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Summary. Owing to the importance of signal peptides for studying

the molecular mechanisms of genetic diseases, reprogramming cells

for gene therapy, and finding new drugs for healing a specific defect,

it is in great demand to develop a fast and accurate method to identify

the signal peptides. Introduction of the so-called {�3,�1, þ1} cou-

pling model (Chou, K. C.: Protein Engineering, 2001, 14–2, 75–79)

has made it possible to take into account the coupling effect among

some key subsites and hence can significantly enhance the prediction

quality of peptide cleavage site. Based on the subsite coupling model,

a kind of string kernels for protein sequence is introduced. Integrating

the biologically relevant prior knowledge, the constructed string

kernels can thus be used by any kernel-based method. A Support vector

machines (SVM) is thus built to predict the cleavage site of signal

peptides from the protein sequences. The current approach is compared

with the classical weight matrix method. At small false positive ratios,

our method outperforms the classical weight matrix method, indi-

cating the current approach may at least serve as a powerful comple-

mental tool to other existing methods for predicting the signal peptide

cleavage site.

The software that generated the results reported in this paper is available

upon requirement, and will appear at http:==www.pami.sjtu.edu.cn=wm.

Keywords: Signal peptide – Chou’s subsite coupling approach –

Probabilistic model – String kernels – Support vector machine

I Introduction

With the avalanche of protein sequences in the post-

genomic era, in order to timely use their information to

stimulate the development of medical science and ex-

pedite the course of drug design, many new techniques

in computational biology have been developed, such as

structural bioinformatics (see, e.g., Chou, 2004), protein

sequence cleavage site prediction (see, e.g., Chou, 1993,

1996), enzyme active site prediction (see, e.g., Chou and

Cai, 2004a), enzyme family class prediction (Chou, 2005;

Chou and Cai, 2004b, 2004c), G-protein coupled recep-

tor type prediction (Chou and Elrod, 2002), protein sub-

cellular location prediction (see, e.g., Nakai, 2000; Chou,

2001d; Chou and Cai, 2002, 2003), and signal peptide

prediction (see, e.g., Nakai 2000; Chou, 2002).

The discovery of signal peptide has made it possible

for pharmaceutical scientists to produce more effective

drugs by genetically modifying bacteria, plants and ani-

mals (Chou, 2002). The contemporary gene technology

has allowed us to generate the gene of the desired protein

with sequences coding for transport signals. Thus the

knowledge of protein signals can be used to reprogram

cells in a specific way for future cell and gene therapy.

However, in order to effectively use the knowledge of

signal peptides, one has to first identify the signal peptide

and predict its cleavage site. Due to the number of na-

scent protein sequence entering databanks increasing at

an unprecedented speed, it is time consuming and cost-

ly to identify the signal peptides solely by experiments.

Thus, a strong interest in the automated identification of

signal sequences and predictions of their cleavage sites

has been evoked.

Although N-terminal signal peptides generally share

some common features, i.e., a positively charged n-region,

a central hydrophobic h-region and a neural but polar

c-region (Claros et al., 1997), the extreme variations in

length and sequence has posed a difficulty for formulating



a general algorithm to predict the signal peptides. Most of

existing methods are mainly based on neural networks

(Claros et al., 1997; Nielsen et al., 1999; Nakai, 2000).

Although these techniques are always ‘readily available’

and ‘often successful in practice’, they are short of phys-

ical explanation and statistically poorly characterized

(King, 1996). The subsite coupling approach originally

proposed by Chou (2001b, 2002) is a completely different

approach with which some very encouraging results were

observed. According to the approach, although the signal

peptides are of extreme variation in both the sequence

order and length, some intrinsic coupling might exist

among their subsites. Here, on the basis of the subsite

coupling model, we would like to propose the probabilistic

model for characterizing the sequence of signal peptides

and use the support vector machine (SVM) (Vapnik, 1995,

1998) to predict the singular peptide and its cleavage site.

