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Abstract

A DNA microarray can track the expression levels of thousands of genes simultaneously. Previous research has demonstrated that this
technology can be useful in the classification of cancers. Cancer microarray data normally contains a small number of samples which have a
large number of gene expression levels as features. To select relevant genes involved in different types of cancer remains a challenge. In ordel
to extract useful gene information from cancer microarray data and reduce dimensionality, feature selection algorithms were systematically
investigated in this study. Using a correlation-based feature selector combined with machine learning algorithms such as decision trees, naive
Bayes and support vector machines, we show that classification performance at least as good as published results can be obtained on acut
leukemia and diffuse large B-cell lymphoma microarray data sets. We also demonstrate that a combined use of different classification and
feature selection approaches makes it possible to select relevant genes with high confidence. This is also the first paper which discusses bott
computational and biological evidence for the involvement of zyxin in leukaemogenesis.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction analyse acute leukem{&olub et al., 1999)Support vector
machines (SVMs) were applied to multi-class cancer diag-
Accurate cancer diagnosis is vital for the successful ap- nosis by(Ramaswamy et al., 2001Blierarchical clustering
plication of specific therapies. Although cancer classifica- was used to analyse colon tum@lon et al., 1999) The
tion has improved over the last decade, there is still a needbest classification results are reported_bgt al. (2003)and
for a fully automated and less subjective method for cancer Antonov et al. (2004)Li et al. employed a rule discovery
diagnosis. Recent studies demonstrated that DNA microar-method and Antonov et al. maximal margin linear program-
rays could provide useful information for cancer classifica- ming (MAMA).
tion atthe gene expression level due to their ability to measure  Given the nature of cancer microarray data, which usually
the abundance of messenger ribonucleic acid (MRNA) tran- consists of a few hundred samples with thousands of genes
scripts for thousands of genes simultaneously. as features, the analysis has to be carried out carefully. Work
Several machine learning algorithms have already beenin such a high dimensional space is extremely difficult if not
applied to classifying tumors using microarray data. Vot- impossible. One straightforward approach to select relevant
ing machines and self-organising maps (SOM) were used togenes is the application of standard parametric tests such as
thet-test(Thomas et al., 2001; Tsai et al., 20@8)d a non-
* Corresponding author. Tel.: +49 89 3187 2627; fax: +49 89 3187 3585, parametric test such as the Wilcoxon score (Esbmas et
E-mail addressyu.wang@gsf.de (Y. Wang). al., 2001; Antoniadis et al., 2003)ilks's Lambda score was
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proposed byHwang et al., 2002p access the discriminatory
power of individual genes. A new procedyfntonov et al.,

are redundant from the machine learning point of view. It is
well-known that the inclusion of irrelevant and redundant in-

2004)was designed to detect groups of genes that are stronglyformation may harm performance of some machine learning

associated with a particular cancer type.
In this paper we consider two general approaches to fea-

algorithms.
Feature subset selection can be seen as a search through the

ture subset selection, more specifically, wrapper and filter space of feature subsets. Four questions have to be answered
approaches, for gene selection. Wrappers and filters differ inin terms of the search proce@dsangley, 1994)

how they evaluate feature subsets. Filter approaches remov
irrelevant features according to general characteristics of the

data. Wrapper approaches, by contrast, apply machine learn-

ing algorithms to feature subsets and use cross-validation
to evaluate the score of feature subsets. Most methods of
gene selection for microarray data analysis focus on filter
approaches, although there are a few publications on ap-
plying wrapper approachdiza et al., 2004; Xiong et al.,
2001; Xing et al., 2001)Nevertheless, in theory, wrappers
should provide more accurate classification results than filters
(Langley, 1994)Wrappers use classifiers to estimate the use-
fulness of feature subsets. The use of “tailor-made” feature
subsets should provide a better classification accuracy for the

corresponding classifiers, since the features are selected ac-

cording to their contribution to the classification accuracy of

the classifiers. The disadvantage of the wrapper approach is

its computational requirement when combined with sophis-
ticated algorithms such as support vector machines.

