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Support vector machine (SVM) calculations combining protein and small molecule information have been
applied to identify ligands for simulated orphan targets (i.e., targets for which no ligands were available).
The combination of protein and ligand information was facilitated through the design of target-ligand kernel
functions that account for pairwise ligand and target similarity. The design and biological information content
of such kernel functions was expected to play a major role for target-directed ligand prediction. Therefore,
a variety of target-ligand kernels were implemented to capture different types of target information including
sequence, secondary structure, tertiary structure, biophysical properties, ontologies, or structural taxonomy.
These kernels were tested in ligand predictions for simulated orphan targets in two target protein systems
characterized by the presence of different intertarget relationships. Surprisingly, although there were target-
and set-specific differences in prediction rates for alternative target-ligand kernels, the performance of these
kernels was overall similar and also similar to SVM linear combinations. Test calculations designed to
better understand possible reasons for these observations revealed that ligand information provided by nearest
neighbors of orphan targets significantly influenced SVM performance, much more so than the inclusion of
protein information. As long as ligands of closely related neighbors of orphan targets were available for
SVM learning, orphan target ligands could be well predicted, regardless of the type and sophistication of
the kernel function that was used. These findings suggest simplified strategies for SVM-based ligand prediction
for orphan targets.

1. INTRODUCTION

The search for active compounds is one of the major
focal points of chemoinformatics research and applications
for which machine learning approaches are increasingly
utilized.1 The term Support Vector Machine (SVM) refers
to an advanced machine learning methodology2,3 that was
originally developed for binary object classification. For
SVM learning, objects with known class labels are
projected into a feature space, and the learning process
generally attempts to identify a hyperplane in this space
that best separates objects belonging to two classes. The
resulting linear function is then applied to predict class
labels of other objects. The use of kernel functions4,5 is a
key feature of SVM learning because they make it possible
to also solve nonlinear classification problems. In chemoin-
formatics, SVM has become increasingly popular for the
classification of active versus inactive compounds and,
in addition, the prediction of ligands for given protein
targets.6-9 Ligand prediction via SVM includes investiga-
tions that aim at predicting active small molecules for
target proteins for which no ligand information is avail-
able. This search for ligands of so-called orphan targets
is highly relevant for computer-aided drug discovery and
chemical biology. Regardless of the methods that are
applied for this purpose, finding ligands for orphan targets
generally requires to relate biological target and chemical

ligand information to each other. Using SVM, this task
can be elegantly accomplished by designing separate
kernel functions for pairs of proteins and pairs of
ligands.8,9 State-of-the-art protein kernels for ligand
prediction include, for example, a sequence homology-
based classification kernel.9 Furthermore, among various
ligand descriptors that can be used, 2D molecular finger-
prints have been found to be efficient small molecule
representations for SVM.10 Fingerprint similarity can be
captured, for example, by encoding the Tanimoto coef-
ficient (Tc)11 as a kernel function. However, many other
types of kernel functions combining biological target and
chemical ligand information can be envisioned, and one
might expect that the information content of such kernels
is a critical factor for SVM-based ligand prediction.

In this study, we have investigated the role of kernel
functions for the prediction of ligands for orphan targets
with a particular focus on target kernels capturing protein
information at rather different levels, beyond sequence
similarity. We have carried out calculations using three
different SVM strategies, including standard SVM, the
recently introduced SVM linear combination,9 and target-
ligand kernel SVM.8,9 Three ligand kernels were tested
that compare small molecules in different ways, utilizing
2D fingerprints as molecular representations. For the linear
combination and target-ligand kernel SVM strategies that
learn from multiple targets, eleven alternative and con-
ceptually different target kernel functions were designed.
The three SVM strategies were applied to search for
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inhibitors of individual proteases in two different target
sets that were regarded as orphan targets and hence not
included during SVM learning. The results obtained in
systematic search calculations using alternative kernel
functions were rather unexpected, and their further analysis
revealed a strong dependence of successful ligand predic-
tion on the nearest neighbor reference target of a simulated
orphan target, irrespective of the kernel functions and
SVM search strategies that were used. Thus, the informa-
tion provided by the reference target most closely related
to an orphan target largely determined the success rate of
ligand predictions.

