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Membrane proteins are generally classified into the follow-
ing five types: (1) type I membrane proteins, (2) type II
membrane proteins, (3)multipass transmembrane proteins,
(4) lipid chain-anchored membrane proteins and (5) GPI-
anchored membrane proteins. Prediction of membrane
protein types has become one of the growing hot topics in bio-
informatics. Currently, we are facing two critical challenges
in this area: first, how to take into account the extremely com-
plicated sequence-order effects, and second, how todealwith
the highly uneven sizes of the subsets in a training dataset.
In this paper, stimulated by the concept of using the pseudo-
amino acid composition to incorporate the sequence-order
effects, the spectral analysis technique is introduced to
represent the statistical sample of a protein. Based on such
a framework, the weighted support vector machine (SVM)
algorithm is applied. The new approach has remarkable
power in dealing with the bias caused by the situation when
one subset in the training dataset contains many more
samples than the other. The newmethod is particularly use-
ful when our focus is aimed at proteins belonging to small
subsets. The results obtained by the self-consistency test,
jackknife test and independent dataset test are encouraging,
indicating that the current approach may serve as a power-
ful complementary tool to other existingmethods for predict-
ing the types of membrane proteins.
Keywords: Chou’s invariance theorem/covariant
discriminant algorithm/pseudo-amino acid
composition/spectral analysis/weighted u-SVM

Introduction

Owing to the development of high-throughput sequencing
technology, the data in various biology databases have been
increasing at an unprecedented rate, which challenges the
speed and ability of biologists and computational scientists
to analyze these data. Because most of the specific functions
of a cell are carried out by the membrane proteins (see e.g.
Alberts et al., 1994; Lodish et al., 1995), prediction of mem-
brane protein types has become a vitally important subject in
molecular and cellular biology. Although the type of a mem-
brane protein can be determined by various biochemical
experiments, it is both time consuming and costly if the

determination is based on an experimental approach alone.
In view of this, it is highly desirable to develop an automated
method to expedite the speed of determination.

Membrane proteins are generally classified into the follow-
ing five types: (1) type I membrane proteins, (2) type II mem-
brane proteins, (3) multipass transmembrane proteins, (4) lipid
chain-anchored membrane proteins and (5) GPI-anchored
membrane proteins (Figure 1). The function of a membrane
protein is closely related to the type to which it belongs. There-
fore, a fast and efficient method for predicting the type of
membrane protein will significantly speed up the process of
function determination for newly found membrane proteins. In
a pioneering study, based on the amino acid composition, the
covariant discriminant algorithm was introduced by Chou and
Elrod (1999) to predict the types of membrane proteins. By
definition, the conventional amino acid composition is a vector
of 20 components, each representing the frequency of occur-
rence of one of the 20 native amino acids (Nakashima et al.,
1986; Chou, 1995; Zhou, 1998). Accordingly, using the amino
acid composition to represent a sample of protein will miss all
the sequence-order and sequence-length effects. In order to
cope with this problem, a new concept, the so-called
‘pseudo-amino acid composition’, was proposed by Chou
(2001). The pseudo-amino acid composition can bear the
main features of amino acid composition, but meanwhile it
can also incorporate some sequence order effects. Stimulated
by its success in improving prediction quality, here we intro-
duce a different approach to formulate the pseudo-amino acid
composition.

Meanwhile, SVM (support vector machine) has recently
been widely used in bioinformatics. However, its performance
is greatly limited by the uneven sizes of the subsets in the
training dataset. The classification results based on SVM are
undesirably biased toward the class with more samples in the
corresponding subset. In other words, the larger the size of a
subset, the smaller is the classification error; whereas the smal-
ler the size of a subset, the larger is the classification error. In
the dataset constructed by Chou and Elrod (1999), the training
subsets are uneven. To solve this problem, we use the weighted
support vector machine (u-SVM) to cope with this problem.

This paper is devoted to combining the concept of pseudo-
amino acid composition and u-SVM to develop a new predictor
for predicting the membrane protein types.

Pseudo amino acid composition and discrete
Fourier transform

A protein sequence can be represented as a series of amino
acids by their single-character codes A, C, D, E, F, G, H, I, K,
L, M, N, P, Q, R, S, T, V, W and Y, formulated as

R1R2R3R4R5R6R7R8 . . .RL ð1Þ

where the component R1 is the first residue, R2 the second
residue and so forth.
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The conventional amino acid composition is defined as 20
discrete numbers each representing the frequency of occur-
rence of one of the 20 native amino acids (Nakashima et al.,
1986; Chou and Zhang, 1994; Chou, 1995; Zhou, 1998). Com-
pared with the conventional amino acid composition, the
pseudo-amino acid composition is a vector with 20+l discrete
components (Chou, 2001) and hence may be viewed as a point
in a (20+l)-D space, as given by

P =

p1

..

