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Abstract

A DNA microarray can track the expression levels of thousands of genes simultaneously. Previous research has demonstrated that this
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echnology can be useful in the classification of cancers. Cancer microarray data normally contains a small number of samples w
arge number of gene expression levels as features. To select relevant genes involved in different types of cancer remains a challe
o extract useful gene information from cancer microarray data and reduce dimensionality, feature selection algorithms were sys
nvestigated in this study. Using a correlation-based feature selector combined with machine learning algorithms such as decision
ayes and support vector machines, we show that classification performance at least as good as published results can be obta

eukemia and diffuse large B-cell lymphoma microarray data sets. We also demonstrate that a combined use of different classifi
eature selection approaches makes it possible to select relevant genes with high confidence. This is also the first paper which di
omputational and biological evidence for the involvement of zyxin in leukaemogenesis.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Accurate cancer diagnosis is vital for the successful ap-
lication of specific therapies. Although cancer classifica-

ion has improved over the last decade, there is still a need
or a fully automated and less subjective method for cancer
iagnosis. Recent studies demonstrated that DNA microar-
ays could provide useful information for cancer classifica-
ion at the gene expression level due to their ability to measure
he abundance of messenger ribonucleic acid (mRNA) tran-
cripts for thousands of genes simultaneously.

Several machine learning algorithms have already been
pplied to classifying tumors using microarray data. Vot-

ng machines and self-organising maps (SOM) were used to

∗ Corresponding author. Tel.: +49 89 3187 2627; fax: +49 89 3187 3585.
E-mail address:yu.wang@gsf.de (Y. Wang).

analyse acute leukemia(Golub et al., 1999). Support vecto
machines (SVMs) were applied to multi-class cancer d
nosis by(Ramaswamy et al., 2001). Hierarchical clusterin
was used to analyse colon tumor(Alon et al., 1999). The
best classification results are reported byLi et al. (2003)and
Antonov et al. (2004). Li et al. employed a rule discove
method and Antonov et al. maximal margin linear progr
ming (MAMA).

Given the nature of cancer microarray data, which usu
consists of a few hundred samples with thousands of g
as features, the analysis has to be carried out carefully.
in such a high dimensional space is extremely difficult if
impossible. One straightforward approach to select rele
genes is the application of standard parametric tests su
the t-test(Thomas et al., 2001; Tsai et al., 2003)and a non
parametric test such as the Wilcoxon score test(Thomas e
al., 2001; Antoniadis et al., 2003). Wilks’s Lambda score wa

476-9271/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compbiolchem.2004.11.001
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proposed by(Hwang et al., 2002)to access the discriminatory
power of individual genes. A new procedure(Antonov et al.,
2004)was designed to detect groups of genes that are strongly
associated with a particular cancer type.

In this paper we consider two general approaches to fea-
ture subset selection, more specifically, wrapper and filter
approaches, for gene selection. Wrappers and filters differ in
how they evaluate feature subsets. Filter approaches remove
irrelevant features according to general characteristics of the
data. Wrapper approaches, by contrast, apply machine learn-
ing algorithms to feature subsets and use cross-validation
to evaluate the score of feature subsets. Most methods of
gene selection for microarray data analysis focus on filter
approaches, although there are a few publications on ap-
plying wrapper approaches(Inza et al., 2004; Xiong et al.,
2001; Xing et al., 2001). Nevertheless, in theory, wrappers
should provide more accurate classification results than filters
(Langley, 1994). Wrappers use classifiers to estimate the use-
fulness of feature subsets. The use of “tailor-made” feature
subsets should provide a better classification accuracy for the
corresponding classifiers, since the features are selected ac-
cording to their contribution to the classification accuracy of
the classifiers. The disadvantage of the wrapper approach is
its computational requirement when combined with sophis-
ticated algorithms such as support vector machines.
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are redundant from the machine learning point of view. It is
well-known that the inclusion of irrelevant and redundant in-
formation may harm performance of some machine learning
algorithms.

Feature subset selection can be seen as a search through the
space of feature subsets. Four questions have to be answered
in terms of the search process(Langley, 1994):

(1) Where to start the search in the feature space?The start-
ing point will decide the direction of the search. The
search can start with an empty set and successively add
useful features to this set. This is calledforward selec-
tion. An alternative would be starting with a full set and
successively removing useless features. This is called
backward elimination. Starting the search from some-
where in the middle of the feature set is also possible.
The search could be performed by either adding useful
or removing useless features.