2. SUPPORT VECTOR MACHINE THEORY

2.1. Simple SVM. SVMs are machine learning algo-
rithms for binary object classification. A linear decision
function is built based on a training data set to associate
class labels of objects with feature vectors. SVM learning
for the purpose of virtual compound screening makes use
of training examples (xi,yi) with xi being the feature vector
(fingerprint representation) and yi ∈{-1,+1} the class
label (positive or negative; active or inactive) of a training
compound. By solving a convex quadratic optimization
problem, SVM derives the normal vector w and the scalar
b to define a hyperplane H ){x|〈w,x〉+b ) 0} that best
separates positive from negative training examples. The
classification of an unknown test molecule x is based on
the decision function f(x) ) sgn(〈x,w〉+b), i.e. compounds
with f(x) ) +1 are assigned to the positive class and those
with f(x) ) -1 to the negative class. To permit classifica-
tion functions that do not linearly depend on the training
data, scalar products 〈 · , · 〉 occurring in the objective
function of the SVM optimization problem can be replaced
by a kernel function K( · , · ).4,5

Although SVM was originally developed for binary
classification, the approach can also be adapted for multiclass
predictions12 or database ranking. In order to transform the
classification approach into a ranking function, test molecules
are sorted in descending order of g(x) ) K(x,w). This is
equivalent to ranking the test compounds by their signed
distance from the hyperplane, i.e. from the most distant
compound located on the side of the positive training class
to the most distant compound on the side of the negative
training class. For simple SVM ranking or what we call
“homology-based” SVM, ligands of the most closely related
target among the reference targets were used as the positive
training class and a randomly chosen subset of the screening
database as the negative training class to learn the ranking
function g(x).

2.2. Target-Ligand Kernel. In recent chemogenomics-
oriented studies,7-9 not only compounds but also protein-
compound pairs were used to train SVM in order to enable
learning and classification for multiple targets. For this
purpose, a target-ligand kernel (TLK) was defined to compare
two different target-ligand pairs and calculate the scalar
products for target-ligand pairs during SVM optimization and
ranking. Given the target-ligand pairs (t, xi) and (t′, xj), the
target-ligand kernel is generally defined as the product of
two separate kernels for the target pair and the ligand pair

The design principle of target-ligand kernels is illustrated
in Figure 1. Independent kernels for protein and ligand
representations are combined to account for pairwise target
and ligand similarities.

For SVM training, each reference target was combined
with its true ligands in the training set to generate positive
training examples and randomly selected screening database
molecules were combined with each reference target to build
negative training examples. For ranking, test compounds x
were combined with the orphanized target torphan for which
no known ligands were available during training and the pairs
(torphan, x) were ranked according to the signed distance from
the hyperplane H, as described in section 2.1.

2.3. Linear Combination. The SVM linear combination
(LC) technique was recently introduced.9 For each refer-
ence target ti, an individual weight vector wi was derived
by learning an SVM classification function with the known
ligands of ti as positive training examples and a randomly
chosen subset of the screening database as negative
examples. To then obtain a ranking function for the orphan
target torphan, the weight vector worphan was generated by
linearly combining the individual weight vectors wi of the
reference targets.

Values of the target kernels described in section 3 were
used as linear factors so that the linear combination was
directly comparable to the SVM TLK strategy

For database ranking, all test compounds were sorted
according to the value of

3. KERNEL DESIGN

Three different ligand kernels were applied for the search
strategies described above, using fingerprints as ligand
representation.

(1) Gaussian kernel (radial basis function kernel)13

(2) Tanimoto kernel14

(3) Linear kernel that corresponds to the standard scalar
product.

In addition to the ligand kernel component, SVM TLK
and LC require the calculation of a target component. The
11 target kernels considered in this study differ signifi-
cantly in their design, information content, and complexity.

(a) Uniform kernel between two targets (t,t′)

In this case, differences between targets are not considered.
For the TLK search strategy, using Kuniform corresponds to
pooling the training molecules for all proteins and deriving
the SVM on the pooled compounds.