.

p20

p20þ1

..

.

p20þl

2
66666666664

3
77777777775

, ð2Þ

where the first 20 components are the same as in the conven-
tional amino acid composition, while the additional compo-
nents p20+1, . . . p20+l are related to l different ranks (Figure 2)
of sequence-order correlation factors as formulated by the fol-
lowing equation (Chou, 2001):

t1 = 1
L� 1

PL� 1
i = 1 Ji;iþ1

t2 = 1
L� 2

PL� 2
i = 1 Ji;iþ2

t3 = 1
L� 3

PL� 3
i = 1 Ji;iþ3, l< lð Þ

. . . . . . . . .

tl = 1
L� l

PL�l
i = 1 Ji;iþl

ð3Þ

8>>>>><
>>>>>:

In the above equation, L denotes the length of the protein and
ti is called the ith rank of coupling factor that harbours the ith
sequence-order correlation factor. An illustration to show how
these factors are associated with the sequence order effect is
given in Figure 2. The coupling factor Ji,j in Equation 3 is
defined as a function of the amino acids Ri and Rj, such as
the physicochemical distance (Schneider and Wrede, 1994;
Chou, 2000) from Ri to Rj, or some combinations of several
biochemical quantities related to Ri and Rj (Chou, 2001, 2002).
Hence ti can be rewritten as:

tm =
1

L�m

XL�m

j=1

f Rið Þ f Rj

� �
: ð4Þ

As can be seen from Figure 2, the sequence-order effect of a
protein can be, to some extent, reflected through a set of dis-
crete numbers t1, t2, t3, . . . , tm, as defined by Equation 4. Such
information is very useful in the analysis of proteins with a set
of discrete numbers. Accordingly, the first 20 components of
Equation 1 reflect the effect of the amino acid composition,
whereas the components from 20 + 1 to 20 + l reflect some
sequence-order effects. A set of 20 +l components as formu-
lated by Equations (1) and (2) is called the pseudo-amino acid
composition for protein P. Such a name is used because it still
has the main features of amino acid composition, but on the
other hand it contains the information beyond the conventional
amino acid composition. The pseudo-amino acid composition
thus defined has the following advantages: compared with the
210-D pair-coupled amino acid composition (Chou, 1999) and
the 400-D first-order coupled amino acid composition (Liu and

Fig. 1. Schematic drawing showing the following five types of membrane proteins: (a) type I transmembrane, (b) type II transmembrane, (c) multipass
transmembrane, (d) lipid-chain anchored membrane and (e) GPI-anchored membrane. As shown, although both type I and type II membrane proteins are
single-pass transmembrane, type I has a cytoplasmic C-terminus and an extracellular or luminal N-terminus for plasma membrane or organelle membrane,
respectively, while the arrangement of N- and C-termini in type II membrane proteins is just the reverse. No such distinction was drawn between the
extracellular (or luminal) and cytoplasmic sides for the other three types in the current classification scheme. Reproduced from Chou (2002), with permission.
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Fig. 2. A schematic drawing to show (a) the first-rank, (b) the second-rank and (c) the third-rank sequence-order correlation mode along a protein sequence. Panel (a)
reflects the correlation mode between all the most contiguous residues, panel (b) that between all the second most contiguous residues and panel (c) that between all the
third most contiguous residues. Adapted from Chou (2001), with permission.
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Chou, 1999) that contain the sequence order effect only for a
very short range (i.e. within two adjacent amino acid residues
along a chain), the pseudo-amino acid composition incorpo-
rates much more sequence effects, i.e. those not only for the
short range but also for the medium and long range, as
indicated by a series of sequence-coupling factors with differ-
ent tiers of correlation (see Figure 2 and Equations 2–4).
Therefore, the prediction quality can be significantly improved
by using the pseudo-amino acid composition to represent
the sample of a protein. For detailed formulation and applica-
tion of the pseudo-amino acid composition, readers are
referred to two recent papers (Chou, 2001; Chou and Cai,
2003).

Below we shall use the technique of spectral analysis to
formulate the pseudo-amino acid composition. As shown in
Equation 1, the sequence of a protein is composed of a series of
characters, which is hard for a computer to process because
each element in the sequence is a linguistic symbol rather than
a numerical value. To cope with this situation, each individual
amino acid in the protein sequence has to be coded in a numer-
ical way, i.e. expressed in terms of f (Ri) of Equation 4. As is
well known, the hydrophilic value of an amino acid is a very
important physicochemical property that has crucial effects on
the folding of a protein as well as its function, particularly for
membrane proteins. In view of this, we choose the hydrophilic
value of Ri for f(Ri). Since a coded protein sequence can be
treated as a stationary random process, many technologies in
statistical signal processing can be used to characterize the
sequence-order effects of a protein sequence.

