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We investigate the following data mining problem from computer-aided drug design: From a large collection
of compounds, find those that bind to a target molecule in as few iterations of biochemical testing as possible.
In each iteration a comparatively small batch of compounds is screened for binding activity toward this
target. We employed the so-called “active learning paradigm” from Machine Learning for selecting the
successive batches. Our main selection strategy is based on themaximum margin hyperplanesgenerated by
“Support Vector Machines”. This hyperplane separates the current set of active from the inactive compounds
and has the largest possible distance from any labeled compound. We perform a thorough comparative
study of various other selection strategies on data sets provided by DuPont Pharmaceuticals and show that
the strategies based on the maximum margin hyperplane clearly outperform the simpler ones.

1. INTRODUCTION

The drug discovery process traditionally involves an
iterative procedure of finding compounds that are active
against a biological target. Each iteration usually involves
selecting or synthesizing compounds from some accessible
collections and testing them in a biological assay against the
target. Analyzing the resulting data in each round typically
provides a better understanding of the reasons for activity,
leading to a better design or selection of compounds in the
next round of the process.

Computational methods have often been used to aid this
process. In each round the data is analyzed and a new
preferably interpretable model is constructed that helps select/
design compounds for the next round. Note that the design/
selection strategy for compounds may differ from round to
round. Some of the factors that play a role in this decision
include the stage of a project (e.g. early vs late), the available
source pool of the compounds (e.g. combinatorial library vs
diverse collection), picking new compounds based on already
known scaffolds, or finding novel ones (e.g. similar vs
diverse). Ideally, the computational methods used to assist
this process should be adaptable to these varying require-
ments. In this paper we discuss several selection strategies
that are aimed at addressing some of these issues.

Additionally, we use a rather new paradigm from Machine
Learning theory calledactiVe learning.2-5 Unlike more

conventional learning methods where the data (training set)
used to derive the model remains static, we let our data set
increment with each round. In each round the algorithms
actiVely selectsa batch of unlabeled compounds to be tested
for activity. Once the results from this batch are known we
can label these examples asactiVeor inactiVeandrecompute
our model of activity based on all examples labeled so far.

The present approach closely mimics the drug discovery
process which is traditionally iterative and where the
selection for the next round is commonly based on all the
currently available data. We show in this paper that the
iterative scheme of active learning can be very powerful even
if the underlying model for biological activity is not
particularly accurate. (Note that the term active in the
expression “active learning” refers to actively exploring the
data and rather than biological activity.)

The simplest selection strategy is to choose new com-
pounds at random for testing. Obviously, with random
selection, the number of “hits” grows only linearly with the
total number of compounds tested. Since most compounds
are commonly inactive, this strategy is not very effective.
Another simplistic strategy is to pick those compounds that
areclosestto some previously found active compounds. We
will show that there are selection strategies based on more
sophisticated Machine Learning algorithms that greatly
outperform these simple selection strategies in that the total
number of actives found in the first few test batches is
significantly increased.

Most of the more sophisticated strategies are based on
linear models in some high-dimensional descriptor space.
(An overview is given in the conference paper.1) For the
sake of simplicity of presentation we focus on only one such
model in this paper. We chose the model which led to one
of the best overall selection strategies surveyed in ref 1 and
additionally has an easy geometric interpretation. It is based
on a particular hyperplane in feature space that separates the
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active from the inactive compounds called themaximum
margin hyperplane, i.e., the plane with the largest possible
distance from any of the labeled compounds. (Algorithms
producing this plane are called “Support Vector Machines”.)

Given a separating hyperplane, different selection strate-
gies are possible. One scheme chooses unlabeled compounds
that are furthest on the positive side of the current maximum
margin hyperplane. We will show that this strategy performs
best in terms of picking the most actives in few iterations.