As a filter approach, correlation-based feature selection
(CFS) was proposed ball (1999) The rationale behind
this algorithm is “a good feature subset is one that contains
features highly correlated with the class, yet uncorrelated
with each other.” It has been shownhtall (1999)that CFS

gave comparable results to the wrapper and executes man)gs)

times faster. It will be shown later in this paper that combining
CFSwith decision trees, theiva Bayes algorithm and SVM,
provides classification accuracy on cancer microarray data
that is similar or better than published results.

The rest of this paper is organised as follows. We begin
with a brief introduction to feature subset selection, followed
by a description of feature wrappers, filters and CFS, which
is essentially a filter algorithm. We discuss the advantages

and disadvantages of using wrappers and filters to select fea-
ture subsets. Thereafter, we present the experimental results

on acute leukemia and lymphoma microarray data. The last
section discusses the results and concludes this paper.

2. Methods
2.1. Feature subset selection

We now define the basic notions used in the paper. Given a
microarray cancer data sBt which containg samples from
different cancer types or subtypes, we have to build a math-
ematical model which can map the samples to their classes.
Each sample hangenes as its features. The assumption here

)

(4)

?1) Where to start the search in the feature spath@ start-

ing point will decide the direction of the search. The
search can start with an empty set and successively add
useful features to this set. This is callEniward selec-
tion. An alternative would be starting with a full set and
successively removing useless features. This is called
backward elimination Starting the search from some-
where in the middle of the feature set is also possible.
The search could be performed by either adding useful
or removing useless features.

How to evaluate subsets or featurddtere exist two gen-

eral strategies, namefilters andwrappers Most filter
approaches evaluate features by giving them a score ac-
cording to general characteristics of the training set. By
setting a threshold, they then remove irrelevant features.
If the score of a gene is above the threshold, the gene will
be selected. There are also some filter approaches, such as
CFS, that assign a score to subsets of featikeapper
approaches, by contrast, take biases of machine learning
algorithms into account when selecting features. They
apply a machine learning algorithm to feature subsets
and use cross-validation to compute a score for them.
How to searchAn exhaustive search of the entire feature
subspace is impractical even with the current standard of
computational power. A typical microarray cancer data
set contains a few thousands genes as features.rith
genes there exist2possible feature subsets. Heuristic
search strategies such as greedy hill climbing and best
firstare usually applied. Greedy hill climbing search con-
siders only local changes to a feature subset. It evaluates
all the possible local changes to the current feature set,
such as adding one feature to the set or removing one. It
chooses the best or simply the first change that improves
the score of the feature subset. Once a change is made
for a feature subset, it is never reconsidered. Best first
search is similar to greedy hill climbing but with the dif-
ference that it can backtrack to a more promising previ-
ous subset if it finds the current subset is not worthy to be
explored.

When to stop searchingrhe addition or removal of fea-
tures should be stopped when none of the alternatives
improves the score of a current feature subset. Another
criterion would be to revise the feature subset continu-
ously as long as the score does not degrade or to continue
generating feature subsets until reaching the other end of
the feature space and then select the best.

is that not all genes measured by a microarray are related to One major problem diltersthat score individual features
cancer classification. Some genes are irrelevant and somas the selection of a threshold by which to discard features.
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Although all the features will be given a score by the filter al- to how well they cluster instances of the same cl&gs
gorithm, itis not clear how to determine the optimal threshold and Rendell, 1992; Kononenko, 1994 this end, Reli-

for the data. One heuristic approach (the so calledl rule) efF repeatedly chooses a single instance at random from
in microarray cancer analysis chooses theitepl genes to the data, and then locates the nearest instances of the
start the analysi¢Li and Yang, 2002)Golub et al. (1999) same class and the nearest instances pertaining to differ-

chose 50 genes most closely correlated with leukemia sub-  entclasses. The feature values of these instances are used
types. Nevertheless, ranking genes by filters does present an  to update the scores for each feature.
overall picture of the microarray data. It is therefore, a nice
starting point for the data analysis. 2.2.2. Correlation-based feature selection

