 30. For comparison
purposes, � and �2 were chosen by fivefold cross validation on the
MSVM functional (first sum in Eq. 10), with very similar results
(not shown). In this example, � was chosen somewhat larger than
its optimum value both by the GACV and the fivefold cross
validation, but it can be seen that the implied classifier is quite
accurate nevertheless. This is the kind of example where the
MSVM will beat a one-vs.-many two-category SVM: category 2
would be missed, because the probability of category 2 is less
than the probability of not 2 over a region, although it is the most
likely category there.

Fig. 4. Ten-year risk of mortality by cause as a function of age and two other
risk factors, glycosylated hemoglobin and systolic blood pressure at baseline.
The other risk factors have been set at their medians for the plot. The
differences between adjacent curves (from bottom to top) are probabilities
for alive, diabetes, heart attack, and other causes, respectively. The data are
plotted as triangles (alive, on the bottom), crosses (diabetes), diamonds (heart
attack), and circles (other). (Reproduced from ref. 25 with permission.)
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Two interesting applications of the MSVM appear in refs. 29
and 31 and Y. Lee, G.W., and S. Ackerman, in preparation. The
first, also discussed in ref. 28, concerns the application of the
MSVM to the classification of a set of cDNA profiles. There were
four categories of profiles from small round blue cell tumors
(SRBCTs) of childhood. The training set consisted of 63 samples
falling into the four categories. Initially, each sample consisted
of a vector of expression values for 2,308 genes but was first
reduced to the 100 most informative expression values by simple
gene-by-gene tests, and then three principal components were
extracted from the 100 such that the t vectors are of dimension
3. Scatter plots of the three components suggested that this is a
relatively easy classification problem, using only three dimen-
sional vectors extracted from the initial 2,308 dimensional
vectors. To study the efficacy of the MSVM, a test set of 20
SRBCT samples and 5 non-SRBCT samples were used. All of the
20 test-sample SRBCTs were classified correctly, and the clas-
sification of the 5 non-SRBCTs was ambiguous in the sense that

no one of the four components of the MSVM was very large. A
measure of the strength of the classification based on how close
the MSVM is to a target vector [that is, one with entries 1 and
�1�(k � 1)] was obtained in ref. 29, and it indicated that all the
classifications of the 5 non-SRBCT samples were weak, along
with 3 of the 20 SRBCT classifications. The second example
from ref. 29 and Y. Lee, G.W., and S. Ackerman (in preparation)
concerns the classification of satellite-observed radiance profiles
that contained one of two types of clouds or no clouds. The data
came from a simulation system that generates model atmo-
spheric profiles and the response of the observing instrument to
them and consisted of 744 profiles, each containing a 12-vector
of the responses from 12 different instrument channels. The data
set was divided randomly in half for a training set and a test set,
and the three-category MSVM was applied to the test set. It was
clear there was some modest overlap in data from the three
classes. Two cases were tried where the 12-vector was reduced to
2 and then to 5 components nonlinearly, using domain knowl-
edge; then in a third analysis the original 12-vector was used,
resulting in a slightly worse test-error rate than the previous two
cases. But transforming the 12-vectors into their logs turned out
to be the best of the four. Both of these examples illustrate an
open question discussed by various authors: How best to choose
dimension reducing, possibly nonlinear transformations on the
observations to improve classification rates.

7. The Nonstandard MSVM
We now consider the case where the proportion �j

s, j � 1, . . . ,
k of examples in the training set in each category is not
representative of the proportion �j in the population as a whole,
and the costs of misclassification are different for different
mistakes. Let Cjr be the cost of classifying a j subject as an r, with
Cjj � 0. Then the Bayes rule (which minimizes expected cost) is
to choose the j for which ���1

k C�jp�(t) is minimized, where p�(t)
is the probability that a subject (in the population as a whole)
with attribute vector t is in category �. Now let pj

s(t) be the
probability that a subject in the training set (with proportions �j

s

of the different categories) with attribute vector t is in category
j. Let now

Ljr � ��j��j
s�Cjr . [11]

One then can show that the optimum classifier chooses the j for
which ���1

k L�jp�
s (t) is minimized. The nonstandard MSVM is

defined as the vector of functions f� satisfying the sum-to-zero
constraint, which minimizes Eq. 10, with the Ljr there given by
Eq. 11. It is shown in ref. 27 that the target of this SVM is: fj(t) �
1 for the j which minimizes ���1

k C�jp�(t) and �(1�k�1)
otherwise. Further results and some ‘‘toy’’ examples in the
two-category nonstandard case are in ref. 32. Applications of the
nonstandard SVM include, for example, evidence-based medical
decision making, where different patients might have different
personal ‘‘costs’’ with respect to the risks of erroneous treatment
decisions. Similarly, both the costs and relative frequencies of the
classes in the satellite profile problem discussed previously may
be nonstandard, because if the system were to be automated in
a numerical weather prediction model, the different kinds of
misclassifications may affect the system differently, with more or
less costly consequences. When the classes are well separated,
taking costs into account will not make much difference, but in
modest overlap cases, they can. The GACV for the nonstandard
two-category SVM is given in ref. 32 and for the MSVM in
ref. 29.