Several machine learning methods have been applied to
the drug discovery process to derive a model for activity.
Discussing all of them is beyond the scope of this paper.
Our main selection strategy is based on the maximum margin
hyperplane generated by Support Vector Machines (SVMs;6-9

see also http://www.kernel-machines.org). SVMs have a
number of advantages over classical methods, such as
stability, simple geometric interpretation, and use of kernels
for nonlinear decisions, and have received much attention
in a variety of application fields (for an overview see ref
10). SVMs have been previously employed to model activity
of untested compounds.11-13 However, only a rather small
set of conventional real valued descriptors has been used,
and the active learning aspect of the problem has not been
addressed. One of the data sets we use is theThrombin data
setwhich was the basis of the recentKnowledge DiscoVery
and Data Mining Competition(KDD cup, cf. http://
www.cs.wisc.edu/∼dpage/kddcup2001). However the setup
in this competition with a given training and test set enforced
the static type of machine learning. In this work we put a
particular emphasis on exploiting the iterative and dynamic
nature of the problem.

Almost all machine learning methods rely on a descriptor
space that is used to describe each compound in the data
set. The compounds are represented in this descriptor space
by vectors of descriptor components. As a result, compounds
can be thought of points in ahigh dimensional descriptor
space. The learning algorithm is not coupled with the
descriptor space, and one can take advantage of any
advancement made in the descriptor technology. For this
study we chose in-house descriptor tools developed at
DuPont Pharmaceuticals called theshape feature and phar-
macophore descriptors.

We start by briefly describing the drug discovery cycle.
Next we discuss how selecting test batches naturally becomes
a Machine Learning problem. Then Support Vector Machines
and various selection strategies are briefly described. Here,
we also discuss links to the active learning paradigm and
provide motivations for the particular selection strategies.

Finally we demonstrate and discuss the performance on two
real data sets. We conclude with a summary and discussion
of future work.

2. THE DRUG DISCOVERY CYCLE

We are faced with the following situation. A large number
of compounds need to be “mined” for finding out quickly
which compounds areactiVe, i.e., binding to a particular
target. The compounds may come from different sources such
as vendor catalogs, corporate collections, or combinatorial
chemistry. In fact, the compounds need to exist only virtually,
being defined in terms of theirdescriptorvectors (cf. Section
5.1).

In the drug discoVery cycle(cf. Figure 1)14 one typically
starts with some initial set of already tested compounds. Then
the chemists iteratively design/select batches of compounds
for testing. Note that it is more efficient to test multiple
compounds in parallel. However, often only a small number
of chemical classes can be pursued in parallel. The idea is
to refine the model of activity in each step, based on all tested
compounds at hand and to choose the most promising
compounds for the next batch. The cycle is repeated until
the ultimate goal is achieved, i.e., active compounds with
good enough properties for a clinical trial are found.

In this paper we attempt to do the selection step in the
cycle by the aid of a Machine Learning algorithm. At any
stage of the process, three types of compounds can be
distinguished: (a) a very small fraction of compounds that
already have been identified as active, (b) a much larger
fraction of compounds that already have been identified as
inactive, and (c) by far the largest fraction of compounds
that have not yet been tested (theunlabeledcompounds).
This situation is illustrated in Figure 2, where for the sake
of simplicity the descriptors have only two components (so
we obtain a two-dimensional plot).

It is important to note that our Machine Learning algorithm
does its selection based on all previous test batches. Such
learning approaches are collectively calledactiVe learning
techniques. As we shall see in the experiments, if we restrict
the algorithm not to make use of the cumulative information
from previous batches, i.e., only consider a static setup, then
the performance degrades dramatically.

3. ACTIVE LEARNING WITH SVMS

There are many Machine Learning techniques to choose
from. We considered a few of them in an earlier study.1 All
of these are based on an essentially linear model of activity

Figure 1. The drug discovery cycle.
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(some of the methods combine several linear predictors). In
this paper we describe a particular one based on Support
Vector Machines (SVMs). We chose SVMs for our presenta-
tion, because they have a simple geometric motivation and
also yield very good results. Note however, other algorithms
from ref 1 may well be used instead of SVMs, and the
discussion listed below about selection strategies holds for
them as well.