In general filters are much faster thawrappers How- CFS evaluates a subset of features by considering the indi-
ever, as far as the final classification accuracy is concernedvidual predictive ability of each feature along with the degree
wrappersnormally provide better results. The general argu- of redundancy between thefiHall, 1999)
ment is that the classifier that will be built from the feature

subset should provide a better estimate of accuracy than aCFSg _ kres
separate measure that may have an entirely different classifi-  Jk+k(k = D

cation bias. The main disadvantagewépperapproaches is

that during the feature selection process, the classifier mustwhere CF$ is the score of a feature subsgtontainingk

be repeatedly called to evaluate a subset. For some compufeaturesy is the average feature to class correlatioa (§),

tationally expensive algorithms such as SVMs or artificial andrs is the average feature to feature correlation. The dis-

neural networks, wrappers can be impractical. This will be tinction between normal filter algorithms and CFS is that

demonstrated in our experiments. while normal filters provide scores for each feature indepen-
dently, CFS presents a heuristic “merit” of a feature subset

2.2. The choice of feature filter algorithms and classifiers ~ and reports the best subset it finds.

2.2.1. Feature filter algorithms 2.2.3. Classification algorithms
Apart from CFS, we consider four other filter methods in In this study we use three well-known classifiers, namely
this paper. They are described as follows: the decision tree learner C4.5, the simple Bayesian classifier

5 o S naive Bayes, and a support vector machine (S\(Mjpnik,
(1) x*-Statistic: This criterion measures the worth of afea-  1998)to demonstrate the advantages and disadvantages of
ture by computing the value of the® statistic with re-  feature selection algorithms. For a more thorough discussion
spect to the class. of the first two algorithms and the corresponding feature se-

(2) Information gain : This criterion measures the worth of  |ection methods, we refer @itten and Frank, 1999: Hall,
a feature by measuring the information gain with respect 1999)

to the class. Information gain is given by Decision trees have been popular in practice due to their

InfoGain= H(Y) — H(Y|X), simp_licity, fast_e_valuation s_peed, and_inter_pretability. Th_e
training of decision trees directly on high dimensional mi-
whereX andY are features, and croarray cancer data can sometimes overfit the data, gen-
erating an overly large tree. Removing irrelevant and re-
H(Y) = = p(3)10gz(p(y). dundant information results in smaller, more predictive
el trees.
H(Y|X) = — Z (%) Z pO0)I0g,(p(v]x)). nave Bayes assumes that features are independent given
X er the class. Its performance on data sets with redundant features

canbe improved by removing such features. A forward search
Both, the information gain and th¢ statistic, are biased  strategy is normally used with e Bayes as it should imme-

in favour of features with higher dispersion. diately detect dependencies when harmful redundant features
(3) Symmetrical uncertainty: This criterion measures the are added.
worth of a feature by measuring the symmetrical un-  SVMs use a kernel function to implicitly map data to a
certainty with respect to the class, and compensates forhigh dimensional space. Then, they construct the maximum-
information gain’s biagPress et al., 1988) margin hyperplane by solving an optimization problem on the
InfoGain training data. Sequential minimal optimization (SM®)att,
SU=20x ————. 1998)is used in this paper to train an SVM. SVMs have been
H(Y)+ H(X)

shown to work well for high dimensional microarray data sets

(4) ReliefF: Thisis afeature weighting algorithm thatis sen- (Furey et al., 2000However, due to the high computational
sitive to feature interactions. The key idea of ReliefF is costitis not very practical to use the wrapper method to select
to rate features according to how well their values distin- genes for SVMs, as will be shown in our experimental results
guish among instances of different classes and accordingsection.
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2.3. Experimental procedure

6000

The experiments were performed with the Weka machine
learning packag@Wwitten and Frank, 1999We used the fol-
lowing three general strategies to identify predictive features.

5000
|

4000
|

2.3.1. Selecting genes using feature-ranking filters
(1) Use afilter to rank all the genes in the data.
(2) Choose the first — 1 genes as the best feature subset.

3000
1

2000
|

Note that the data has to be discretized befgreinforma-
tion gain and symmetrical uncertainty filters can be applied. ‘
Weka’s implementation uses an MDL-based discretization
method for this purpos@-ayyad and Irani, 1993) | |

1000

0
|

2.3.2. Selecting genes using CFS '

(1) Choose a search algorithm. | ‘

(2) Perform the search, keeping track of the best subset en- ALL AML
countered according to CES

(3) Output the best subset encountered. Fig. 1. The expression levels of zyxin in the training set.