In statistical signal processing, the correlation, covariance
sequence and spectral density function are the three basic sta-
tistical quantities of discrete random signals. The true cross-
correlation sequence is a statistical quantity defined as

Rxy mð Þ = E xnþmy
�
n

� �� �
= E xny

�
n�m

� �
ð5Þ

where m is integer, and E{} is the expected value operator, and
(*) denotes complex conjugate. The covariance sequence is the
mean-removed cross-correlation sequence

Cxy mð Þ = Ef xnþm �mxð Þðyn �myÞ
�g ð6Þ

where mx and my are the mean of stationary processes xn and yn,
respectively.

The autocorrelation and autocovariance are their special
cases as defined as follows

Rxx mð Þ = E xnþmx
�
n

� �� �
= E xnx

�
n�m

� �
ð7Þ

Cxx mð Þ = E xnþm �mxð Þ xn �mxð Þ�f g ð8Þ

In practice, one must estimate these sequences, because it is
possible to access only a finite segment of the infinite-length
random process. For example, the autocorrelation sequence is
estimated as follows:

Rxx mð Þ = 1

L� jmj
XL�jmj

n=1

x nð Þx n + mð Þ, ð9Þ

where x(n) are indexed from 1 to L, and jmj is the absolute value
of integer m.

Comparing Equation 9 and Equations 3 and 4, we can see
that the sequence-order correlation factors tm defined by Chou

(2001) are virtually an autocorrelation sequence of the coded
protein sequence. Hence all the powerful tools in statistical
signal analysis can be used to incorporate sequence-order
effects. The goal of spectral analysis is to describe the distribu-
tion (over frequency) of the power contained in a signal, based
on a finite set of data. The power spectrum of a stationary
random process xn is mathematically related to the correlation
sequence by the discrete-time Fourier transform. In terms of
physical frequency f (e.g. in hertz) is given by

Sxx fð Þ ¼ 1

L

XL
m=1

t mð Þ exp � j2pfm=L½ �, f = 0, 1, 2, . . . , L� 1,

ð10Þ
where f is the sampling frequency, t(m) (m = 1 , . . . , L) is the
autocorrelation sequence of xn as defined in Equation 9, and j is
the sign indicating the imaginary part. Hence the power spec-
tral density (PSD) of the stationary signal xn is defined as

Pxx fð Þ = Sxx fð Þ
L

: ð11Þ

where L is the number of xn’s data point.
For real signals, the average power of a signal over a particular

frequency and f1, f2½ �, 0< f1 < f2 <
L
2

can be found by integrat-
ing the PSD over that band:

�PP f1, f2½ � = 2

Z f2

f1

Pxx fð Þdf : ð12Þ

From the above expression, it can be seen that Pxx( f ) represents
the power content of a signal in an infinitesimal frequency
band, which is why we call it the power spectral density.
The energy of Pxx( f ) is calculated by the following equation:

E fð Þ = jPxx fð Þj2 = Re2 Pxx fð Þ½ � + Im2 Pxx fð Þ½ �, ð13Þ

where Re[Pxx( f )] is the real part of Pxx( f ) and Im[Pxx( f )] is
the imaginary part.

Since the low-frequency components of a given PSD better
reflect the global information (Chou, 1988, 1989) of a given
signal than the high-frequency components, we took the first
20 components of the energy spectrum to incorporate most of
the sequence order information. Thus the pseudo-amino acid
composition of a protein can be defined in a 40-D space as
given by

P =

p1

p2

..

.

pi

..

.

p40

2
66666666664

3
77777777775

, ð14Þ

where

pk =

fkP20
i=1 fi + w

P40
j=20+1qj

, 1< k< 20ð Þ

wqkP20
i=1fi + w

P40
j=20+1qj

, 20 + 1< k< 40ð Þ
ð15Þ

8>>><
>>>:
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In the above equation, fi (i = 1, 2, . . . , 20) denote the
frequencies of occurrence of the 20 native amino acids in a
protein that actually reflect the amino acid composition
(Nakashima et al., 1986; Chou and Zhang, 1993; Chou,
1995) and qj ( j = 1, 2, . . . , 20) the first 20 low-frequency coeffi-
cients of the energy spectrum of a given protein sequence that
reflect some sort of sequence-order effect. The parameter w is
used to control how much sequence order information should be
considered. In this paper, w was set as 0.15 (Pan et al., 2003).