II Subsite coupling approach

For readers’ convenience, let us first give a brief introduc-

tion about the subsite coupling approach. For a detailed

description, the readers are suggested to refer to the orig-

inal papers (Chou, 2001a, b, c). The subsite approach was

developed based on the sequence-encoded algorithm

(Chou, 2001b) and the scaled window approach (Chou,

2001c). The rationale is as follows: Although the signal

peptides are of extreme variation in both the sequence

order and length, some intrinsic coupling might exist

among their subsites. For example, it has been observed

that, for the 1939 secretory protein sequence (Nielsen

et al., 1997), the amino acid residues at the subsites �3,

�1 and þ1 are mostly occupied by Ala (Fig. 1), while

the occurrence frequencies of the other 19 amino acids at

these subsites are relatively much lower. This indicates a

highly special match between the signal peptides and the

secretory protein at the subsites �3, �1 and þ1 is required

during the cleavage process. Based on such a finding, some

special terms that reflect the coupling among these sub-

sites have been incorporate into the prediction algorithm.

III A probability kernels based on subsite

coupling probability model

1. SVMs and probability kernels

Support vector machines (SVMs) are based on the Struc-

tural Risk Minimization principle from computational

learning theory (Vapnik, 1995, 1998; Christianini and

Shawe-Taylor, 2000). The most remarkable characteris-

tics of SVMs are the absence of local minima, the sparse-

ness of the solution, and the use of the kernel-induced

feature spaces. The basic idea of applying SVMs to the

pattern classification can be outlined as follows. First,

map the input vectors into a feature space (possible with

a higher dimension), either linearly or non-linearly,

which is relevant to the selection of the kernel function.

Then, within the feature space, seek an optimized linear

division; i.e., construct a hyper-plane which can separate

two classes (this can be extended to multi-classes) with

the least errors and maximal margin. The SVMs training

process always seeks a global optimized solution and

avoids over-fitting, so it has the ability to deal with a

large number of features. SVMs have been used to deal

with protein fold recognition (Ding and Dubchak, 2001),

protein–protein interactions prediction (Bock and Gough,

2001), protein subcellular location prediction (Chou and

Cai, 2002), and membrane protein type prediction (Cai

et al., 2003).

Given a set of N samples, i.e., a series of input training

samples

xk 2Xðk ¼ 1; . . . ;NÞ; ð1Þ

where xk can be regarded as the k th training example, and

X is called the input space. Since the multi-class identifi-

cation problem can always be converted into a two-class

identification problem, without loss of the generality the

formulation below is given for the two-class case only.

Suppose the output derived from the learning machine is

expressed by yk 2fþ1;�1gðk ¼ 1; . . . ;NÞ where the in-

dexes �1 and þ1 are used to stand for the two classes

concerned, respectively. The goal here is to construct one

binary classifier or derive one decision function from the

available samples that has a small probability of misclas-

Fig. 1. A schematic drawing to show the ½�3;�1;þ1� subsite coupling

mechanism. During the cleaving process, a highly special match is

required between the residues at subsites �3;�1, and þ1 of the secre-

tory protein and their counterparts in the signal peptides. Based on such a

model, the ½�3;�1;þ1� subsite coupling model was proposed (Chou,

2001b). Reproduced from Chou (2001b) with permission
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sifying a future sample. The resulting classifier is thus

based on the decision function:

f ðxÞ ¼
XN
i¼1

�iKðxi; xÞ ð2Þ

where x is any new object to be classified, Kðxi; xÞ is a so-

called kernel function and the coefficients f�1; �2; . . . ; �Ng
are determined during the process of training. The kernel

K can be considered as a dot product between the image

of the objects after a mapping to a high-dimensional fea-

ture space, i.e.,

Kðx; zÞ ¼ <�ðxÞ; �ðzÞ> ð3Þ

where �ðxÞ is the mapping of the original object in the

feature space. As a result, the kernel defines a measure of

the ‘similarity’ between any two objects in the feature

space.