2.3.3. Selecting genes using a wrapper method The genes iMable lare listed in the order according to
their x? score. Nevertheless, we find that the order of genes
according to information gain, symmetrical uncertainty, and
x2 does not differ much, while the ReliefF measure produces
a substantially different ranking. This is due to the fact that
ReliefF takes gene interactions into account while the other
three measures do not. However, we notice that the score of
zyxin is high in each case. It is ranked first jp§, InfoGain
The search algorithm we used was best-first with forward and symmetrical uncertainty. The ReliefF filter ranks zyxin
selection, which starts with the empty set of genes. In this ninth.
paper we report accuracy estimates for classifiers built from  We used the wrapper method and CFS in conjunction with
the best subset found during the search. The search for thea best-first search to select genes from the training set. With
best subset is based on the training data only. Once the besiwo classifiers, the decision tree learner J48 (Weka's imple-
subset has been determined, and a classifier has been buithentation of C4.5) and ifee Bayes, and the wrapper, only
from the training data (reduced to the best features found), one gene is selected. This gene is zyxin, which is also the
the performance of that classifier is evaluated on the test dataonly gene selected by CFS. The SMO wrapper selected two
genes, zyxin and huralu_at. A leave-one-out cross valida-
tion procedure was performed to investigate the robustness

(1) Choose a machine learning algorithm to evaluate the
score of a feature subset.

(2) Choose a search algorithm.

(3) Perform the search, keeping track of the best subset en
countered.

(4) Ouput the best subset encountered.

3. Results of the feature selection procedures. In 38 runs, zyxin was se-
lected 34 times (92%) by CFS, 34 times (92%) by the J48
3.1. Analysis of acute leukemia data wrapper and 28 times (74%) by theiva Bayes wrapper.

It is interesting to note that zyxin is repeatedly selected
The acute leukemia data &olub et al. (1999fonsists by CFS, and different wrapper algorithms. Moreover, it is
of samples from two different types of acute leukemia, acute scored highly by the filter algorithms. This is the same gene
lymphoblastic leukemia (ALL) and acute myeloid leukemia identified by the emerging patterns algoritiiibhand Wong,
(AML). The training data set has 38 bone marrow samples 2002) A box plot of zyxin expression levels in the training
(27 ALL and 11 AML). Each sample has expression patterns set is presented ifig. 1 This figure clearly indicates that the
of 7129 genes measured by the Affymetrix oligonucleotide expression levels of zyxin can be used to distinguish ALL
microarray. The test data set consists of 24 bone marrow andirom AML in the training set. The median and mean of ALL

10 peripheral blood samples (20 ALL and 14 AML). are 360.0 and 349.9, respectively. For AML, the median is
Feature-ranking filters provide a natural way to rank genes 2947 and the mean is 3064.
according to their ability to distinguish AML and ALL ac- The training result for J48 is shownTable 2 The follow-

cording to different criteria. The first 10 genes selected by ingrule can be created fromthe decisiontree: if the expression
x%, InfoGain, ReliefF and symmetrical uncertainty are listed level of zyxin of the sample is less than or equal to 938, it is
in Table 1 classified as ALL. If the expression level of zyxin is larger
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Table 1
Genes ranked by feature filters to classify subtypes of acute leukemia

Probe ID Gene annotation X2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

X95735 Zyxin 38.00 1 0.87 1 0.27 9 1.00 1

M55150 FAH Fumarylacetoacetate 33.54 2 0.74 2 0.26 14 0.83 2

M27891 CST3 Cystatin C (amyloid angiopathy and  33.31 3 0.70 3 0.28 7 0.83 3
cerebral hemorrhage)

M31166 PTX3 Pentaxin-related gene, rapidly induced 33.31 3 0.70 3 0.12 151 0.83 3
by IL-1 beta

X70297 CHRNAZ7 Cholinergic receptor, nicotinic, 29.77 5 0.66 5 0.12 148 0.73 5
alpha polypeptide 7

U46499 GLUTATHIONE S-TRANSFERASE, 29.77 5 0.66 5 0.22 21 0.73 5
MICROSOMAL

L09209s APLP2 Amyloid beta (A4) precursor-like pro- 29.77 5 0.66 5 0.20 31 0.73 5
tein 2

M77142 NUCLEOLYSIN TIA-1 29.77 5 0.66 5 0.06 991 0.73 5

J03930 ALKALINE PHOSPHATASE, 29.02 9 0.60 9 0.11 267 0.56 45
INTESTINAL PRECURSOR

M23197 CD33 CD33 antigen (differentiation antigen) 28.95 10 0.59 10 0.30 5 0.71 9