By a linear model we mean ahyperplanethat divides the
descriptor-space into two parts. With aseparatinghyper-
plane, all known active compounds lie in the positive half-
space and all known inactive compounds in the negative half-
space. (Pointsx on a hyperplane satisfy the equationw‚x +
b ) 0, for some weight vectorw∈Rn and biasb∈R. For
pointsx in the positive half-space,w‚x + b > 0.) For a given
hyperplane, the score of a compound is the signed distance
to the hyperplane. (Thesigned distanceof point x to plane
(w, b) is defined as (w‚x+b)/(||w||2), and thedistanceis the
absolute value of this quantity.) So the compounds on the
plane have score zero, the compounds in the negative half-
space all have a negative score, and the rest a positive score.

In fact a variety of different hyperplanes may separate the
data correctly (see Figure 3). Support Vector Machines
choose a particular separating hyperplanesthe so-called the
maximum margin hyperplane(see Figure 4). Themarginof
a separating hyperplane is the minimum distance of any
labeled data point to the hyperplane. Intuitively speaking,
the larger the margin the clearer the separation between the
known actives and known inactives; hence, it is natural to
choose the maximum margin hyperplane as a robust classi-

fier. Furthermore, results from Statistical Learning Theory
show that this approach is sensible, if the data are separable.
Usually only a small set of vectors calledsupportVectors
line up closest to the decision boundary (i.e. the value of
their distance to the boundary equals the margin).

In general, linear functions might be suspected to be
insufficient to solve complex classification tasks. However,
this depends on the representation of the data points. The
descriptors used in our study, though sparse, are very large.
With such a high number of dimensions, linear classifiers
were found to be sufficient to separate the data. Moreover,
SVMs do allow for introducing nonlinearity by projecting
the descriptor vectors into a feature-space of arbitrary
dimension. By making use of akernel this projection can
be achieved without computational overhead (cf. ref 6). We
tried various expansions of the descriptor features (results
not shown), but this did not lead to an improved performance.
It seems that the descriptor vectors developed by the
computational chemists already contain a rather complete
set of features.

Most Machine Learning algorithms are designed for the
static setting, where one is given a few labeled examples
and asked for predictions on unseen examples without
intermediate feedback from testing. A fairly new research
direction in Machine Learningscalled ActiVe Learnings
addresses exactly this issue.2,15,16,5The considered algorithms
iteratively select examples from a pool that improve the
internal model as quickly as possible. The active learning
approach matches exactly the drug discovery cycle. Also,
SVMs were found to be very suitable for the active learning
setup (cf. refs 5 and 17).

4. SELECTION STRATEGIES

Probably the simplest selection strategy is to choose the
next batch atrandomfrom the unlabeled compounds. This
strategy does not make use of the labels obtained in previous
iterations. The number of active hits grows only linearly with
the number of iterations. Since the number of actives is
usually quite small, the performance of therandom selection
strategy is poor.

Another straightforward selection strategy is to pick
unlabeled compounds that areclosest to preViously known
actiVes. Different distance measures on binary descriptors
are possible here. We used the total number of bits differing
in the two vectors as a distance measure. An unlabeled

Figure 2. Three types of compounds/points in a (hypothetical)
two-dimensional descriptor space:x (blue) are active,Q (red) are
inactive, andO are yet unlabeled.

Figure 3. Linear separation. There are many hyperplanes that could
separate the data.

Figure 4. Maximum margin hyperplane. The minimum distance
of the examples to the hyperplane is maximized.
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compound receives the (negative)distance to its closest
actiVe compoundas a score. The strategy then is to pick
those unlabeled compounds with the highest scores (i.e.
smallest distance to another active). Note that this strategy
takes actives into account that are found in previous
iterations. However, it searches only locally and will not find
actives that are remote from the previously known ones.

A more sophisticated model of activity is the linear one
derived by SVMs. As mentioned above they compute ascore
of activity (signed distance to the hyperplane) that is used
for prediction or selection.