Compared with the original pseudo-amino acid composition
introduced by Chou (2001), the current representation has the
following features. (1) It can be seen from Equation 10 that the
PSD is mathematically related to the correlation sequence by the
discrete-time Fourier transform. Therefore, the sequence order
information harboured by autocorrelation sequence is also pre-
served by the PSD since the transform is linear and will not lose
any information. (2) The PSD is a more compact representation.
For the coded protein sequences, most of the signal’s power
concentrates on the low-frequency components of the PSD.
Hence the 20 components of the PSD are sufficient to represent
the protein sequence as the high-frequency parts contain little
information. (3) The low-frequency components represent the
global information (Chou, 1988, 1989) of the coded sequence.
The type of protein can be reflected by the curve of the hydro-
phobic values of the residues. The curve’s global shape, repre-
sented by the low-frequency components of the PSD, is more
important in determining the type of membrane protein. For
example, the appearance of several peaks and valleys in the
curve may indicate that the corresponding protein is likely to
be a multi-pass trans-membrane protein (Figure 1).

Results and discussion

Using the dataset constructed by Chou and Elrod (1999), we
test our approach to demonstrate its feasibility. The dataset
contains 2059 membrane protein sequences. There are 435
type I transmembrane proteins, 152 type II transmembrane
proteins, 1311 multi-pass transmembrane proteins, 51 lipid-
chain anchored membrane proteins and 110 GPI anchored
membrane proteins (Figure 1). Chou and Elrod classified the
2059 into five groups and the names of these proteins are given
in Table I in Chou and Elrod (1999).

Instead of the covariant discriminant algorithm, which is a
combination of the Mahalanobis distance (Mahalanobis, 1936;

Pillai, 1985) and Chou’s invariance theorem (Zhou and
Assa-Munt, 2001; Pan et al., 2003; Zhou and Doctor, 2003),
here we are to use SVM, a kind of learning machine, to conduct
prediction. However, owing to the highly uneven sizes of
the sub-datasets investigated here, SVM is often undesirably
biased toward the classes of membrane proteins with more
samples. To deal with this problem, the weighted u-SVM is
proposed to improve the prediction accuracy of small subsets.
For a detailed description of this algorithm, see Appendix A,
where a full introduction to u-SVM is given, followed by
analysis of the reasons that lead to the undesirable bias toward
the subset with more samples in the training set. Finally, by
assigning the samples in different subsets with different
weights, the unfavorable impact caused by the uneven class
size is compensated.

During the operation, the width of the Gaussian RBFs was
selected as 1 to minimize the estimation of the VC dimension.
Theparameteru isassignedas0.06.Theweightsi (i=1, 2, 3, 4, 5)
for each class is determined by the following procedure:

1. Set the largest set’s smax as 1.
2. Set other si (i = 1, 2, 3, 4, 5) by Si = ‘max

‘i
Smax = ‘max

‘i
, where

‘max denotes the number of training samples of the largest
data set and ‘i is the number of training samples of other
data sets.

3. Train the weighted u-SVM with the given sample’s weight
si (i = 1, 2, 3, 4, 5) for each class and classify the new en-
tered data.

After being trained, the hyper-plane was built in the feature
space and thus the output could be obtained. The prediction
quality was examined by three methods (Chou and Zhang,
1995), the re-substitution test, the jackknife test and indepen-
dent dataset test, as explained below.

Re-substitution test
The so-called re-substitution test is designed to examine the
self-consistency of an identification method (Zhou, 1998; Cai,
2001; Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003).
When the re-substitution test is performed for the current clas-
sifier, the type of each membrane protein in a data set is in turn
predicted using the rule parameters derived from the same
training data set. In Table I, the success rate for the 2059
membrane proteins is listed; the overall success rate is

Table I. Overall rates of correct prediction for the five membrane protein types by different algorithms and test methods

Algorithm Input form Test method

Self-consistencya Jackknifea Independent datasetb

Least Hamming distance (Chou, 1980) Amino acid composition 1293
2059

¼ 62:8% 1279
2059

¼ 62:1% 1751
2625

¼ 66:7%

Least Euclidean distance (Nakashima et al., 1986) Amino acid composition 1307
2059

¼ 63:5% 1293
2059

¼ 62:8% 1816
2625

¼ 69:2%

ProtLock (Cedano et al., 1997) Amino acid composition 1372
2059

¼ 66:6% 1348
2059

¼ 65:5% 1674
2625

¼ 63:8%

Covariant-discriminant (Chou and Elrod, 1999) Amino acid composition 1670
2059

¼ 81:1% 1573
2059

¼ 76:4% 2085
2625

¼ 79:4%

Augmented covariant discriminant (Chou, 2001) Pseudo-amino acid composition
(Chou, 2001)