(2) How toevaluate subsetsor features?There exist two gen-
eral strategies, namelyfilters andwrappers. Most filter
approaches evaluate features by giving them a score ac-
cording to general characteristics of the training set. By
setting a threshold, they then remove irrelevant features.
If the score of a gene is above the threshold, the gene will
be selected. There are also some filter approaches, such as
CFS, that assign a score to subsets of features.Wrapper
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As a filter approach, correlation-based feature sele
CFS) was proposed byHall (1999). The rationale behin
his algorithm is “a good feature subset is one that con
eatures highly correlated with the class, yet uncorrel
ith each other.” It has been shown inHall (1999)that CFS
ave comparable results to the wrapper and executes

imes faster. It will be shown later in this paper that combin
FS with decision trees, the naı̈ve Bayes algorithm and SVM
rovides classification accuracy on cancer microarray

hat is similar or better than published results.
The rest of this paper is organised as follows. We b

ith a brief introduction to feature subset selection, follow
y a description of feature wrappers, filters and CFS, w

s essentially a filter algorithm. We discuss the advant
nd disadvantages of using wrappers and filters to selec

ure subsets. Thereafter, we present the experimental r
n acute leukemia and lymphoma microarray data. The
ection discusses the results and concludes this paper.

. Methods

.1. Feature subset selection

We now define the basic notions used in the paper. Gi
icroarray cancer data setD, which containsnsamples from
ifferent cancer types or subtypes, we have to build a m
matical model which can map the samples to their cla
ach sample hasmgenes as its features. The assumption

s that not all genes measured by a microarray are rela
ancer classification. Some genes are irrelevant and
approaches, by contrast, take biases of machine lea
algorithms into account when selecting features. T
apply a machine learning algorithm to feature sub
and use cross-validation to compute a score for the

3) How to search?An exhaustive search of the entire feat
subspace is impractical even with the current standa
computational power. A typical microarray cancer d
set contains a few thousands genes as features. Wm
genes there exist 2m possible feature subsets. Heuri
search strategies such as greedy hill climbing and
first are usually applied. Greedy hill climbing search c
siders only local changes to a feature subset. It eval
all the possible local changes to the current feature
such as adding one feature to the set or removing o
chooses the best or simply the first change that impr
the score of the feature subset. Once a change is
for a feature subset, it is never reconsidered. Best
search is similar to greedy hill climbing but with the d
ference that it can backtrack to a more promising pr
ous subset if it finds the current subset is not worthy t
explored.

4) When to stop searching?The addition or removal of fea
tures should be stopped when none of the alterna
improves the score of a current feature subset. Ano
criterion would be to revise the feature subset con
ously as long as the score does not degrade or to con
generating feature subsets until reaching the other e
the feature space and then select the best.

One major problem offilters that score individual feature
s the selection of a threshold by which to discard featu
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Although all the features will be given a score by the filter al-
gorithm, it is not clear how to determine the optimal threshold
for the data. One heuristic approach (the so calledn − 1 rule)
in microarray cancer analysis chooses the topn − 1 genes to
start the analysis(Li and Yang, 2002). Golub et al. (1999)
chose 50 genes most closely correlated with leukemia sub-
types. Nevertheless, ranking genes by filters does present an
overall picture of the microarray data. It is therefore, a nice
starting point for the data analysis.

In general,filters are much faster thanwrappers. How-
ever, as far as the final classification accuracy is concerned,
wrappersnormally provide better results. The general argu-
ment is that the classifier that will be built from the feature
subset should provide a better estimate of accuracy than a
separate measure that may have an entirely different classifi-
cation bias. The main disadvantage ofwrapperapproaches is
that during the feature selection process, the classifier must
be repeatedly called to evaluate a subset. For some compu-
tationally expensive algorithms such as SVMs or artificial
neural networks, wrappers can be impractical. This will be
demonstrated in our experiments.

2.2. The choice of feature filter algorithms and classifiers

2.2.1. Feature filter algorithms
s in
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to how well they cluster instances of the same class(Kira
and Rendell, 1992; Kononenko, 1994). To this end, Reli-
efF repeatedly chooses a single instance at random from
the data, and then locates the nearest instances of the
same class and the nearest instances pertaining to differ-
ent classes. The feature values of these instances are used
to update the scores for each feature.

2.2.2. Correlation-based feature selection
CFS evaluates a subset of features by considering the indi-

vidual predictive ability of each feature along with the degree
of redundancy between them(Hall, 1999).