The gene selected by the wrappers is marked with an asterisk.

than 938, it is classified as AML. Thirty-one test samples are has demonstrated that zyxin may enter the nucleus by asso-
correctly classified by this simple rule. There are only three ciation with other proteins, but is exported from the nucleus
mistakes, one for AML, two for ALL. IrFig. 2, the expres- by means of intrinsic leucine-rich nuclear export sequences.
sion levels of zyxin from the test set are plotted individually Zyxin proteins may regulate gene transcription by interac-
for each sample in the test set. tion with transcription factors. In some cases, misregulation
Fig. 2 shows three errors in the test set, two for ALL, of nuclear functions of zyxin proteins appear to be associated
one for AML. The x-axis represents the samples and the with pathogenic effectéNang and Gilmore, 2003)
y-axis represents the expression levels of zyxin. The black Amongthe proteinswhich are interaction partners of zyxin
line across the lower part of the figure is the threshold line (Wang and Gilmore, 2003H-warts/LATS1, p1364S and
y = 938. The three misclassified samples have expressionCasL are of interest since we are looking for involvement
levels of zyxin which are far from the threshold. The me- of zyxin in acute leukemia. Zyxin is phosphorylated specifi-
dian and mean of ALL in the test set are 215.00 and 416.30, cally during mitosigHirota et al., 2000)most likely by Cdc2
respectively. Those of AML are 3029 and 3492. kinase, and the phosphorylation regulates association with
The previous result reported Bolub et al. (1999)using h-warts/LATS1. These findings suggest that h-warts/LATS1
a voting machine with 50 genes, can correctly predict 29 and zyxin play a crucial role in controlling mitosis progres-
samples on the test set. Trable 3 our results are shown sion by forming a regulatory complex on the mitotic appara-
along with some previously published results, obtained by tus.
the emerging pattern algorithifiLi and Wong, 2002) the Itwas reported that zyxin LIM(1-2) are necessary and suf-
voting machine methofGGolub et al., 1999)SVMs(Furey et ficient for CasL—HEF1 interactio(yi et al., 2002) CasL—
al., 2000) and MAMA (Antonov et al., 2004)on the same
test set. Table 3
The r_eSU|ts Obtameq by us and_ others Sque,St that_ theThe comparison of classification results for AML/ALL classification
expression level of zyxin plays an important role in distin-
guishing acute lymphoblastic leukemia and acute myeloid
leukemia. However, no one has yet reported direct involve- J48 1 31

Method Number of features Result

ment of zyxin in hematopoiesis. Zyxin has been shown to gf\'ﬂvg_BCT:yses 11 ;’11
encode a LIM domain protein important in cell adhesion in - gyo-wrapper 2 30
fibroblast(Crawford and Beckerle, 1991Recent research  Emerging Patterris 1 31
SVMP 25-1000 30-32
Table 2 Voting Machiné 50 29
d

J48 classifier for leukemia data set MAMA 132-549 34
J48 pruned tree The result column shows the number of correctly classified samples in the
The expression level of zyxig 938: ALL (27.0) test set (total 34).
The expression level of zyxin > 938: AML (11.0) & (Li and Wong, 2002)

¢ ) b (Furey et al., 2000)
Number of Leaves: 2 ¢ (Golub et al., 1999)

Size of the tree: 3 d (Antonov et al., 2004)
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Fig. 2. The expression levels of zyxin in the test set.

HEF1 interacts with a Crk family adaptor protein called Crkl. with down-modulation of C/EB&. This evidence suggests

p130°45 is found to be tyrosine phosphorylated and associ- that the expression level of PTX3 should not be neglected

ated with Crkl in BCR/ABL expressing cell lines and in sam- when expression data of acute leukemia is analyzed.