8. Choosing the Smoothing and Tuning Parameters
Methods for choosing the smoothing�tuning parameters in
optimization problems such as Eq. 1 have generated lively
interest in statistical and machine learning circles for some time.

Fig. 5. Probabilities and optimum f js for three-category SVM demonstration
(from refs. 27 and 29).

Fig. 6. MSVM example. (Left) � chosen knowing the right answer (from refs.
27 and 29). (Right) Using GACV for the MSVM (courtesy of Yoonkyung Lee).
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The �s control the tradeoff between the first term on the right
of Eq. 1, the fit to the observations, and the second, the
complexity of the solution. For the penalized likelihood situation
this is known as the bias-variance tradeoff, and this terminology
has migrated to the hard classification case. One of the oldest
methods, based on C(yi, f(ti)) � (yi � f(ti))2 in Eq. 1 is the
generalized cross validation (GCV), obtained in refs. 33 and 34.
It is targeted at minimizing the predictive mean square error, the
mean square difference between the estimate f� and the (un-
known) truth, ftrue, when yi � ftrue(ti) 	 �i, where �i is white
Gaussian noise with common unknown variance. The GCV may
be derived beginning with a leaving-out-one argument and an
invariance argument and coincides with leaving-out-one in spe-
cial circumstances. Theoretical properties have been obtained in
various places including refs. 8, 35, and 36. The GACV for
Bernoulli (0, 1) data is targeted at the Kullback–Leibler distance
from the estimated p� to the true ptrue, a commonly used measure
(but not actually a distance) between two distributions (see ref.
17). Both the GCV and the GACV require the computation of
the trace of a difficult to compute matrix when n is large.
Randomization techniques for doing this efficiently for the GCV
were proposed in refs. 37 and 38 and for the GACV in ref. 18.
The GACV for SVMs was obtained by starting with a similar
leaving-out-one argument followed by a series of approximations
and is targeted at minimizing the expected value of (1 �
yfuture f�)	 in the two-category standard SVM case, where yfuture
is a new observation from the population under consideration.
The � method of ref. 39 is similar to and behaves very much like
the GACV (32), although the � method is targeted directly at
the misclassification rate [�yfuture f�]�, whereas the GACV is
targeted at (1 � yfuture f)	, an upper bound on the misclassifi-
cation rate. There are several other methods in the SVM
literature that begin with the same leaving-out-one argument or
an upper bound for it (see ref. 40) with similar results. The
ingredients for these are available when the SVM is computed,
so no special calculations are required. Leaving out 1�2, 1�5,
1�10, and other cross-validation procedures for estimating the
tuning parameters in SVMs are popular, especially when there
is a copious training set available.

9. Which Cost Function?
Returning to the two-category case for ease of exposition, it
can be asked when is it better to use the SVM or the penalized
likelihood estimate. The penalized likelihood estimate can be
used for classification in the standard and nonstandard cases
(in the multicategory as well as the two-category case) via the
Neyman–Pearson Lemma. If probabilities are desired and
several conditions are met, then the penalized likelihood
estimate is the more appropriate. These conditions generally
include a large data set relative to the number of dimensions
and probabilities that are expected to be bounded away from
0 or 1 in regions of interest (because the true f will tend to
infinity as p tends to 0 or 1). For classification, the SVM does
not suffer from either of these problems and furthermore
tends to give a sparse solution, that is, many ci are 0, at the cost
of a lack of direct interpretability of classification results that
are ‘‘weak.’’ Alternatively, the penalized likelihood estimate
can somewhat mitigate these problems for classification by an
appropriate thinning of the basis functions. Letting the ‘‘cost
function’’ c(	) be C(yi, f(ti)) with 	 � yi f(ti), a hybrid C may be
defined, which combines features of the SVM and the penal-
ized likelihood estimate by letting c(	) � ln(1 	 e�	) for
�� � 	 � � and c(	) extrapolated linearly for 	 � � by matching
c(	) and c�(	) at � and linearly continuing until c(	) becomes
0, after which it remains 0. With a judicious choice of � � 0,
this c might combine the best properties of the SVM and the
penalized likelihood, having the sparsity and ease with p near
0 or 1 of the SVM while estimating the log odds ratio and hence