CFSS = kr̄cf√
k + k(k − 1)r̄ff

where CFSS is the score of a feature subsetS containingk
features, ¯rcf is the average feature to class correlation (f∈ S),
andr̄ff is the average feature to feature correlation. The dis-
tinction between normal filter algorithms and CFS is that
while normal filters provide scores for each feature indepen-
dently, CFS presents a heuristic “merit” of a feature subset
and reports the best subset it finds.

2.2.3. Classification algorithms
ely
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Apart from CFS, we consider four other filter method
his paper. They are described as follows:

1) χ2-Statistic: This criterion measures the worth of a f
ture by computing the value of theχ2 statistic with re
spect to the class.

2) Information gain : This criterion measures the worth
a feature by measuring the information gain with res
to the class. Information gain is given by

InfoGain= H(Y ) − H(Y |X),

whereX andYare features, and

H(Y ) = −
∑

y∈Y

p(y)log2(p(y)),

H(Y |X) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x)log2(p(y|x)).

Both, the information gain and theχ2 statistic, are biase
in favour of features with higher dispersion.

3) Symmetrical uncertainty: This criterion measures th
worth of a feature by measuring the symmetrical
certainty with respect to the class, and compensate
information gain’s bias(Press et al., 1988).

SU = 2.0 × InfoGain

H(Y ) + H(X)
.

4) ReliefF: This is a feature weighting algorithm that is s
sitive to feature interactions. The key idea of Relief
to rate features according to how well their values dis
guish among instances of different classes and acco
In this study we use three well-known classifiers, nam
he decision tree learner C4.5, the simple Bayesian clas
äıve Bayes, and a support vector machine (SVM)(Vapnik,
998) to demonstrate the advantages and disadvantag

eature selection algorithms. For a more thorough discu
f the first two algorithms and the corresponding feature

ection methods, we refer to(Witten and Frank, 1999; Ha
999).

Decision trees have been popular in practice due to
implicity, fast evaluation speed, and interpretability.
raining of decision trees directly on high dimensional
roarray cancer data can sometimes overfit the data,
rating an overly large tree. Removing irrelevant and
undant information results in smaller, more predic

rees.
näıve Bayes assumes that features are independent

he class. Its performance on data sets with redundant fe
an be improved by removing such features. A forward se
trategy is normally used with naı̈ve Bayes as it should imm
iately detect dependencies when harmful redundant fea
re added.

SVMs use a kernel function to implicitly map data t
igh dimensional space. Then, they construct the maxim
argin hyperplane by solving an optimization problem on

raining data. Sequential minimal optimization (SMO)(Platt,
998)is used in this paper to train an SVM. SVMs have b
hown to work well for high dimensional microarray data
Furey et al., 2000). However, due to the high computatio
ost it is not very practical to use the wrapper method to s
enes for SVMs, as will be shown in our experimental res
ection.
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2.3. Experimental procedure

The experiments were performed with the Weka machine
learning package(Witten and Frank, 1999). We used the fol-
lowing three general strategies to identify predictive features.

2.3.1. Selecting genes using feature-ranking filters
(1) Use a filter to rank all the genes in the data.
(2) Choose the firstn − 1 genes as the best feature subset.

Note that the data has to be discretized beforeχ2, informa-
tion gain and symmetrical uncertainty filters can be applied.
Weka’s implementation uses an MDL-based discretization
method for this purpose(Fayyad and Irani, 1993).

2.3.2. Selecting genes using CFS

(1) Choose a search algorithm.
(2) Perform the search, keeping track of the best subset en-

countered according to CFSS .
(3) Output the best subset encountered.

2.3.3. Selecting genes using a wrapper method

(1) Choose a machine learning algorithm to evaluate the
score of a feature subset.

(2) Choose a search algorithm.
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Fig. 1. The expression levels of zyxin in the training set.

The genes inTable 1are listed in the order according to
their χ2 score. Nevertheless, we find that the order of genes
according to information gain, symmetrical uncertainty, and
χ2 does not differ much, while the ReliefF measure produces
a substantially different ranking. This is due to the fact that
ReliefF takes gene interactions into account while the other
three measures do not. However, we notice that the score of
zyxin is high in each case. It is ranked first byχ2, InfoGain
and symmetrical uncertainty. The ReliefF filter ranks zyxin
ninth.