(b) Needle kernel is the protein sequence identity SI for a
protein pair (t,t′) computed using the Needleman-Wunsch

K((t, xi)(t′, xj)) ) Ktarget(t, t′) × Kligand(xi, xj)

worphan ) ∑ Ktarget(torphan, ti)wi

g(x) ) Kligand(x, worphan)

KGaussian(xi, xj) ) exp(-γ|xi - xj|
2)

KTanimoto(xi, xj) )
〈xi, xj〉

〈xi, xi〉 + 〈xj, xj〉 - 〈xi, xj〉

Kuniform(t,t′) ) 1
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algorithm for pairwise global sequence alignment imple-
mented in EMBOSS15

(c) Water kernel. Each protein pair (t,t′) is also subjected
to pairwise local sequence alignment using the Smith-
Waterman algorithm implemented in EMBOSS, and the
alignment scores SSW(t,t′) are expressed in logarithmic form

(d) PROFEAT kernel. The PROFEAT server16 computes
1447 protein descriptors from protein sequence including
descriptors developed by Dubchak et al.17 that account
for the composition, transition, and distribution of struc-
tural and physicochemical properties such as hydrophobic-

ity, polarity, charge, and solvent accessibility. Each
descriptor is separately normalized to the value range [0,1],
and each target t is represented by a vector ΦP(t) of 1447
normalized descriptor values. The PROFEAT kernel is
then defined as

(e) Spectrum kernel is a string kernel introduced by
Leslie et al.18 It compares sequence strings representing
k-mers. Here conventional 3-mers were computed for
target sequences. Each protein t is represented by a 203

dimensional vector ΦS(t) (for 20 amino acids) where each
dimension corresponds to a possible string of three amino
acids and reports the count of the number of occurrences
of this fragment in the sequence of t. To account for

Figure 1. Target-ligand kernels. The comparison of two target-ligand pairs via a target-ligand kernel function is divided into two independent
tasks. In this case, the similarity of protein targets is quantified by sequence comparison, while ligand similarity is assessed through comparison
of fingerprint representations. The product of the two similarity scores is taken to recombine target and ligand information.

Table 1. Target and Ligand Data Set 1

target abbreviation MEROPS identifier PDB entry number of ligands nearest neighbor target

angiotensin-converting enzyme 2 ace2 M02.006 1r42 28 mmp2
calpain 2 cal2 C02.002 1kfu 49 catL
caspase 3 cas3 C14.003 1cp3 264 catL
cathepsin D catD A01.009 1lyb 70 ren
cathepsin L catL C01.032 1mhw 78 cal2
glutamate carboxypeptidase 2 mgcp M28.010 2oot 14 mmp8
methionine aminopeptidase 2 metap2 M24.002 1b6a 254 mgcp
matrix metalloprotease 2 mmp2 M10.003 1qib 83 mmp8
matrix metalloprotease 8 mmp8 M10.002 1bzs 16 mmp2
renin ren A01.007 2ren 164 catD
thrombin thr S01.217 1ppb 281 try
trypsin try S01.127 1trn 58 thr

For each target protein, its MEROPS identifier, a corresponding Protein Data Bank (PDB) entry,39 the number of ligands, and the nearest
neighbor target are reported. The MEROPS identifier is composed of a family-based component (e.g. thrombin and trypsin both belong to the
family S01) and an individual target-based component.

Kneedle(t,t′) ) SI(t,t′)

Kwater(t,t′) ) ln SSW(t,t′)

KPROFEAT(t,t′) ) 〈ΦP(t), ΦP(t′)〉
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different lengths of protein sequences, the kernel is
normalized as follows

(f) SSEA kernel. For each target, the secondary structure
is predicted by PSIPRED19 resulting in a string of residues
each represented by one of three letters for the states helix,
strand, or coil. Strings for a target pair (t,t′) are then globally
aligned using the dynamic programming algorithm imple-
mented in the SSEA Web server,20 which yields a score
SSS(t,t′) in the range [0,100]. This score is directly used as
target kernel

(g) The GO kernel. Gene Ontology (GO)21 terms of the
Molecular Function category are extracted for all protein
targets from the UniProt Knowledgebase.22,23 The GO kernel
for a target pair (t,t′) counts the number of identical GO terms
in the GO term sets of t and t′.24

(h) CleaVage kernel. Peptidases act on specific substrates
and their catalytic activity is often restricted to specific
sequence recognition sites. For all targets, available cleavage
sites of their substrates are extracted from the MEROPS25

and CutDB26 databases that collect cleavage sites in natural
and synthetic substrates. Cleavage site patterns are reduced
to two residues on either side of the scissile bond, and for
each target, a position-specific frequency matrix is generated.
The columns of the matrix are then concatenated to form a
4 × 20 dimensional feature vector ΦC(t), and the cleavage
kernel is calculated as follows