ples obtained from chronic myeloid leukemia (CML) and a

type of ALL(Ph" ALL) (Salgia et al., 1996)BCR/ABL is 3.2. Analysis of diffuse large B-cell ymphoma data

an oncogene which is sufficient to produce CML. A study by

(Yagi et al., 2003)dentified zyxin as one of 35 genes which Diffuse large B-cell lymphoma (DLBCL) is the most com-

were associatec_j With the prognosis of pediatric AM L. Given mon subtype of non-Hodgkin's lymphoma. There are no reli-

all these facts, it is tempting to speculate that zyxin plays & gpje morphological or immunohistochemical indicators that

role in leukemogenesis. can be used to recognise subtypes of DLB@lizadeh et
Recently zyxin has been shown to be up-regulated 5 (>000)identified two molecularly distinct forms of DL-

by RASSF1A in non-small cell lung cancer and neurob- gc) \yhich had gene expression patterns indicative of dif-

lastoma. RASSF1A is a 3p21.3 tumor SUppressor geneferent stages of B-cell differentiation. One type expressed

(Agathanggelou et al.,, 2003jarada et al. (2002nves-  ganes characteristic of germinal centre B cells—germinal cen-

tigated aberrant promot_er methylatlon and S|Ien_C|ng of the e B-like DLBCL (GC-DLBCL); the second type expressed

RASSF1A gene in pediatric tumours and cell lines. They genes normally induced during in vitro activation of periph-

found that 17% of ALL are methylated, but methylation is eral blood B cells—activated B-like DLBCL (ABC-DLBCL).

absent in AML. This might be one of the reasons why the patients with GC-DLBCL had a significantly better survival

expression levels of_zyxm are hl_gh in AML samples_and low |ate than those with ABC-DLBCIlAlizadeh et al. (2000de-

in ALI__ samples. This hypothesis needs to be confirmed by signed a specialised cDNA microarray, the ‘Lymphochip’ to

experlments.- ) analyse 45 samples. We have divided this data into a training
Could zyxin be one of the molecular targets in acute get of 36 samples and a test set of 9 samples. Each sample

leukemia? Researcfvan der Gaag et al., 2002)n the has expression values of 4026 genes.

role of zyxin in differential cell spreading and prolifera- e first 10 genes selected by the filtering algorithms from

tion of melanoma cells and melanocytes showed that zyxin yhe trajning set are listed ifable 4 At the end of this table

is significantly up-regulated in melanoma cells compared gqgitional genes selected by théveBayes and SMO wrap-
to melanocytes. Treatment of melanoma cells withQt2- pers are also shown (s@able 5.

tetradecanoylphorbol-13-acetate down-regulates zyxin €X- \yie can draw the same conclusion from the results of the
pression, inhibits cell spreading and proliferation, and pro- fjjters in Table 4as in the acute leukemia casé, InfoGain,
motes differentiation. We believe more experiments are gnq symmetrical uncertainty filters give more or less the same
needed to verify zyxin's role in leukemia. _ ranking for genes while the ReliefF filter ranks genes quite
Most of the other genes at the top of the listiable 1 gitterently. From the biological application point of view itis
are also selected and discusse@wjub etal. (1999)except 4t clear which filter to choose. The first 25 genes selected by
for one. Itis called PTX3, which is a Pentaxin-related gene. x2, InfoGain, and Symmetrical Uncertainty filters are differ-

This gene has been shown to be up-regulated by CIEBP o fromAlizadeh et al. (2000¢xcept for JAW1 and FMR2.
in BCR/ABL cell lines(Tavor et al., 2003)Recently, mu- There are several reasons:

tations that abrogated transcriptional activation of C/eBP
have been detected in AML patient samples. Moreover, the (1) We have divided the data set into a training set and a test
progression of CML to blast crisis in patients is correlated set. Our feature selection is performed on the training set.
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Table 4

Genes ranked by feature filters to distinguish subtypes of DLBCL

Gene ID Gene annotation X2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

GENE3330X Unknown 2508 1 0.59 2 a5 6 0.59 2

GENE3328X Unknown UG Hs.136345 ESTs pd:s] 1 0.59 2 Q16 4 0.59 2

GENE3967X Deoxycytidylate deaminase .23 3 0.59 4 9 43 0.59 4

GENE3261X Unknown 281 4 0.63 1 QL7 3 0.64 1

GENE3259X Unknown UG Hs.124922 ESTs .23 5 0.54 8 a3 13 0.54 8

GENE3258X JAW1, lymphoid-restricted 2274 6 0.57 5 a4 10 0.59 5
membrane protein

GENE3256X JAW1, lymphoid-restricted 2274 6 0.57 5 a1 19 0.59 5
membrane protein

GENE3939X Unknown UG Hs.169081 ets 2253 8 0.54 7 QL6 5 0.54 7
variant gene 6 (TEL oncogene)