We used the wrapper method and CFS in conjunction with
a best-first search to select genes from the training set. With
two classifiers, the decision tree learner J48 (Weka’s imple-
mentation of C4.5) and naı̈ve Bayes, and the wrapper, only
one gene is selected. This gene is zyxin, which is also the
only gene selected by CFS. The SMO wrapper selected two
genes, zyxin and humalu at. A leave-one-out cross valida-
tion procedure was performed to investigate the robustness
of the feature selection procedures. In 38 runs, zyxin was se-
lected 34 times (92%) by CFS, 34 times (92%) by the J48
wrapper and 28 times (74%) by the naı̈ve Bayes wrapper.

It is interesting to note that zyxin is repeatedly selected
by CFS, and different wrapper algorithms. Moreover, it is
scored highly by the filter algorithms. This is the same gene
identified by the emerging patterns algorithm(Li and Wong,
2 ng
s he
e ALL
f LL
a n is
2

i ssion
l it is
c ger
3) Perform the search, keeping track of the best subse
countered.

4) Ouput the best subset encountered.

The search algorithm we used was best-first with forw
election, which starts with the empty set of genes. In
aper we report accuracy estimates for classifiers built

he best subset found during the search. The search f
est subset is based on the training data only. Once th
ubset has been determined, and a classifier has bee
rom the training data (reduced to the best features fou
he performance of that classifier is evaluated on the test

. Results

.1. Analysis of acute leukemia data

The acute leukemia data ofGolub et al. (1999)consists
f samples from two different types of acute leukemia, a

ymphoblastic leukemia (ALL) and acute myeloid leuke
AML). The training data set has 38 bone marrow sam
27 ALL and 11 AML). Each sample has expression patt
f 7129 genes measured by the Affymetrix oligonucleo
icroarray. The test data set consists of 24 bone marrow
0 peripheral blood samples (20 ALL and 14 AML).

Feature-ranking filters provide a natural way to rank g
ccording to their ability to distinguish AML and ALL a
ording to different criteria. The first 10 genes selecte
2, InfoGain, ReliefF and symmetrical uncertainty are lis

n Table 1.
002). A box plot of zyxin expression levels in the traini
et is presented inFig. 1. This figure clearly indicates that t
xpression levels of zyxin can be used to distinguish
rom AML in the training set. The median and mean of A
re 360.0 and 349.9, respectively. For AML, the media
947 and the mean is 3064.

The training result for J48 is shown inTable 2. The follow-
ng rule can be created from the decision tree: if the expre
evel of zyxin of the sample is less than or equal to 938,
lassified as ALL. If the expression level of zyxin is lar
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Table 1
Genes ranked by feature filters to classify subtypes of acute leukemia

Probe ID Gene annotation χ2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

X95735∗ Zyxin 38.00 1 0.87 1 0.27 9 1.00 1
M55150 FAH Fumarylacetoacetate 33.54 2 0.74 2 0.26 14 0.83 2
M27891 CST3 Cystatin C (amyloid angiopathy and

cerebral hemorrhage)
33.31 3 0.70 3 0.28 7 0.83 3

M31166 PTX3 Pentaxin-related gene, rapidly induced
by IL-1 beta

33.31 3 0.70 3 0.12 151 0.83 3

X70297 CHRNA7 Cholinergic receptor, nicotinic,
alpha polypeptide 7

29.77 5 0.66 5 0.12 148 0.73 5

U46499 GLUTATHIONE S-TRANSFERASE,
MICROSOMAL

29.77 5 0.66 5 0.22 21 0.73 5

L09209s APLP2 Amyloid beta (A4) precursor-like pro-
tein 2

29.77 5 0.66 5 0.20 31 0.73 5

M77142 NUCLEOLYSIN TIA-1 29.77 5 0.66 5 0.06 991 0.73 5
J03930 ALKALINE PHOSPHATASE,

INTESTINAL PRECURSOR
29.02 9 0.60 9 0.11 267 0.56 45

M23197 CD33 CD33 antigen (differentiation antigen) 28.95 10 0.59 10 0.30 5 0.71 9

The gene selected by the wrappers is marked with an asterisk.

than 938, it is classified as AML. Thirty-one test samples are
correctly classified by this simple rule. There are only three
mistakes, one for AML, two for ALL. InFig. 2, the expres-
sion levels of zyxin from the test set are plotted individually
for each sample in the test set.

Fig. 2 shows three errors in the test set, two for ALL,
one for AML. The x-axis represents the samples and the
y-axis represents the expression levels of zyxin. The black
line across the lower part of the figure is the threshold line
y = 938. The three misclassified samples have expression
levels of zyxin which are far from the threshold. The me-
dian and mean of ALL in the test set are 215.00 and 416.30,
respectively. Those of AML are 3029 and 3492.