Given the model for activity, the obvious selection strategy
is to select the compounds withlargest positiVe score, since
they are most likely to be active. We shall see that this is a
good strategy to find many compounds in a few iterations,
which is clearly one of the primary goals in drug discovery.

If, however, the goal is to understand the structure-activity
relationship, then it is most important to rapidly improve
the model. We will show that in this case the best strategy
is to select examples near the decision boundary. The
effectiveness of thenear boundaryselection strategy shall
be motivated using a one-dimensional illustration (cf. Figure
5).

Note that we assume linear separability of the compounds
(which is possible with our high-dimensional descriptors).
In the one-dimensional case illustrated in Figure 5 this means
that going from right to left there is a sequence of actives
until the leftmost active is reached. Going further to the left
we run into the rightmost inactive followed by all inactives
to the left. To determine the boundary between “active” and
“inactive”, it is most effective to test unlabeled compounds
that are near the boundary and of distance less than the
margin away from the boundary. Independent from the result
of such a test, i.e., the activity of the respective compound,
the area of uncertainty will be reduced by almost a factor of
2. The strategy is similar to a binary search and suggests
exponentialconvergence to the optimal classifier. This type
of argument can be generalized to arbitrary dimensions
utilizing the so-calledVersion-space, whose volume decreases
exponentially. For details on the theoretical justification see
ref 1.

Figure 5 can also be used to illustrate the difference
between thelargest positiVe and near boundaryselection
strategies. One of the four unlabeled compounds within the
margin is the rightmost active. It takes at most three tests
(i.e. g (log24) + 1) to determine the leftmost active using
the near boundary selection. Hence, the model of activity is
determined quickly with thenear boundaryselection strategy.
The largest positiVestrategy tests from right to left. It would

take up to seven tests (in the worst case) to determine the
leftmost active instead of three; however, this procedure
uncovers many active compounds already along the way.

These observations suggest that the iterative refinement
of the model is an essential part of any effective selection
strategy. We will provide experimental evidence for this in
the next section. Note that the SVM only models whether a
compound is active (i.e. above some activity threshold) or
inactive (i.e. below the threshold), but not its activity level
which would be a harder task. Hence, the distance of a
compound to decision hyperplane is not necessarily related
to the strength of binding and highly active compounds can
be close to the boundary. So there is no reason to believe
that the nearest to boundaryselection scheme will by
definition pick the examples with low activity which, of
course, would be of less value. Empirically we confirmed
for our data sets (results not shown) that the activity of an
active compound is uncorrelated with its distance to the
hyperplane.

5. EXPERIMENTS

5.1. Data Sets.Our experiments are based on a data set
provided by Dupont Pharmaceuticals for which Thrombin
was the target. This data set was also used for a recent
competition, the Knowledge Discovery and Data mining Cup
2001 (cf. http://www.cs.wisc.edu/∼dpage/kddcup2001). We
extensively tested our algorithms in a second much larger
internal data set with CDK2 as the target. The results were
similar, and for simplicity we only report the results on
Thrombin.

The Thrombin data consists of tworoundsof data. Round0
is the result of an initial screen against CombiChem’s
UniVersal Informer Library (UIL).18 This is a diverse
collection of compounds routinely used for target validation
and initial screening. The entire UIL has been reduced here
to the subset of compounds that contain a positive charge
which is a known predominant feature in Thrombin actives.
Additionally, a number of literature active compounds have
been included in round0. Round1 is the result of an informa-
tive library design around five templates, based on the
medicinal chemistry insight gained from the round0 data.
Thus, round1 is already a highly enriched data set.

After removing 593 compounds that only had zero entries
in all descriptor components, round0 consists of 1316
compounds with 40 nominated actives. Round1 has 634
compounds with a total of 150 actives. Each descriptor vector
has 139 351 binary components. The average number of
nonzero bits is 1378 in round0, 7613 in round1. The
descriptors were produced by internal software tools devel-
oped at DuPont Pharmaceuticals for shape-based comparison
and alignment of compounds (see refs 19 and 20).