1872
2059

¼ 90:9% 1665
2059

¼ 80:0% 2298
2625

¼ 87:5%

Support vector machines Functional-domain composition
(Cai et al., 2003b)

1934
2059

¼ 93:9% 1776
2059

¼ 86:3% 1773
2625

¼ 67:5%

u-SVM Pseudo-amino acid composition 2030
2059

¼ 98:59% 1701
2059

¼ 82:61% 2376
2659

¼ 90:51%

Weighted u-SVM Pseudo-amino acid composition 2056
2059

¼ 99:85% 1696
2059

¼ 82:37% 2371
2059

¼ 90:32%

aConducted for the 2059 membrane proteins classified into five different types as described in the text and Figure 1.
bConducted based on the rule parameters derived from the 2059 membrane proteins for the 2625 independent membrane proteins (see text).
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99.85%, which shows that after being trained, the weighted u-
SVM has captured the complicated relationship between the
pseudo-amino acid composition and the types of membrane
proteins. Because the rule parameters derived from the training
data set harbor the information of the query protein later
plugged back into the test, the re-substitution test tends to
underestimate the error and enhance the success rate. There-
fore, the success rate thus obtained may give some sort of
optimistic estimation (Chou and Zhang, 1994; Zhou, 1998;
Cai, 2001; Zhou and Assa-Munt, 2001; Zhou and Doctor,
2003). However, the re-substitution test is definitely necessary
because any algorithm whose self-consistency performance is
poor cannot be deemed a good one. Namely, the re-substitution
test is necessary but not sufficient for evaluating a classifier.
Hence a cross-validation test for an independent testing data set
is recommended because it can reflect the generalization of a
classifier in practical applications. This is very useful when
checking the validity of a training database for whether it
contains sufficient information to reflect all the important fea-
tures concerned so as to yield a high success rate in application.
The results of the re-substitution test obtained for the 2059
membrane proteins are given in Tables I and II.

Jackknife test
The independent dataset test, sub-sampling test and jackknife
test are the three most common methods for cross-validation in
statistical prediction. Among these three, the jackknife test is
regarded as the most objective and effective one; see, e.g.,
Chou and Zhang (1995) for a comprehensive discussion of
this and Mardia et al. (1979) for the mathematical principles.
During jackknifing, each membrane protein in the dataset is in
turn taken out and all the rule parameters are calculated based
on the remaining proteins. In other words, the type of each
membrane is predicted using the rule parameter derived from
all the other membrane proteins except that which is being
identified. During the process of jackknifing, both the training
data set and testing data set are actually open and a protein will
move from one to the other in turn. The results of the jackknife
test thus obtained for the 2059 membrane proteins are also
given in Tables I and II.

Independent dataset test
Furthermore, predictions were also conducted for the 2625
independent membrane proteins based on the rule parameter
derived from the 2059 proteins in the training dataset. The 2625
independent proteins were also taken from Chou and Elrod

(1999). Of the 2625 proteins, 478 are type I transmembrane
proteins, 180 type II transmembrane proteins, 1867 multi-pass
transmembrane proteins, 14 lipid-chain anchored membrane
proteins and 86 GPI anchored membrane proteins. The pre-
dicted results are also listed in Tables I and II.

From Table I, we may draw the following conclusions. (1)
The success predictions obtained by the pseudo-amino acid
composition approach are significantly higher than those
obtained by the other approaches. (2) A comparison
between the current approach and all the other approaches
indicates that the success rates by the former are about 6%
higher than those by the latter in the self-consistency test and
3% higher in independent dataset test. The only setback is
that the jackknife result is about 3.7% lower than that of the
functional-domain approach (Cai et al., 2003b), but higher
than all other methods.

It should be pointed out that it is not sufficient only to
compare the overall success rate. To make an in-depth com-
parison, one should look into the success rate for each type. In
order to illustrate the weighted u-SVM’s ability to compensate
for the bias caused by the imbalance of the dataset, a compar-
ison with its original form was done as listed in Table 2, from
which the following facts can be deduced. (1) For class 4,
which is with the smallest size, the success rate by the weighted
u-SVM is about 31% higher than that by the u-SVM by the
self-consistency test and about 51% higher by the independent
dataset test. For the jackknife test, the weighted u-SVM also
outperformed the u-SVM by about 5%. This is fully consistent
with what is expected because the effects caused by the dataset
size have been taken into consideration during the process of
algorithm formulation. (2) The success rates by the weighted
u-SVM are higher than or equal to those obtained by the original
u-SVM in the self-consistency test, jackknife test and independ-
ent dataset test, for classes 1, 2, 4 and 5. (3) For class 3, which
has the largest size, the success rates by the weighted u-SVM
are lower than those by the u-SVM in the jackknife test and
independent dataset test. However, the overall success rates by
the weighted u-SVM are higher than those by u-SVM. (4) The
results are fully consistent with what we expected: the success
rates for the classes with small size are improved at the cost of
slightly reducing the success rates for large size classes. This is
rational because the samples in small classes are treated as
more important, i.e. assigning a larger coefficient for the
data in the small class to improve its prediction accuracy.
Meanwhile, the importance is that the overall success rates
were enhanced.