The previous result reported byGolub et al. (1999), using
a voting machine with 50 genes, can correctly predict 29
samples on the test set. InTable 3, our results are shown
along with some previously published results, obtained by
the emerging pattern algorithm(Li and Wong, 2002), the
voting machine method(Golub et al., 1999), SVMs(Furey et
al., 2000), and MAMA (Antonov et al., 2004), on the same
test set.

The results obtained by us and others suggest that the
expression level of zyxin plays an important role in distin-
guishing acute lymphoblastic leukemia and acute myeloid
leukemia. However, no one has yet reported direct involve-

to
in

h

has demonstrated that zyxin may enter the nucleus by asso-
ciation with other proteins, but is exported from the nucleus
by means of intrinsic leucine-rich nuclear export sequences.
Zyxin proteins may regulate gene transcription by interac-
tion with transcription factors. In some cases, misregulation
of nuclear functions of zyxin proteins appear to be associated
with pathogenic effects(Wang and Gilmore, 2003).

Among the proteins which are interaction partners of zyxin
(Wang and Gilmore, 2003), H-warts/LATS1, p130CAS and
CasL are of interest since we are looking for involvement
of zyxin in acute leukemia. Zyxin is phosphorylated specifi-
cally during mitosis(Hirota et al., 2000), most likely by Cdc2
kinase, and the phosphorylation regulates association with
h-warts/LATS1. These findings suggest that h-warts/LATS1
and zyxin play a crucial role in controlling mitosis progres-
sion by forming a regulatory complex on the mitotic appara-
tus.

It was reported that zyxin LIM(1-2) are necessary and suf-
ficient for CasL–HEF1 interaction(Yi et al., 2002). CasL–

Table 3
The comparison of classification results for AML/ALL classification

Method Number of features Result

J48 1 31

n the
ment of zyxin in hematopoiesis. Zyxin has been shown
encode a LIM domain protein important in cell adhesion
fibroblast(Crawford and Beckerle, 1991). Recent researc

Table 2
J48 classifier for leukemia data set

J48 pruned tree
The expression level of zyxin≤ 938: ALL (27.0)
The expression level of zyxin > 938: AML (11.0)

Number of Leaves: 2
Size of the tree: 3
näıve Bayes 1 31
SMO-CFS 1 31
SMO-Wrapper 2 30
Emerging Patternsa 1 31
SVMb 25–1000 30–32
Voting Machinec 50 29
MAMA d 132–549 34

The result column shows the number of correctly classified samples i
test set (total 34).

a (Li and Wong, 2002).
b (Furey et al., 2000).
c (Golub et al., 1999).
d (Antonov et al., 2004).
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Fig. 2. The expression levels of zyxin in the test set.

HEF1 interacts with a Crk family adaptor protein called Crkl.
p130CAS is found to be tyrosine phosphorylated and associ-
ated with Crkl in BCR/ABL expressing cell lines and in sam-
ples obtained from chronic myeloid leukemia (CML) and a
type of ALL(Ph+ ALL) (Salgia et al., 1996). BCR/ABL is
an oncogene which is sufficient to produce CML. A study by
(Yagi et al., 2003)identified zyxin as one of 35 genes which
were associated with the prognosis of pediatric AML. Given
all these facts, it is tempting to speculate that zyxin plays a
role in leukemogenesis.

Recently zyxin has been shown to be up-regulated
by RASSF1A in non-small cell lung cancer and neurob-
lastoma. RASSF1A is a 3p21.3 tumor suppressor gene
(Agathanggelou et al., 2003). Harada et al. (2002)inves-
tigated aberrant promoter methylation and silencing of the
RASSF1A gene in pediatric tumours and cell lines. They
found that 17% of ALL are methylated, but methylation is
absent in AML. This might be one of the reasons why the
expression levels of zyxin are high in AML samples and low
in ALL samples. This hypothesis needs to be confirmed by
experiments.

Could zyxin be one of the molecular targets in acute
leukemia? Research(van der Gaag et al., 2002)on the
role of zyxin in differential cell spreading and prolifera-
tion of melanoma cells and melanocytes showed that zyxin
i red
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n
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f ene.
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i -
t BP
h , the
p ted

with down-modulation of C/EBPα. This evidence suggests
that the expression level of PTX3 should not be neglected
when expression data of acute leukemia is analyzed.