The CDK2 data set has a similar history: 14 223 com-
pounds were tested in the initial UIL screen and constitute,
enriched with literature data, round0 of this data set. In
successive rounds of synthesis and design, the medicinal
chemists made 3232 additional compounds following the
paradigm of the drug discovery circle. There were 255 actives
in round0 and 108 actives in the later rounds. The descriptors
were produced by internal software tools developed at
DuPont Pharmaceuticals for generating traditional pharma-
cophore descriptors (see ref 21 for details). The dimensional-

Figure 5. Binary search in one-dimensional case: Select unlabeled
pointsclosest to plane.
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ity of the descriptor vectors is up to 35 926 557, with an
average of 78 602 nonzeros descriptor components in the
combined data set.

5.2. Comparison of Selection Strategies.A selection
procedure is specified by three parameters: initialization,
batch size, and selection strategy. In practice it is not cost-
effective to test a single example at a time. For most of the
paper we fixed the batch size to 5% of the total number of
unlabeled compounds in the data set, which appears reason-
able in comparison with typical experimental constraints.
Moreover, one obtains only negligibly more active hits when
testing a single example in each round instead of 5% batches
(result not shown, cf. ref 1).

We used the following initialization: Initial batches from
round0 or round1 are chosen at random until at least one
active and one inactive example is found. Typically this was
achieved already with the first 5% batch. All subsequent
batches are then chosen using the selection strategy.

In Figure 6 we plot the total fraction of hits (in the test
batches) for all four methods:random, closest to an actiVe,
SVM largest positiVe, andSVM near boundary. To provide
an upper bound we also plot the number of hits of the
unrealisticoptimal selection strategy which chooses purely
active compounds in the test batches until all active
compounds have been selected. The fraction of hits of the
random selection strategy grows linearly with the fraction
of examples tested.Closest to an actiVe is inferior because
it does a local search.Largest positiVe is closest to the
optimum selection. Near boundaryperforms not as well as
the largest positiVe strategy but is not much worse.

In Figure 6 we report the averages of 10 runs. (Each run
is initialized with a different random batch.) For all SVM-
based selection strategies reported in this paper, we always
normalize the descriptor vectors by their two-norm. This
normalization consistently improves the performance (not
shown). We use SVM-light22 for our SVM implementation.

5.3. Active vs Passive Learning.An interesting question
arises: Where does this good performance come from? It
could either be that the model of activity is very good and
seeing only a few examples leads to very good predictions
on the rest of the examples or it could be that the iterative
(i.e. active) learning scheme is of prior importance.

To investigate this, we performed the following experi-
ment. We tried a different way of initialization where the

SVM is first trained on all round0 data. Then, based on the
resulting model we select batches of 5% from the round1

data. In one case we keep on refining the model with each
new batch, and in the other case we stick to the initial model
that was built based on the round0 data. In both cases we
select the examples with the largest positive score.

The number of hits for both methods on the Thrombin
data set is shown in Figure 7. We observe that the number
of hits achieved by the active learning strategy is much higher
than with the passive strategy. This is consistent for all
iterations. For instance, after testing 30% of the data, Active
Learning found 84%, whereas the other found only 55% of
all actives. We believe that this constitutes convincing
experimental evidence that the iterative refinement of the
model should be an essential part of any effective selection
strategy.

5.4. Exploration vs Exploitation. In Figure 8 we see that
the near boundarystrategy is better at “exploration” (i.e.,
giving better generalization on the entire data set) while the
largest positiVestrategy is better at “exploitation” (i.e., higher
number of total hits). One might actually switch between
strategies at different stages of a project. In the lead evolution

Figure 6. We plot the total fraction of hits (in 5% test batches) for round0 (left) and round1 (right) of the Thrombin data set. In each case
we plot all four selection strategies as a function of the fraction of compounds tested: random (black “x”),closest to an actiVe (green
circle), largest positiVe (red box), andnear boundary(blue plus). For round0, the total number of actives is less than 5%. For round1 the
magenta curve shows theoptimal strategywhich picks only actives in each test batch until all actives are selected.