Table II. Rates of correct prediction (%) for the five membrane protein types by the weighted u-SVM and u-SVM algorithms and different test methods

Test method Algorithm Membrane protein type

Class 1 (435) Class 2 (152) Class 3 (1311) Class 4 (51) Class 5 (110)

Self-consistencya Weighted u-SVM 100 100 99.92 100 100
u-SVM 99.77 95.39 99.85 68.63 97.27

Jackknifea Weighted u-SVM 81.38 40.79 91.53 54.90 47.27
u-SVM 79.08 38.81 93.29 49.02 45.45

Independent datasetb Weighted u-SVM 89.54 65.00 94.22 64.29 72.09
u-SVM 88.70 62.78 95.13 7.14 72.09

aConducted for the 2059 membrane proteins classified into five different types as described in the text and Figure 1. The data for the 2059 proteins were
taken from Table I of Chou and Elrod (1999).
bConducted for the 2625 independent membrane proteins based on the rule parameters derived from the 2059 membrane proteins. The data for the 2625
independent proteins were taken from Chou and Elrod (1999).
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Conclusion

The above results indicate that the types of membrane proteins
are predictable with considerable accuracy. The development
of the statistical prediction of protein attributes generally con-
sists of two aspects: constructing a training dataset and for-
mulating a prediction algorithm. The latter also consists of two
aspects, i.e. how to define a protein and how to operate the
prediction. The process in expressing a protein from the 20-D
amino acid composition space (Nakashima et al., 1986; Chou
and Zhang, 1993; Chou, 1995; Zhou, 1998) to the (20+l)-D
pseudo-amino acid composition space (Chou, 2001) to the
2005-D functional-domain composition space (Chou and
Cai, 2002; Cai et al., 2003b) reflects the development in repre-
senting a protein sample. In this paper, the technique of signal
spectrum analysis was introduced to represent a protein via the
pseudo-amino acid composition (Chou, 2001) to incorporate
the sequence-order information. The process from introducing
the simple geometry distance algorithm (Nakashima and
Nishikawa, 1994), to the Mahalanobis distance algo-
rithm (Chou and Zhang, 1994; Chou, 1995), to the covariant
discriminant algorithm (Chou and Elrod, 1999; Pan et al.,
2003; Zhou and Doctor, 2003) and to the current weighted
u-SVM algorithm reflects the development in operating algo-
rithms. The weighted u-SVM algorithm is particularly useful
in solving the problem caused by uneven sizes of the subsets
in the training dataset or dealing with the case where the
classification accuracy is focused on a small subset.
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Appendix A: Weighted support vector machines

Owing to its characteristics of global optimization, sparseness
of the solution and the use of kernel-induced feature spaces,
SVMs are widely used in bioinformatics. SVMs have been
applied to protein fold recognition (Ding and Dubchak,
2001), protein–protein interaction prediction (Bock
and Gough, 2001), protein secondary structure prediction
(Hua and Sun, 2001), protein structural class prediction (Cai
et al., 2002a), prediction of the specificity of GalNAc-transfer-
ase (Cai et al., 2002c), subcellular location prediction (Cai
et al., 2000, 2002d; Chou and Cai, 2002), signal peptide pre-
diction (Cai et al., 2003a) and membrane protein type predic-
tion (Cai et al., 2002b, 2003b). Many variations have
been proposed to improve its performance, such as C-SVM
(Vapnik, 1995, 1998), one-class (Scholkopf et al., 2000),
RVSM (Lee and Mangasarian, 2001), u-SVM (Scholkopf
et al., 2000), weighted-SVM (Chew et al., 2001; Lin and
Wang, 2002) and LS-SVM (Suykens and Vandewalle,
1999). When training datasets with uneven class sizes are
used, the classification results based on support machines
are undesirably biased toward the class with more samples
in the subset. Namely, the larger the subset, the smaller is
the classification error. Some efforts have been made in this
regard (Chew et al., 2000, 2001; Lin and Wang, 2002). The
weighted-SVM (Fan et al., 2003) compensates for the unfavor-
able impact caused by this kind of bias by assigning each subset
a different penalty coefficient.