(i) SCOP kernel. The SCOP database27 is hierarchically
structured into protein folds, superfamilies, families, and
domains and can be represented as a directed acyclic graph
(DAG). Each target t is represented by an n-dimensional
feature vector ΦSc(t) where n is the number of nodes in
the graph and each feature is assigned a value of 1 if the
corresponding node occurs in t’s SCOP hierarchy and 0
otherwise. The SCOP kernel is then defined as follows

(j) Topmatch kernel. All protein targets are represented
by a 3D substructure comprising all amino acids within
an 8 Å radius of the target’s catalytic residues. Residues
falling within this radius are computed with MOE28 and
thensubjectedtostructurecomparisonusingTopMatch-web.29,30

For a target pair (t,t′), TopMatch-web computes a relative
similarity score ST within the range [0,100] that is directly
used as the target kernel

(k) MEROPS kernel. The MEROPS database25 is hierar-
chically structured into catalytic types, so-called protein clans,
families, and subfamilies and can also be visualized as a

Figure 2. Target relationships. The relationships between the
proteases in the target sets 1 (top) and 2 (bottom) are illustrated.
The MEROPS classification scheme25 (i.e., type, clan, family, and
subfamily) is applied. From the “subfamily” to the “type” level,
target similarity is fading away.

Table 2. Target and Ligand Data Set 2

target abbreviation MEROPS identifier PDB entry number of ligands nearest neighbor target

calpain 1 cal1 C02.001 1tlo 46 cal2
calpain 2 cal2 C02.002 1kfu 49 cal1
caspase 1 cas1 C14.001 1ice 21 cas3
caspase 3 cas3 C14.003 1gfw 264 cas1
cathepsin B catB C01.060 1gmy 17 catS
cathepsin K catK C01.036 1yk7 223 catS
cathepsin L catL C01.032 1mhw 78 catK
cathepsin S catS C01.034 1ms6 221 catK
factor Xa faXa S01.216 1mq5 783 thr
thrombin thr S01.217 1ppb 281 faXa
trypsin try S01.127 1trn 58 faXa

For each target protein, its MEROPS identifier, a corresponding Protein Data Bank (PDB) entry,39 the number of ligands, and the nearest
neighbor target are reported.

Kspectrum(t,t′) )
〈ΦS(t), ΦS(t′)〉

√〈ΦS(t), ΦS(t)〉〈ΦS(t′), ΦS(t′)〉

KSSEA(t,t′) ) SSS(t,t′)

Kcleavage(t,t′) )
〈ΦC(t), ΦC(t′)〉

√〈ΦC(t), ΦC(t)〉〈ΦC(t′), ΦC(t′)〉

KSCOP(t,t′) ) 2〈ΦSc(t),ΦSc(t′)〉

KTopmatch(t,t′) ) ST(t,t′)
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DAG. Hence, ΦM(t) can be defined analogously to ΦSc(t),
and the MEROPS kernel is given by

Some of the above-mentioned functions are not generally
valid kernel functions because they are not necessarily
positive semidefinite for all protein sets (i.e., for a given set
of proteins, an all-versus-all matrix of scores might have
some negative eigenvalues). It has been shown that a
symmetric matrix can be converted into a positive semidefi-
nite matrix by subtracting its smallest negative eigenvalue
from the diagonal.31 However, for the analysis presented
herein, this conversion was not required because all score
matrices were positive semidefinite for our data sets.

4. TARGET AND LIGAND SYSTEMS

Two sets of reference targets were assembled that repre-
sented different degrees of intertarget relationships. The first
target set included 12 proteases belonging to nine different
families (Table 1) and showing four different catalytic
mechanisms: cathepsin D and renin are aspartate proteases;
thrombin and trypsin serine proteases; cathepsin L, calpain
2, and caspase 3 cysteine proteases; and matrix metallopro-
teases 2 and 8, methionine aminopeptidase 2, glutamate
carboxypeptidase 2, and angiotensin-converting enzyme 2
are metalloproteases. Proteases possessing the same catalytic
machinery can either be closely or distantly related in
sequence, as illustrated in Figure 2, which organizes targets
into clans, families, and subfamilies following the classifica-
tion scheme of the MEROPS peptidase database. Based on
the MEROPS hierarchy, the nearest neighbor target for each
protease in our test set was determined. If several nearest
neighbor candidates were suggested for a given target based
on the MEROPS hierarchy, the protease with highest
sequence identity to the target was chosen.