In the context of predicting signal peptide cleavage site,

the objects for our analysis are the protein sequences

generated by sliding the scaled window ½��1;þ�2� (Chou,

2001). The first step is to develop a probabilistic model

pðxÞ on these sequences, and then define a mapping �ðxÞ
from the original sequence to the feature space, finally the

kernel Kðx; yÞ is obtained according to Eq. 3 and the

efficient kernel-based method (such as SVMs) can thus

be employed. As mentioned above, an efficient probabil-

ity model has been introduced that took into account the

coupling among three key subsites (Chou, 2001b). The

following critical problem is how to define the feature

map �ðxÞ based on the subsite coupling model. Before

formally giving the feature map and the kernel, it is neces-

sary to introduce the concept of probability kernels at first.

The probability kernel is defined on the product space

X�X, and satisfies:

8ðx; yÞ2X�X; 0�Kðx; yÞ�1P
ðx;yÞ 2X�X

Kðx; yÞ ¼ 1

8><
>: ð4Þ

Two typical probability kernels are the so-called product

kernel and diagonal kernel. The product kernel is defined

as

Kprodðx; yÞ ¼ pðxÞpðyÞ ð5Þ

Its resulting classifier can be easily obtained from Eq. 2 as

f ðxÞ ¼ a � pðxÞ þ b ð6Þ

with a ¼
PN

i¼1 �ipðxiÞ. In fact, the feature space defined

by the feature mapping �ðxÞ ¼ pðxÞ is a one-dimensional

line, each sample point xi is represented as a single point

pðxiÞ along the line. The resulting classifier (Eq. 6)

classifies a new point x by judging if pðxÞ is above or

below the threshold �b=a. Under such a mapping, two

objects are close if they have close probabilities.

The diagonal kernel is defined as

Kdiagðx; yÞ ¼ pðxÞ�ðx; yÞ ð7Þ

where �ðx; yÞ ¼ 1 if x ¼ y, �ðx; yÞ ¼ 0 if x 6¼ y. The

images of the training set form an orthogonal basis of

the feature space. The resulting classifier assigns the new

object to the most probable class simply by checking if

this object has appeared in the training set. Two objects

are close if they are the same, and thus no learning is

performed using the diagonal kernel.

Obviously, these two kernels are extremes of the ker-

nels that can be defined on the probability model pðxÞ. To

construct a kernel from a probability model, the product

kernel is an idea start point since its resulting classifiers

classify new sequence to a class according to the prob-

ability of that sequence. In order to improve the ability of

SVMs to discriminate between two protein sequences, we

introduce a generalized probability kernel to reflect some

notion of ‘closeness’ by interpolating between these two

typical kernels.

2. A probability kernel based on the subsite

coupling model

Some notations are introduced to formularize this idea.

Let � be a finite alphabet. A string is a finite sequence

of characters from �, including empty sequence. Let S

be a finite set (usually f0; 1; . . . ;Ng for sequences), and

X ¼ ðXsÞs 2 S a family of random variables defined on a

probability space ð�; F; PÞ and indexed by the elements

of S with values in �S. For any subset T � S we

note XT ¼ ðXsÞs 2 T . For any subset T � S and realization

xT 2�T we note pTðxTÞ ¼ PðXT ¼ xTÞ. If there is no

ambiguity the pðxTÞ used instead of pTðxTÞ for simplicity.

We define similarities pðxT ; yUÞ ¼ PðXT ¼ xt;XU ¼ yUÞ
and pðxT jyUÞ ¼ PðXT ¼ xT jXu ¼ yuÞ for any two subsets

T � S and U � S and realizations xT 2�T and yU 2�U .

Finally let PðSÞ be the power set of S, i.e., the set of

subsets of S, and � � PðSÞ be a particular set of subsets.

With these notations, a probability kernel can thus be

defined as follows.

Definition 1. For any probability density p on � and any

set of subsets � � PðSÞ we define the ðp; �Þ-common sub-

set kernel Kp;� by the formula:

Kp;� ¼
pðxÞpðyÞ

j�j
X
T 2 �

�ðxT ; yTÞ
pðxTÞ

ð8Þ
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for any two realization ðx; yÞ2�2S, where �ðxT ; yTÞ is 1 if

xT ¼ yT , and 0 if xT 6¼ yT . Here j�j denotes the cardinality

of the set �.