the probability near the intermediate case. Other cs for the
classification problem have been proposed by various authors
including (1 � 	)	

q , where q is some power greater than 1. An
argument was provided recently for c(	) linear with a negative
slope for 	 less than �, joined smoothly on the right to c(	) �
1�	 for 	 � � (M. Todd and S. Marron, personal communi-
cation). C(yi, f(ti)) � (yi � f(ti))2, a.k.a. penalized least squares,
a.k.a. regularized least squares, a.k.a. ridge regression, long
known in the statistics literature for regression problems (see
e.g. the references in ref. 34), corresponds to c(	) � (1 � 	)2

in the case where yi � �1. Several authors have proposed it in
the classification context (T. Poggio, personal communication,
and O. Mangasarian, personal communication),† although
different names have been attached to it in some cases.
Poggio’s group found in the cases tried that it compared in
classification accuracy with the SVM. It is the easiest to
compute, requiring only the solution of a linear system. The
extension to the multicategory case is straightforward, replac-
ing (f r(ti) � yir)	 in Eq. 10 by (f r(ti) � yir)2, and imposing the
sum-to-zero constraint by requiring the coefficients in the
estimates to satisfy a linear system subject to linear equality
constraints. A number of other choices of c are discussed in ref.
41, where it is shown for the two-category standard case that
under very weak assumptions on c the resulting solution will
tend to have the same sign as (p � 1�2).

Classification problems may have few to extremely many
variables (our examples here are the few variables case), may
have few to extremely many observations available for a training
set, and may be very easy to fairly difficult to classify; ‘‘fairly
difficult’’ may include data from the different classes overlapping
and�or atypical samples. It is safe to claim, bolstered by theory
as well recent simulation results of various authors, that no one
c or C is going to dominate all others over the range of
classification problems. The choice of K can be important or
unimportant depending on the example. The Gaussian kernel
appears to be a good general purpose kernel for classification in
many examples. Other examples of radial kernels (that is,
depending on �s � t�) may be found in ref. 42, at ftp:��
ftp.stat.wisc.edu�pub�wahba�talks�nips.96�m-c.talk.ps, and
elsewhere. Some information related to the sensitivity�
insensitivity of solutions to optimization problems in RKHS to
various parameters in K may be found in chapter 3 of ref. 8.
Especially if HK is a space of flexible functions it is necessary to
control the bias-variance tradeoff; choices here may well be the
most important. This tradeoff involves the �s, but other choices
may also be important. When the Gaussian kernel is used with
the SVM, the results are generally sensitive to the choice of �,
which therefore must also be tuned.

10. Concluding Remarks
In the last few years there has been an explosion of classification
methods and results, both theoretical and practical, that are
related to optimization problems in RKHS. SVMs and related
methods have become the method of choice in many classifica-
tion applications as their properties are becoming known. In
each problem a cost function, a kernel K, and a tuning method
must be selected, along with the sometimes nontrivial problem
of choosing a numerical algorithm. The trick of thinning the
representers can sometimes be used to assist in the bias-variance
tradeoff while at the same time making the calculations easier.
Early stopping of iterative methods, which we haven’t discussed,
can also help in this tradeoff (43, 44). Relative sensitivity of the
results to the various choices is an active area of recent research.
Penalized likelihood methods for regression and function esti-

†Poggio, T., Mukherjee, S., Rifkin, R. & Suykens, J., Foundation of Computational Mathe-
matics 2002 Meeting, Aug. 5–14, 2002, Minneapolis, MN.
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mation, with data involving random variables from various
known distributions, are older (11). The numerical solution of
ill-posed inverse problems, where the data are modeled as yi �

 F(ti, s)f(s)ds 	 �i, where F(t, s) is given, �i are noise variables,
and it is desired to recover f, may proceed by replacing C(yi, f(ti))
by C(yi, 
 F(ti, s)f(s)ds) in Eq. 1. Then the K(ti, �) in Eq. 3
are replaced by (other) so-called representers, which may be
found in refs. 6 and 8 (see also refs. 45–47). Other references can
be found via the publication list on my web site (www.stat.wisc.
edu��wahba).

Optimization methods in RKHS have turned out to be useful
in a wide variety of problems in statistical model building,
machine learning, curve and surface fitting, ill-posed inverse
problems, and elsewhere. Technical reports and Ph.D. theses
since mid-1993 are available via the TRLIST link on my web site.
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