Figure 7. Active vs passive learning: Shown is the fraction of
hits obtained by training the SVM on Thrombin round0 and then
iteratively selecting test batches of examples using thelargest
positiVe selection strategy from Thrombin round1. In one case we
use all recently tested compounds (red square) to update the
maximum margin hyperplane. In the other case the initial plane
(based on round0) is kept fixed (blue plus).Random(black “x”)
andOptimal (dotted magenta) are shown as references.
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phase one needs to find actives quickly, whereas in lead
optimization, a more refined model of activity is required.
At the latter stage, chemists know already how to make
actives but need to understand in detail which are the
important factors for binding to the target.

We gave a simple one-dimensional motivation of our
selection strategies using Figure 5. However the dimension
of our data is around 139 351. Using a trick we can obtain
a one-dimensional snapshot of our partially labeled data by
projecting each example onto the normal direction of the
current maximum margin hyperplane. Thus each example
maps to a signed distance to the hyperplane. In Figure 9 we
visualize the location of all examples after each 5% test batch
and use different colors for the already selected and un-
selected examples of each label. To show the density of each
type of examples along the normal direction we scatter the
points within a thin stripe. Note that each stripe corresponds
to a differently oriented hyperplane in the descriptor space
and the hyperplane crosses each stripe at the zero-point.

The “minimum margin” can be seen as the margin of the
selected examples (black in the plot) that are the closest to
the center. The left plot shows the progress of theclosest to
boundaryselection strategy and the right plot thelargest
positiVe selection strategy. During the initial batches, the
minimum margin shrinks quickly and then stabilizes. The
minimum margin of the left plot shrinks a little bit faster

because theclosest selectionstrategy stresses exploration.
As soon as the “window” between the support vectors is
cleaned (at around 50%), the label of most examples is
predicted correctly. As we see in Figure 8 (left), after 50%
of the examples are selected, 93% of the actives and almost
all of the inactives are predicted correctly.

Again we want to point out that we only report results on
the Thrombin data set in this paper. However, our algorithms
achieved similar performance on the larger CDK2 data set.

6. DISCUSSION AND SUMMARY

The present work discusses the application of Support
Vector Machines to the problem of finding active compounds
at different stages of the drug discovery process. In thera-
peutic projects this selection is commonly done during
several rounds of design with the goal of finding active
compounds within multiple lead series quickly and in parallel
developing a more and more refined model of activity. In
this scenario we need Machine Learning methods that build
the best model based on all currently available labeled data
and use this model for suggesting the most critical com-
pounds to be tested next.

In Machine Learning research, the requirements described
above are met by active learning methods. Support Vector
Machines have been successfully applied to various active

Figure 8. Exploitation versus exploration: (left) Total hits performance (exploit) and true and false positives performance on the whole
set (explore) and (right) ROC plots of the classifiers after the selecting the second, fourth, sixth and eighth batch. The dashed line shows
the performance of thelargest positiVe strategy and the solid line the performance of thenear boundarymethod. We used Thrombin round1
data and a batch size of 2% (13 compounds). The initialization batch is random 2% of Thrombin round1.

Figure 9. Scatter plot of the signed distance of examples to the hyperplane: (Left)near boundaryselection strategy, (right)largest positiVe
selection strategy. Each stripe shows location of points after an additional 5% batch has been labeled (using SVM). Selected examples are
black, unselected actives are blue, unselected inactives are red. We used Thrombin round1. The initialization batch is random 5% of Thrombin
round1.
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learning problems, and in the present work they show
convincing results in the domain of computer-aided drug
design. For this particular application, we found that the total
number of active hits versus the total fraction of selected
examples is the most useful performance plot. We also found
that selecting the unlabeled examples that are furthest on
the positive side of the maximum margin hyperplane leads
to the best performance.