3.2. Analysis of diffuse large B-cell lymphoma data

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin’s lymphoma. There are no reli-
able morphological or immunohistochemical indicators that
can be used to recognise subtypes of DLBCL.Alizadeh et
al. (2000)identified two molecularly distinct forms of DL-
BCL which had gene expression patterns indicative of dif-
ferent stages of B-cell differentiation. One type expressed
genes characteristic of germinal centre B cells–germinal cen-
tre B-like DLBCL (GC-DLBCL); the second type expressed
genes normally induced during in vitro activation of periph-
eral blood B cells–activated B-like DLBCL (ABC-DLBCL).
Patients with GC-DLBCL had a significantly better survival
rate than those with ABC-DLBCL.Alizadeh et al. (2000)de-
signed a specialised cDNA microarray, the ‘Lymphochip’ to
analyse 45 samples. We have divided this data into a training
set of 36 samples and a test set of 9 samples. Each sample
has expression values of 4026 genes.

The first 10 genes selected by the filtering algorithms from
the training set are listed inTable 4. At the end of this table
a p-
p

f the
fi
a ame
r uite
d is
n d by
χ fer-
e .
T

( a test
set.
s significantly up-regulated in melanoma cells compa
o melanocytes. Treatment of melanoma cells with 12O-
etradecanoylphorbol-13-acetate down-regulates zyxin
ression, inhibits cell spreading and proliferation, and
otes differentiation. We believe more experiments
eeded to verify zyxin’s role in leukemia.

Most of the other genes at the top of the list inTable 1
re also selected and discussed byGolub et al. (1999), excep

or one. It is called PTX3, which is a Pentaxin-related g
his gene has been shown to be up-regulated by C/Eα

n BCR/ABL cell lines(Tavor et al., 2003). Recently, mu
ations that abrogated transcriptional activation of C/Eα
ave been detected in AML patient samples. Moreover
rogression of CML to blast crisis in patients is correla
dditional genes selected by the naı̈ve Bayes and SMO wra
ers are also shown (seeTable 5).

We can draw the same conclusion from the results o
lters inTable 4as in the acute leukemia case.χ2, InfoGain,
nd symmetrical uncertainty filters give more or less the s
anking for genes while the ReliefF filter ranks genes q
ifferently. From the biological application point of view it
ot clear which filter to choose. The first 25 genes selecte
2, InfoGain, and Symmetrical Uncertainty filters are dif
nt fromAlizadeh et al. (2000)except for JAW1 and FMR2
here are several reasons:

1) We have divided the data set into a training set and
set. Our feature selection is performed on the training
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Table 4
Genes ranked by feature filters to distinguish subtypes of DLBCL

Gene ID Gene annotation χ2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

GENE3330X∗ Unknown 25.08 1 0.59 2 0.15 6 0.59 2
GENE3328X∗ Unknown UG Hs.136345 ESTs 25.08 1 0.59 2 0.16 4 0.59 2
GENE3967X Deoxycytidylate deaminase 25.02 3 0.59 4 0.09 43 0.59 4
GENE3261X Unknown 24.91 4 0.63 1 0.17 3 0.64 1
GENE3259X Unknown UG Hs.124922 ESTs 23.22 5 0.54 8 0.13 13 0.54 8
GENE3258X JAW1, lymphoid-restricted

membrane protein
22.74 6 0.57 5 0.14 10 0.59 5

GENE3256X JAW1, lymphoid-restricted
membrane protein

22.74 6 0.57 5 0.11 19 0.59 5

GENE3939X Unknown UG Hs.169081 ets
variant gene 6 (TEL oncogene)

22.53 8 0.54 7 0.16 5 0.54 7

GENE3512X zinc finger protein 42 MZF-1 22.09 9 0.51 9 0.13 12 0.51 10
GENE3966X Deoxycytidylate deaminase 21.94 10 0.51 11 0.07 105 0.51 11
GENE3165X∗ Unknown 0.00 331 0.00 331 −0.00 2367 0.00 331
GENE1063X∗ PMS6, DNA mismatch repair

protein
11.42 187 0.24 248 0.06 144 0.25 262

The genes selected by the wrappers are marked with asterisks.

Alizadeh et al. (2000)used the whole data set to select
the most informative genes.

(2) We have used different selection criteria.

The wrappers chose the genes shown inTable 5to build
the classifiers.Table 5also lists the numbers of samples that
are correctly classified by the classifiers both on the training
set and the test set.