GENE3512X zinc finger protein 42 MZF-1 o22) 9 0.51 9 a3 12 0.51 10

GENE3966X Deoxycytidylate deaminase .24 10 0.51 11 m7 105 0.51 11

GENE3165X Unknown Q00 331 0.00 331 —0.00 2367 0.00 331

GENE1063X PMS6, DNA mismatch repair 1142 187 0.24 248 06 144 0.25 262
protein

The genes selected by the wrappers are marked with asterisks.

Alizadeh et al. (2000used the whole data set to select GENE1063X is PMS6, also called PMS2L4. It encodes a
the most informative genes. DNA mismatch repair protein. At the RNA level, it is found
(2) We have used different selection criteria. at spleen, prostate and lymphoid. The filter algorithms do
] i not rank GENE1063X highly (se€able 4. The scores of
The wrappers chose the genes showiable 5to build GENE3165X from the filters are all zero. This gene would
the classifiersTable 5also lists the numbers of samples that ignored if we only relied on the filter results. Without this

are correctly classified by the classifiers both on the training gene, nive Bayes only achieves 94% accuracy on the training
set and the test set.

_ set.
The J48 wrapper chose only GENE3328X to build the  The SMO wrapper chose GENE3330X and GENE1063X.
decision tree. GENE3328X also scored quite high with each o, poth the training set and the test set, the SVM gets the

. . . 2 .
of the filters. It is ranked first by, second by InfoGainand et classification result among the three machine learning
symmetrical uncertainty, and fourth by ReliefF. The decision algorithms. All the samples are classified correctly.

tree built on GENE3328X achieves 89% accuracy in aleave- ~cgs chose the genes showrTable 6as the best subset.

one-out cross-validation on the training set and 89% on the Apqyt half of the genes have low ranks according to the other
test set. GENE3328X is a cDNA clone from germinal centre fiiers These genes would certainly escape the notice of an

Bcells. investigator if a heuristic threshold like the— 1 rule (see
The nadve Bayes wrapper chose GENE3165X, GENE- Section2.1) were applied.

3330X, and GENE1063X. The combination of these three  T3pje 7shows the classification results of the three learn-

genes gives a good performance for naive Bayes. On thej,q aigorithms with genes selected by CFS. Botive®ayes

training set it gets 97% accuracy. On the test set, itis 100%. 54 the SVM perform the same as in the wrapper case on the
Among the three, only GENE3330X is ranked high by the (act gata only J48 is slightly worse.

filters. It is ranked first by?, second by InfoGain and sym-
metrical uncertainty, and sixth by ReliefF. Unfortunately, the

function of GENE3330X is not known, neither is its origin. 4 piscussion

Table 5 We have shown in this paper that feature subset selection
Experimental results of the wrappers for classification of DLBCL algorithms, namely wrappers, filters and CFS, can be very
Method Genes selected Training Test useful in extracting relevant information in microarray data
J48 GENE3328X 33(36) 8(9)  analysis. Wrapper approaches can choose the best genes for
ndve Bayes GENE3165X buﬂdmg. classifiers while filters can provide a nice overview

GENE3330X 35(36) 9(9) by ranking the genes for the particular problem at the hand.

GENE1063X CFS can choose genes which are highly correlated to cancers
SMO GENE3330X 36(36) 9¢9)  Yetuncorrelated to each other.

GENE1063X When the methods agree and selectthe same genes, we can

The numbers count correctly classified samples in each data set. The numberfi@ve more confidence in the result. In our study we demon-
inside parentheses are the total number of samples in each data set. strated that several different methods used in the wrapper
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Table 6
Genes selected by CFS with their corresponding filter scores

Gene ID Gene annotation X2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

GENE3941X Unknown UG Hs.143722 ESTs 10 36 0.45 26 0.07 106 0.47 20

GENE3499X Unknown UG Hs.123387 ESTs 79 255 0.25 208 0.01 1020 0.29 154

GENE3718X 47-kD autosomal chronic 8.32 298 0.21 287 0.02 934 0.26 242
granulomatous disease protein