A number of additional selection strategies based on other
Machine Learning techniques (such as the Voted Perceptron
and the Bayes Point Machine) are discussed in the earlier
study.1 They perform similar to the SVM results quoted in
this paper. For each of those methods thenear boundary
andlargest positiVe selection strategies are available. Gener-
ally the largest positiVestrategies produced the most actives
early on. We also compared these selection strategies to the
k-Nearest Neighbor algorithm. Choosingk around 20 led to
the best performance. However, SVM and the other methods
were clearly superior (results not shown).

In the authors’ opinion the most important follow-up
research on the work presented here comprises two major
areas. The first is the reduction of the descriptor space. The
maximum margin hyperplane remains unchanged if all
examples except the support vectors are removed. While
keeping only the support vectors reduces the number of data
points (to 16% in Thrombin round0, 53% in Thrombin
round1), the dimensionality of the descriptor vectors remains
unchanged at 139 351. Previous work (in the off-line setting)
has shown that for the Thrombin data set, about 40 descriptor
components are relevant for the discrimination of actives
from inactives.13 Thus it is desirable to have a method at
hand that simultaneously improves the classifier for the
purpose of iteratively selecting good test batches and at the
same time does this based on a small number of descriptor
components. Second, the selection strategies presented here
leave room for secondary selection criteria. For example we
would like to select a set of compounds that is far on the
positive side of the maximum margin hyperplane but also
chemicallydiVerse.
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(12) Rätsch, G.; Demiriz, A.; Bennett, K.Machine Learning2002, 48(1-
3), 193-221.

(13) Weston, J.; Pe´rez-Cruz, F.; Bousquet, O.; Chapelle, O.; Elisseeff,
A.; Schölkopf, B. Feature selection and transduction for prediction of
molecular bioactivity for drug design. Submitted toBioinf. 2002.

(14) Myers, P.; Greene, J.; Saunders, J.; Teig, S.Today’s Chemist at Work
1997, 6, 46-53.

(15) Cohn, D.; Ghahramani, Z.; Jordon, M. I. Active learning with
statistical models. InAdVances in Neural information processings
systems; MIT Press: 1995; Vol. 7, pp 705-712.

(16) Sollich, P.; Saad, D. Learning from queries for maximum information
gain in imperfectly learnable problems. InAdV. in Neural Inf. Proc.
Sys. 7, MIT Press: 1995; pp 287-294.

(17) Tong, S.; Koller, D. Support vector machine active learning with
applications to text classification. InProc. 7th Int. Conf. Mach.
Learning; Morgan Kaufmann: San Francisco, CA, 2000.

(18) Saunders, J.; Myers, P. L.; Barnum, D.; Greene, J. W.; Teig, S. L.
Genetic Eng. News1997, 17, 35-36.

(19) Lemmen, C.; Molecular superpositioning- a powerful tool for drug
design. In Proc. 13th European Symposium on QSAR: Rational
Approaches to Drug Design; Prous Science: 2000.

(20) Putta, S.; Lemmen, C.; Beroza, P.; Greene, J.J. Chem. Inf. Comput.
Sci.2002, 42(5), 1230-1240.

(21) Eksterowicz, J. E.; Evensen, E.; Lemmen, C.; Brady, G. P.; Lanctot,
J. K.; Bradley, E. K.; Saiah, E.; Robinson, L. A.; Grootenhuis, P. D.
J.; Blaney, J. M.J. Molecular Graphics Modelling2002, 20(6), 469-
477.

(22) Joachims, T. Making large-scale SVM learning practical. InAdVances
in Kernel Methods- - Support Vector Learning; Schölkopf, B., Burges,
C. J. C., Smola, A. J., Eds.; MIT Press: Cambridge, MA, 1999; pp
169-184.

CI025620T

SUPPORTVECTOR MACHINES J. Chem. Inf. Comput. Sci., Vol. 43, No. 2, 2003673