Based on the concept of weighted-SVM (Fan et al., 2003),
we adopt its specific form, the weighted u-SVM, and apply it to
the problem of prediction of membrane protein types.
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u-SVM
The basic idea of applying SVMs to pattern classification can
be outlined as follows. First, map the input vectors into a
feature space (possible with a higher dimension), either linearly
or non-linearly, which is relevant to the selection of the kernel
function. Then, within the feature space, seek an optimized
linear division, i.e. construct a hyper-plane which can separate
the entire samples to two classes (this can be extended to multi-
classes) with the least errors and maximal margin. The SVMs
training process always seeks a global optimized solution and
avoids over-fitting, so it has the ability to deal with a large
number of features. A complete description to the theory of
SVMs for pattern recognition was given by Vapnik (1998).

Given a set of ‘ samples, i.e. a series of input vectors

xi 2 Rd i = 1, . . . , ‘ð Þ, ðA1Þ
where xi can be regarded as the ith protein or vector defined in
the 40-D pseudo-amino acid space according to Equations 14
and 15 and Rd is a Euclidean space with d dimensions. Since
the multi-class identification problem can always be converted
into a two-class identification problem, without loss of general-
ity, the formulation below is given for the two-class case only.
Suppose that the output derived from the learning machine is
expressed by yi 2 f +1, �1g (i = 1, . . . , N ), where the indices
�1 and +1 are used to stand for the two classes concerned,
respectively, the goal here is to construct one binary classifier
or derive one decision function from the available samples that
has a small probability of misclassifying a future sample.

u-SVM (Scholkopf et al., 2000) uses the parameter u to
control the number of support vectors and errors. Its primal
problem is

min
w;b;x;r

1

2
wTw�ur +

1

l

Xl
i=1

xi

s:t: yi wTf xið Þ + b
� �

> r� xi ðA2Þ
xi > 0, i = 1, . . . , l

r> 0

Its dual problem is

min
a

1

2
aTQa

s:t: 0<ai <
1

l
, i = 1, . . . , l ðA3Þ

yTa = 0

eTa>u
The decision function is

~ff xð Þ = sign
Xl
i=1

yiaiK xi, xð Þ + b

 !
: ðA4Þ

To calculate b and r in the above equation, we need to select
the same number of samples (S > 0 is the number of samples)
from the two datasets. Suppose S+ is the number of samples
from the positive training dataset and S� that from the negative
training dataset. According to the Karush–Kuhn–Tucker
(KKT) conditions (Karush, 1939; Cristianini and Shawe-
Taylor, 2000), the condition in Equation A2

yi wTf xið Þ + b
� �

> r� xi ðA5Þ
becomes

yi wTf xið Þ + b
� �

= r� xi ðA6Þ

and

xi = 0 ðA7Þ
Hence, with some deductions, we obtain the formulations

to calculate b and r:

b = � 1

2s

X
x2Sþ[S�

X
j

ajyjK x, xj
� �

ðA8Þ

r =
1

2s

X
x2Sþ

X
j

ajyjK x, xj
� �

�
X
x2S�

X
j

ajyjK x, xj
� �" #

ðA9Þ

In C-SVM, the only adjustable parameter is the constant C,
which influences its performance greatly. However, because
there is no natural interpretation of this parameter, it is hard to
adjust it. In u-SVM, the parameter C is replaced by u. In this
parameterization (Equation A3), u places a lower bound on the
sum of the ai, which causes the linear term to be dropped from
the objective function. Another connection between these two
algorithms is that an increase in parameter C leads to a decrease
in the number of support vectors in C-SVM, while a decrease in
u leads to a smaller number of support vectors.

Weighted u-SVM
The performance of u-SVM is also impaired when training sets
with uneven class sizes are used. We propose the weighted
u-SVM to solve this problem. The primal problem of weighted
u-SVM is given by

Min
w;b;x;r

1

2
wTw�ur +

1

l

Xl
i=1

sixi

s:t: yi wTf xið Þ + b
� �

> r� xi ðA10Þ
xi > 0, i = 1, . . . , l,r> 0

where si denotes the weight for each sample. We use the
Lagrange multiplier method to solve the above optimization
problem

L w, xi,b,r ,ai, bi, dð Þ

¼ 1

2
wTw�ur +

1

l

Xl
i=1

sixi

�
Xl
i=1

ai yi w
Tf xið Þ + b

� �
�r + xi

� �
+ bixi

� �
�rd ðA11Þ

where ai > 0, bi > 0, d > 0 are all Lagrange multipliers.
Differentiating and imposing a stationary condition, we obtain

qL
qw

= w�
Xl
i=1

aiyif xið Þ = 0 ðA12Þ

qL
qb

= �
Xl
i=1

aiyi = 0 ðA13Þ

qL
qxi

=
1

l
si �ai � bi = 0 ðA14Þ

qL
qr

= �u +
Xl
i�1

ai � d = 0 ðA15Þ
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Substituting Equations A12–A15 into Equation A11, we obtain
its dual problem:

Min
a

1

2
aTQa

s:t: 0<ai <
1

l
si

yTa = 0

eTa>u

ðA16Þ

In the weighted u-SVM, by assigning training samples of
different classes different weights, we can compensate for the
unfavorable impact caused by the uneven class size. For sim-
plicity, we analyze the case of two classes. We assign si = s+ for
positive class and si = s– for negative class. Hence the
constraint in Equation A11 is reduced to

0<ai <
1

l
sþ, 8yi ¼ +1 i = 1, . . . , ‘

0<ai <
1

l
s�, 8yi = � 1 i = 1, . . . , ‘

ðA17Þ

8><
>:

According to the constraint in Equation A9, we obtainX
i

aiyi =
X

i:yi¼+1

ai �
X

i:yi=�1

ai = 0 ðA18Þ

Because most of the gaps are not zero in the trained SVMs,
according the constraint in Equation A1, r is greater than zero.
By Kuhn–Tucher theory, we obtain dr = 0. If r > 0, then d = 0.
Substituting this into Equation A6, we obtain

X‘
i=1

ai = u ðA19Þ

Thus, from Equations A18 and A19, we deduce thatX
i

ai =
X

i:yi¼+1

ai +
X

i:yi=�1

ai = 2
X

i:yi¼+1

ai = u ðA20Þ

Before further analysis, we need to define several notations.
The support vector (SV) is the training sample whose dual
variables ai > 0. The normal support vector (NSV) is defined
as the training sample whose dual variables 0<ai <

1
l
. The

boundary support vector (BSV) is the training sample that both
satisfy ai = 1

l
and xi > 0. The BSVs are misclassified training

points.
Because the BSV has the property ai = sþ

‘ , the sum of
NBSV+

ai (BSV’s dual variable) is less than
P

i:yi¼+1 aiNBSVþ ,
which is the number of BSVs that belong to the positive class:

2NBSVþ

Sþ
l

< 2
Xl

i:yi¼+1

ai = u ðA21Þ

i.e.

2NBSVþ

Sþ
‘

<u ðA22Þ

In addition, the maximum of SV’s dual variable ai is Sþ
‘ andNsv+

denotes the number of training samples belonging to the positive

class. Thus, we have

u = 2
X‘

i:yi¼+1

ai < 2NSVþ

sþ
‘

ðA23Þ

i.e.

u<
2NSVþsþ

‘
ðA24Þ

From Equations A15 and A17, we have

2NBSVþsþ
‘

<u<
2NSVþsþ

‘
ðA25Þ

Likewise, we have a similar result for the case of negative
class:

2NBSV� s�
‘

<u<
2NSV� s�

‘
ðA26Þ

Equations A18 and A19 can be transformed into

NBSVþ

‘þ
<

ul
2sþ‘þ

<
NSVþ

‘þ
ðA27Þ

NBSV�

‘�
<

ul
2s�‘�

<
NSV�

‘�
ðA28Þ

where ‘+ is the number of positive training samples, ‘� the
number of negative training samples and ‘ = ‘+ + ‘�. The

NBSVþ
‘þ

in Equation A18 and
NBSV�
‘�

in Equation A19 may be interpreted
as the rates of accuracy of positive and negative classes, respec-
tively. From Equations A20 and A21, it can be shown that the
rate of accuracy for positive class is upper bounded by u‘

2sþ‘þ and
the rate of accuracy for negative class is upper bounded by u‘

2s� ‘�
.

Therefore, in order to balance two classes’ rates of accuracy,
we only need to force u‘

2sþ‘þ
= u‘

2s�‘�
. Then we have the following

equation:

sþ
s�

=
‘�
‘þ

ðA29Þ

In the weighted u-SVM, by weighting the samples in the
small class, the classification accuracy of the small class can be
improved. Meanwhile, eliminating the bias toward the large
class, the prediction accuracy of the large class is reduced
slightly. Such a method can be applied directly to the prediction
of membrane protein types where the training sets of five
classes are highly uneven.

In this paper, we use the ‘one-against-one’ approach (Knerr
et al., 1990), in which k(k� 1)/2 classifiers are constructed and
each one trains data from two different classes; k is the number
of classes and in this paper k = 5. During the training stage, we
first calculate the ratio of different sample sizes according to
Equation A29 and then assign different weights to the training
samples of different classes as described in the next section. In
classification we use a voting strategy: each binary classifica-
tion is considered to be a voter where votes can be cast for all
data points; the end point is designated to be in a class with
maximum number of votes.
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