According to definition 1, it is easy to check when �

only contains the full set S, Kp;fSg ¼ Kdiag, and when �

only contains the empty set ;, Kp;f;g ¼ Kprod, showing

that the kernel Kp;� interpolates between the diagonal

kernel and the product kernel. Eq. 8 introduced the cor-

relations between sequences through their common sub-

strings indexed by � and the contribution of a given

common substring is inversely proportional to its prob-

ability. Thus, if two sequences sharing the rarer common

substring, their similarity should increase correspondingly

according to the definition of the proposed kernel.

There isn’t a universal efficient way to compute the

kernel Kp;� and the computation becomes prohibitive as

the set � becomes large. To deal with this problem, the

probability kernel derived from the subsite coupling prob-

ability model (Chou, 2001a) is factorized and computed in

linear time with respect to jSj as given in proposition 1.

The proof is given in the appendix.

Proposition 1. Let fpi; i2 Sg be the family of probability

densities on � and let p be the subsite coupling distribu-

tion on �S (Chou, 2001), i.e.,

8x2�S; pðxÞ ¼ p��1
ðx��1

Þ . . . p�3ðx�3Þp�2ðx�2Þ
p�1ðx�1jx�3Þpþ1ðxþ1jx�1Þpþ2ðxþ2Þ . . . pþ�2

ðxþ�2
Þ ð9Þ

Then the kernel derived from p when � ¼ PðSÞ is the set

of all subsets of S can be computed in linear time with

respect to jSj by:

Kp;�ðx; yÞ ¼
1

2jSj

Y
i 2 S

�iðxi; yiÞ ð10Þ

with:

�iðxi;yiÞ

¼

piðxiÞþ piðxiÞ2
if xi ¼ yi and i 6¼ �1;þ1

piðxiÞpiðyiÞ if xi 6¼ yi and i 6¼ �1;þ1

p�1ðx�1jx�3Þþ p�1ðx�1jx�3Þ2
if xi ¼ yi and i ¼�1

p�1ðx�1jx�3Þp�1ðy�1jy�3Þ if xi 6¼ yi and i ¼�1

p1ðx1jx�1Þþ p1ðx1jx�1Þ2
if xi ¼ yi and i ¼ 1

p1ðx1jx�1Þp1ðx1jx�1Þ if xi 6¼ yi and i ¼ 1

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

IV Results and discussion

To demonstrate the power of our algorithm, both a good

dataset that is available to the public and the comparison

with the benchmark algorithm are definitely necessary.

The dataset constructed by Nielsen et al. is an appropriate

candidate for it is publicly retrievable from an FTP server

at ftp:==virus.cbs.dtu.dk=pub=signalp. The dataset con-

tains 1418 non-redundant secretary protein sequences.

The secretary proteins contain 1011 eukaryote, 266 Gram

negative and 141 Gram positive proteins. For the secre-

tory proteins, both the sequence of the signal peptide and

the first 30 amino acids of the mature protein were in-

cluded in the data set. To compare the prediction quality

at an equivalent condition, we used the same data set as

used by Nielsen et al. (1997). The simple weight matrix

method (Heijne, 1986) is regarded as an efficient way to

recognize cleavage sites. The weight matrix method has

incorporated the relevant biology prior knowledge, e.g.,

the residues at positions �3 and �1 relative to the cleav-

age site are usually small and neutral. The weight matrix

method is essentially computing the probability of a se-

quence under an independent model. In this paper, weight

matrix method is adopted as a benchmark algorithm.

Prediction was performed with the scaled window

½�8;þ2�, resulting in 1418 positive windows, and 65,216

negative windows. This dataset was randomly split into a

training set (80% of the windows) and a test set (20%). It

should be pointed out that the sequences that include ‘X’

symbols are excluded to facilitate our analysis. Then both

the weight matrix classifier and our proposed classifiers

were constructed:

* The weight matrix: in which wiðxiÞ ¼ log pþi �
log ptotali ðxiÞ, where pþi ðxiÞ is the probability that amino

acid xi occurs at position i estimated from the positive

training set, and ptotali is the probability that amino

acid xi occurs at position i estimated from the total

training set.