For all 12 targets, ligand sets were assembled from the
MDL Drug Data Report (MDDR),32 the BindingDB
database,33,34 and original literature sources. In total, 1359
different protease inhibitors were collected. As reported in
Table 1, each ligand set contained between 14 and 281
compounds that had a potency of at least 1 µM (Ki or IC50)
against the target. Ligand sets were mutually exclusive in
their composition, i.e. a compound reported to inhibit
multiple protease targets was only assigned to the target it
was most potent against.

The second target set included 11 proteases and was
described previously.9 These targets included the cysteine
proteases calpain 1 and 2, caspase 1 and 3, and cathepsins
B, L, K, and S, and the serine proteases factor Xa, thrombin,
and trypsin, as summarized in Table 2. The relationship
between these targets is also illustrated in Figure 2. Ligand
sets for these targets were assembled as described above.
For proteases shared among both target sets (i.e. calpain 2,
caspase 3, cathepsin L, thrombin, and trypsin), the same
ligand sets were used. As illustrated in Figure 2, the
intertarget and nearest neighbor relationships differed be-
tween target sets 1 and 2. Whereas each target in set 2 had

Table 3. Methods and Calculations

search strategy

simple SVM target-ligand kernel linear combination

screening database subset of ZINC7, 100,000 compounds
reference targets 1 (nearest neighbor target) all except the orphan target (i.e., 11 targets for data set 1 and 10

for set 2)
inactive training class 1000 ZINC7 compounds
active training class 5 inhibitors for the reference target 5 inhibitors per reference targets (i.e., a total of 55 inhibitors

for data set 1 and 50 for set 2)
ligand kernel Gaussian, linear, Tanimoto linear
target kernel - 11 different kernels (uniform, needle, water, PROFEAT, spectrum,

SSEA, GO, cleavage, SCOP, Topmatch, MEROPS)
fingerprints MACCS, TGD
trials 10 with different randomly selected compound reference sets

Table 4. Search Results for Ligand Prediction Using Simple SVM
(Set 1)b

kernel

linear Tanimoto Gaussian

100a 1000a 100a 1000a 100a 1000a

MACCS
ace2 0.0 0.9 0.0 0.4 0.0 0.9
cal2 19.1 60.2 21.4 64.8 22.1 63.4
cas3 2.6 9.5 1.9 9.7 2.4 10.0
catD 15.4 51.5 17.9 56.5 16.0 54.5
catL 10.4 34.7 9.9 35.6 10.0 35.1
mgcp 0.0 0.0 0.0 1.1 0.0 0.0
metap2 0.0 0.5 0.0 0.0 0.0 0.2
mmp2 49.6 77.1 55.3 79.2 54.7 78.7
mmp8 49.1 59.1 49.1 60.0 50.9 59.1
ren 30.3 57.9 27.3 56.5 32.0 58.2
thr 27.7 70.3 26.5 69.8 28.0 71.3
try 36.9 61.4 37.3 61.5 38.5 61.2
average 20.1 40.3 20.5 41.3 21.2 41.0

TGD
ace2 0.9 14.8 0.4 14.4 0.4 17.4
cal2 4.8 30.7 3.6 28.4 5.0 30.2
cas3 0.6 8.5 0.1 3.9 0.2 5.4
catD 40.5 72.2 33.2 71.2 38.6 77.1
catL 8.0 23.6 7.3 27.0 6.2 25.2
mgcp 0.0 0.0 0.0 3.3 0.0 0.0
metap2 0.0 0.0 0.0 0.5 0.0 0.0
mmp2 75.6 94.0 78.0 94.7 77.6 95.3
mmp8 57.3 67.3 57.3 62.7 57.3 68.2
ren 44.3 59.1 41.6 60.0 41.3 59.9
thr 28.9 80.5 29.0 80.4 29.7 81.1
try 46.9 74.4 45.2 81.5 46.2 78.7
average 25.6 43.8 24.6 44.0 25.2 44.9

a Set size. b Recovery rates (in %) are reported for all targets in
data set 1 averaged over 10 independent trials per target. The results
reported for the Gaussian kernel were obtained with the parameter γ
set to 0.01.