The J48 wrapper chose only GENE3328X to build the
decision tree. GENE3328X also scored quite high with each
of the filters. It is ranked first byχ2, second by InfoGain and
symmetrical uncertainty, and fourth by ReliefF. The decision
tree built on GENE3328X achieves 89% accuracy in a leave-
one-out cross-validation on the training set and 89% on the
test set. GENE3328X is a cDNA clone from germinal centre
B cells.

The näıve Bayes wrapper chose GENE3165X, GENE-
3330X, and GENE1063X. The combination of these three
genes gives a good performance for naïve Bayes. On the
training set it gets 97% accuracy. On the test set, it is 100%.
Among the three, only GENE3330X is ranked high by the
filters. It is ranked first byχ2, second by InfoGain and sym-
metrical uncertainty, and sixth by ReliefF. Unfortunately, the
function of GENE3330X is not known, neither is its origin.

st

)

)

)

mbers

GENE1063X is PMS6, also called PMS2L4. It encodes a
DNA mismatch repair protein. At the RNA level, it is found
at spleen, prostate and lymphoid. The filter algorithms do
not rank GENE1063X highly (seeTable 4). The scores of
GENE3165X from the filters are all zero. This gene would
be ignored if we only relied on the filter results. Without this
gene, näıve Bayes only achieves 94% accuracy on the training
set.

The SMO wrapper chose GENE3330X and GENE1063X.
On both the training set and the test set, the SVM gets the
best classification result among the three machine learning
algorithms. All the samples are classified correctly.

CFS chose the genes shown inTable 6as the best subset.
About half of the genes have low ranks according to the other
filters. These genes would certainly escape the notice of an
investigator if a heuristic threshold like then − 1 rule (see
Section2.1) were applied.

Table 7shows the classification results of the three learn-
ing algorithms with genes selected by CFS. Both naı̈ve Bayes
and the SVM perform the same as in the wrapper case on the
test data, only J48 is slightly worse.

4. Discussion

ction
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We have shown in this paper that feature subset sele
lgorithms, namely wrappers, filters and CFS, can be
seful in extracting relevant information in microarray d
nalysis. Wrapper approaches can choose the best gen
uilding classifiers while filters can provide a nice overv
y ranking the genes for the particular problem at the h
FS can choose genes which are highly correlated to ca
et uncorrelated to each other.

When the methods agree and select the same genes,
ave more confidence in the result. In our study we dem
trated that several different methods used in the wra
Table 5
Experimental results of the wrappers for classification of DLBCL

Method Genes selected Training Te

J48 GENE3328X 33(36) 8(9

näıve Bayes GENE3165X
GENE3330X 35(36) 9(9
GENE1063X

SMO GENE3330X 36(36) 9(9
GENE1063X

The numbers count correctly classified samples in each data set. The nu
inside parentheses are the total number of samples in each data set.
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Table 6
Genes selected by CFS with their corresponding filter scores

Gene ID Gene annotation χ2 InfoGain ReliefF Symmetrical uncertainty

Score Rank Score Rank Score Rank Score Rank

GENE3941X Unknown UG Hs.143722 ESTs 17.70 36 0.45 26 0.07 106 0.47 20
GENE3499X Unknown UG Hs.123387 ESTs 9.71 255 0.25 208 0.01 1020 0.29 154
GENE3718X 47-kD autosomal chronic

granulomatous disease protein
8.32 298 0.21 287 0.02 934 0.26 242

GENE2322X Unknown UG Hs.140489 ESTs 10.43 233 0.27 178 0.03 577 0.31 122
GENE3132X NERF, ets family transcription factor 10.06 242 0.26 188 0.04 271 0.30 137
GENE3325X Unknown UG Hs.120245 16.60 44 0.37 51 0.12 16 0.39 56
GENE3258X JAW1,lymphoid-restricted membrane

protein
22.74 6 0.57 5 0.14 10 0.59 5

GENE3259X Unknown UG Hs.124922 ESTs 23.22 5 0.54 8 0.13 13 0.54 8
GENE3256X JAW1,lymphoid-restricted membrane

protein
22.74 6 0.57 5 0.11 19 0.59 5

GENE3261X Unknown 24.91 4 0.63 1 0.17 3 0.64 1
GENE2739X Unknown UG Hs.136952 ESTs 9.71 255 0.25 208 0.07 100 0.29 154
GENE1940X Low-affinity IgG Fc receptor II-B and