* The SVM classifier based on the subsite coupling prob-

ability model (see Eq. 9) and the classifier is trained on

the training set.

Thus two competitive classifiers are obtained to predict

signal peptide cleavage site: the score function of the

weight matrix method:

sðxÞ ¼
X2

i¼�8

wiðxiÞ; ð12Þ

and the SVM’s classification function:

f ðxÞ ¼
X

xðjÞ 2 training set

�ðjÞKpþ;vðxð jÞ; xÞ; ð13Þ

where �ðjÞ is determined during the training process. For a

given threshold, each of the function assigns a new data as
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positive or negative example by comparing if the function

value is above or below the threshold. Varying the thresh-

old and classifying the data in the test set, a curve of true

positive versus false positives for each function (aver-

aged over 10 fold cross-validation tests) are drawn in

Figs. 2 and 3. It is easy to see in the interesting area,

i.e., from 2% of false positive to 14% of false positive

where both the false positive is not too high and the true

positive is acceptable, our method outperforms the weight

matrix method. For example, when we hope to have a 2%

of false positive, the weight matrix method would retrieve

on average 48.1% of true positive and the proposed kernel

method would retrieve 51.7% of true positive. In other

word, an increase of 7.4% in terms of true positive retriev-

al is obtained, which indicates the proposed method has

more discriminant power compared with the weight

matrix method. However, at the area of below 2% of false

positive, these two methods have similar performance;

when above 14% of false positive, the performance of

weight matrix method is better. The results obtained by

varying the parameter �1 are also drawn in Fig. 4. It can be

observed that until the windows size grows up to

½�12;þ2�, the trends of these two curves remain similar,

indicating the performance of our method is robust while

changing the window’s size. When the windows size

becomes even larger, the curves of these two methods

are almost the same, which may be partially explained

by the fact: the effects of the local property of subsite

coupling ‘decay’ with the expansion of the windows.

When the scaled window is small, the common substrings

for a couple sequences usually occur at the right end of

each protein sequence according to the subsite coupling

model. However, with the increase the windows size, the

chances of the common substrings appearing in other

positions will grow accordingly, which in fact ‘damps’

the effects of the subsite coupling model. In other words,

when the small windows are taken, the performance of the

proposed method is better than that of the weight matrix

method in the low false positive region. When the window

size grows larger than [�12, þ2], the performance of

the proposed method degenerates to the classical weight

matrix method.

SVM has been widely used in current bioinformatics

(Ding and Dubchak, 2001; Bock and Gough, 2001; Chou

and Cai, 2002; Cai et al., 2003) as a novel classifier.

Another important issue in applying SVM is to construct

the specific kernel that can incorporate the prior knowl-

edge for given research objects (Vapnik, 1995; 1998). It

should be pointed out that the goal of this study is not to

determine the possible upper limit of the success rate for

predicting signal peptide cleavage site, but to propose a

novel and different approach to incorporate the various

biological prior knowledge, which is often in the form

of different probability model, into the construction of

the kernels used in the more powerful SVM classifier

and other kernel machines. Although our experiments

have demonstrated its feasibility and shown that it has

its own advantage under curtain conditions, much work

is left to be done along such a line. For example, it is still

a big challenge how to contrive an efficient way to com-

pute the kernel that can incorporate more complex prob-

ability models.