GENE2322X Unknown UG Hs.140489 ESTs 48 233 0.27 178 0.03 577 0.31 122

GENE3132X NEREF, ets family transcription factor .06 242 0.26 188 0.04 271 0.30 137

GENE3325X Unknown UG Hs.120245 B9 44 0.37 51 0.12 16 0.39 56

GENE3258X JAW1,lymphoid-restricted membrane 2274 6 0.57 5 0.14 10 0.59 5
protein

GENE3259X Unknown UG Hs.124922 ESTs .23 5 0.54 8 0.13 13 0.54 8

GENE3256X JAW1,lymphoid-restricted membrane 2274 6 0.57 5 0.11 19 0.59 5
protein

GENE3261X Unknown 291 4 0.63 1 0.17 3 0.64 1

GENE2739X Unknown UG Hs.136952 ESTs 79 255 0.25 208 0.07 100 0.29 154

GENE1940X Low-affinity IgG Fc receptor II-B and 1884 23 0.45 26 0.07 109 0.46 21
C isoforms

GENE1354X Casein kinase | delta .71 255 0.25 208 0.05 212 0.29 154

GENE3967X Deoxycytidylate deaminase @B 3 0.59 4 0.09 43 0.59 4

GENE3932X core binding factor alphalb subunit A% 63 0.39 41 0.15 8 0.42 32

GENE236X metallothionein-I| g1 255 0.25 208 0.05 253 0.29 154

GENE547X GCF-2,GC-rich sequence DNA 9.71 255 0.25 208 0.04 373 0.29 154
binding factor

GENE763X Eukaryotic translation initiation factor 11.50 180 0.29 117 0.03 529 0.33 95
4E

GENE427X p18-INK6, Cyclin-dependent kinase 6 12.88 123 0.33 86 0.03 410 0.36 66
inhibitor

GENE404X Unknown UG Hs.140559 EST a8 30 0.46 20 0.10 32 0.49 15

GENE958X DNA alkylation repair protein 133 94 0.35 65 0.03 589 0.39 54

GENE1798X Unknown g1 255 0.25 208 0.04 344 0.29 154

GENE3821X Unknown 131 112 0.34 76 0.07 110 0.38 60

GENE1720X cysteine rich protein with LIM motif 130 180 0.29 117 0.08 e 0.33 95

GENE1567X CXC chemokine 130 180 0.29 117 0.05 211 0.33 95

approach as well as several different filters indicated an in- surprisingly good performance. However, given the nature of
volvement of zyxin in distinguishing AML and ALL. This  microarray cancer data, which onthe one hand has low signal-
result is in agreement with previous wo¢ki and Wong, to-noise ratio, and on the other hand has a limited number of
2002) However, contrary to previous studies, we collected samples, we are very cautious to suggest that these genes are
in this study important biological evidence that suggests at sufficient to build good classifiers for the diagnosis of the
least indirect involvement of zyxin in acute leukemia. To our analysed cancers.
knowledge, this is the first study that combines both com-  Filter algorithms provide a natural way to present an
putational and biological evidence and generates a clear hy-overview of microarray cancer data. Four feature-ranking fil-
pothesis about zyxin that can be tested experimentally. ters, namelyy?, information gain, symmetrical uncertainty
We have applied wrappers, filters and CFS to acute and Relief, have been investigated in this paper, each of which
leukemia data and diffuse large B-cell ymphoma microarray has been quite popular in the machine learning community.
data. Although CFS and wrappers based on decision treesThe first three filters give more or less the same ranking for
nave Bayes, and SVMs, do no select as many genes as prethe genes, but the ranking obtained from ReliefF is quite
vious research suggegtsolub et al., 1999; Alizadeh et al.,
2000) the final classifiers built with these few genes yield

Table 8

Table 7 CPU time (in seconds) spent on the data sets by CFS and the wrapper
Experimental results of CFS for classification of DLBCL Data set CFS Wrapper methods

Method Training set Test set Leukemia 671.74 J48 3838t
148 36(36) 7(9) nave Bayes 48607
naive Bayes 36(36) 9(9) SMO 6022897
SMO 36(36) 9(9) Lymphoma 2246.42 J48 2356
The numbers count correctly classified samples in each data set. The numbers nave Bayes 40015

inside parentheses are the total numbers of samples in each data set. SMO 4910168
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