C isoforms
18.84 23 0.45 26 0.07 109 0.46 21

GENE1354X Casein kinase I delta 9.71 255 0.25 208 0.05 212 0.29 154
GENE3967X Deoxycytidylate deaminase 25.02 3 0.59 4 0.09 43 0.59 4
GENE3932X core binding factor alpha1b subunit 15.48 63 0.39 41 0.15 8 0.42 32
GENE236X metallothionein-II 9.71 255 0.25 208 0.05 253 0.29 154
GENE547X GCF-2,GC-rich sequence DNA

binding factor
9.71 255 0.25 208 0.04 373 0.29 154

GENE763X Eukaryotic translation initiation factor
4E

11.50 180 0.29 117 0.03 529 0.33 95

GENE427X p18-INK6, Cyclin-dependent kinase 6
inhibitor

12.88 123 0.33 86 0.03 410 0.36 66

GENE404X Unknown UG Hs.140559 EST 18.44 30 0.46 20 0.10 32 0.49 15
GENE958X DNA alkylation repair protein 13.93 94 0.35 65 0.03 589 0.39 54
GENE1798X Unknown 9.71 255 0.25 208 0.04 344 0.29 154
GENE3821X Unknown 13.41 112 0.34 76 0.07 110 0.38 60
GENE1720X cysteine rich protein with LIM motif 11.50 180 0.29 117 0.08 77 0.33 95
GENE1567X CXC chemokine 11.50 180 0.29 117 0.05 211 0.33 95

approach as well as several different filters indicated an in-
volvement of zyxin in distinguishing AML and ALL. This
result is in agreement with previous work(Li and Wong,
2002). However, contrary to previous studies, we collected
in this study important biological evidence that suggests at
least indirect involvement of zyxin in acute leukemia. To our
knowledge, this is the first study that combines both com-
putational and biological evidence and generates a clear hy-
pothesis about zyxin that can be tested experimentally.

We have applied wrappers, filters and CFS to acute
leukemia data and diffuse large B-cell lymphoma microarray
data. Although CFS and wrappers based on decision trees,
näıve Bayes, and SVMs, do no select as many genes as pre-
vious research suggests(Golub et al., 1999; Alizadeh et al.,
2000), the final classifiers built with these few genes yield

Table 7
Experimental results of CFS for classification of DLBCL

Method Training set Test set

J48 36(36) 7(9)
näıve Bayes 36(36) 9(9)
SMO 36(36) 9(9)

The numbers count correctly classified samples in each data set. The numbers
inside parentheses are the total numbers of samples in each data set.

surprisingly good performance. However, given the nature of
microarray cancer data, which on the one hand has low signal-
to-noise ratio, and on the other hand has a limited number of
samples, we are very cautious to suggest that these genes are
sufficient to build good classifiers for the diagnosis of the
analysed cancers.

Filter algorithms provide a natural way to present an
overview of microarray cancer data. Four feature-ranking fil-
ters, namelyχ2, information gain, symmetrical uncertainty
and Relief, have been investigated in this paper, each of which
has been quite popular in the machine learning community.
The first three filters give more or less the same ranking for
the genes, but the ranking obtained from ReliefF is quite

Table 8
CPU time (in seconds) spent on the data sets by CFS and the wrapper

Data set CFS Wrapper methods

Leukemia 671.74 J48 3838.74
näıve Bayes 4866.97
SMO 60228.97

Lymphoma 2246.42 J48 2354.25
näıve Bayes 4001.75
SMO 49101.68
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different, since ReliefF is sensitive to feature interactions. It
is up to the practitioner to decide which filter to use. Since
there are many filter algorithms available–see, for example,
Hero (2003)andSu et al. (2003)—one idea is to combine
scores from different filters to produce an overall score. Fur-
ther research needs to clarify exactly how to achieve this.

Another important decision for filter algorithms a practi-
tioner might face is the number of genes to be selected. In
other words, a practitioner must choose a threshold for the
filters. It is not clear how to determine an optimal value for
the threshold. CFS and the wrapper do not have this prob-
lem. By testing combinations of genes from the data, they
will automatically select an appropriate subset of genes. In
our lymphoma example, we show that Gene3165X selected
by the wrapper with näıve Bayes and SMO, scores around
zero for all four filters we have used. Considering only the
filters, this gene would certainly have been ignored. A ma-
jor drawback of some feature-ranking filter algorithms is that
they evaluate each gene individually, but in reality the com-
bination of expression levels of several genes might be re-
sponsible for cancer. Filters might miss these genes if their
individual expression levels are not informative enough for
the cancer classification.

Due to their high computational costs, it is not easy to
combine wrappers with some machine learning algorithms
s ds
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