Fig. 2. Classification performance of the weight matrix method and the

SVM method with window ½�8;þ2�

Fig. 3. Classification performance of the weight matrix method and the

SVM method for small false positive rates with window ½�8;þ2�
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Fig. 4. Classification performance of the weight matrix method and the SVM method for small false positive rates with different windows:

(a) ½�9;þ2�, (b) ½�10;þ2�, (c) ½�11;þ2�, (d) ½�12; 2�, (e) ½�13;þ2�, and (f) ½�14;þ2�
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V Conclusion

Based on the subsite coupling probability model (Chou,

2001b), a probability kernel is developed for predicting

the signal peptide cleavage site. Using this probabil-

ity kernel, the statistical characteristics of the protein

sequence can be better grasped and represented in the

mapped feature space in comparison with the simple score

function of the weight matrix method. The computed

results show the method proposed in this paper outper-

forms the classical weight matrix method, demonstrating

that the current method can play a complementary role

to the existing methods in predicting signal peptides in

proteins.

Appendix A. Proof of Proposition 1

For a general density p and a general set �, it is impossible

to find a universal way that avoids summing j�j times to

compute the kernel Kp;�. This computation soon becomes

prohibitive as the j�j grows exponentially with respect to

the windows’ size. For example, if the set � ¼ PðSÞ then

the cardinality of � will be 2jSj. Therefore, for the subsite

coupling model (Chou, 2001), an efficient computation

method is definitely necessary.

The subsite coupling probability model is given as:

8x2�S; pðxÞ
¼ p��1

ðx��1
Þ . . . p�3ðx�3Þp�2ðx�2Þp�1ðx�1jx�3Þ:

pþ1ðxþ1jx�1Þpþ2ðxþ2Þ . . . pþ�2
ðxþ�2

Þ ðA1Þ

For the convenience of analysis and computation, this

model can be treated as a product density model pðxÞ ¼Q
i 2 S piðxiÞ, where

piðxiÞ ¼
piðxiÞ i 6¼ �1;þ1

p�1ðx�1jx�3Þ i ¼ �1;
Pþ1ðxþ1jx�1Þ i ¼ þ1

8<
: ðA2Þ

if the probability density terms at position �1, þ1 is

treated equally as those at other positions. For this product

density pðxÞ ¼
Q

i 2 S piðxiÞ, the following holds for any

subset T � S:

8xT 2�T ; pðxTÞ ¼
Y
i 2 T

piðxiÞ ðA3Þ

Therefore, we can compute for any ðx; yÞ2�2S:

pðxÞpðyÞ�ðxT ; yTÞ
pðxTÞ

¼
Y
i 2 T

pðxiÞ�ðxi; yiÞ�
Y
i 62 T

pðxiÞpðyiÞ

ðA4Þ

Using Eq. 8 and the fact that j�j ¼ 2jSj we can therefore

compute:

Kðx; yÞ ¼ 1

2jSj

X
T�S

pðxÞpðyÞ�ðxT ; yTÞ
pðxTÞ

¼ 1

2jSj

X
T�S

�Y
i 2 S

pðxiÞ�ðxi; yiÞ�
Y
i62 S

pðxiÞpðyiÞ
�
:

¼ 1

2jSj

Y
i 2 S

fpðxiÞ�ðxi; yiÞ þ pðxiÞpðyiÞg ðA5Þ

Finally, when � ¼ PðSÞ is the set of all subsets of S, the

kernel derived from the subsite coupling model can be

computed in linear time with respect to jSj by:

Kp;�ðx; yÞ ¼
1

2jSj

Y
i 2 S

�iðxi; yiÞ ðA6Þ

with:

�iðxi; yiÞ

¼

piðxiÞ þ piðxiÞ2
if xi ¼ yi and i 6¼ �1;þ1

piðxiÞpiðyiÞ if xi 6¼ yi and i 6¼ �1;þ1

p�1ðx�1jx�3Þ þ p�1ðx�1jx�3Þ2
if xi ¼ yi and i ¼ �1

p�1ðx�1jx�3Þp�1ðy�1jy�3Þif xi 6¼ yi and i ¼ �1

p1ðx1jx�1Þ þ p1ðx1jx�1Þ2
if xi ¼ yi and i ¼ 1

p1ðx1jx�1Þp1ðx1jx�1Þif xi 6¼ yi and i ¼ 1

8>>>>>>>>><
>>>>>>>>>:

ðA7Þ
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