KMEROPS(t,t′) ) 2〈ΦM(t),ΦM(t′)〉
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a nearest neighbor that belonged to the same subfamily,
several targets in set 1 had nearest neighbors sharing the
same catalytic mechanism but lacking further evidence of
evolutionary relationships. The different intertarget relation-
ships found in data sets 1 and 2 were explored in SVM
modeling and ligand-target prediction.

5. SEARCH CALCULATIONS

The performance of alternative kernel functions and SVM
ranking strategies was evaluated in systematic search cal-
culations on our two protease systems using MACCS
structural keys35 and the TGD fingerprint28 as ligand
descriptors. TGD represents a two-point pharmacophore-
type fingerprint that is calculated from the 2D connectivity
table of a molecule. As a background database for SVM
analysis, 100,000 compounds were randomly chosen from
ZINC7.36

As negative training examples, 1000 database compounds
were randomly selected in each case. For simple SVM
calculations on each target, only five inhibitors of the nearest
neighbor target were used as positive training molecules. For
SVM LC and TLK, five inhibitors for each target were used.
The inhibitor set of the orphanized target was not used during
SVM learning but added to the background database as
potential database hits during testing.

Kernel functions, SVM strategies, and fingerprint descrip-
tors were systematically combined. For each investigated
combination of a kernel function, SVM strategy, and
fingerprint, 10 different randomly selected compound training

and test sets were analyzed and the search results were
averaged. Table 3 summarizes the different methods and
calculation settings.

As a measure of performance, recovery rates (RR: number
of correctly identified orphan target inhibitors divided by their
total number) were calculated for database selection sets of
increasing size and averaged over the 10 independent trials
per target.

All calculations were carried out using SVMlight,37 a freely
available SVM implementation.38 All calculation parameters
were SVMlight default settings to ensure reproducibility of
the calculations. Perl scripts were applied to calculate SVM
linear combinations.

6. GLOBAL KERNEL PERFORMANCE

We first investigated the relative performance of ligand
kernels in simple SVM calculations searching for active
compounds on the basis of randomly selected reference sets.
Table 4 reports the compound recovery rates for activity
classes of target set 1, the MACCS and TGD fingerprints,
and database selection sets of 100 and 1000 compounds. In
these calculations, all three ligand kernels produced com-
parable recovery rates. In some instances, the search calcula-
tions failed for any kernel, and, in others, high recovery rates
were consistently observed. Because there was no apparent
preference for a ligand kernel in our test calculations, we
selected the linear kernel, which has the lowest computational
complexity of the three, for further calculations and combined
this kernel with the 11 different target kernels.

Figure 3. Ligand prediction for target set 1. For the MACCS and TGD fingerprints, recovery rates for SVM TLK and LC strategies are
shown for 11 alternative target kernels and selection sets of 1000 database compounds. Recovery rates are averaged over all 12 targets and
10 independent search trials per target.
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Next we tested the 11 target kernels in SVM TLK and
LC ligand prediction calculations. Average results for target
set 1 and selection sets of 1000 database compounds are
shown in Figure 3, and Tables 5 and 6 report recovery rates

on a per target basis. Supplementary Figure S1 and Tables
S1 and S2 report corresponding results for database selection
sets of 100 compounds. The SVM TLK and LC search
strategies were found to produce similar average compound

Table 5. Search Results for Ligand Prediction Using SVM LC (Set 1)a

uniform needle water PROFEAT spectrum SSEA GO cleavage SCOP Topmatch MEROPS

MACCS
ace2 20.9 18.7 20.0 20.4 18.7 20.0 17.8 10.0 4.8 17.8 10.9
cal2 65.2 63.9 65.2 63.6 65.9 64.6 64.3 66.8 74.6 63.4 79.1
cas3 35.4 29.9 35.4 35.1 34.9 34.9 35.3 36.3 34.0 35.5 35.2
catD 76.0 78.0 86.3 77.1 92.5 80.0 89.5 90.2 73.9 85.2 74.2
catL 32.6 31.4 32.9 32.6 31.6 32.9 36.6 38.6 41.8 37.1 41.1
mgcp 0.0 0.0 0.0 0.0 1.1 0.0 2.2 0.0 0.0 1.1 1.1
metap2 9.6 7.6 9.5 9.3 8.8 9.8 9.9 8.5 10.1 9.0 9.8
mmp2 17.7 41.7 28.6 18.5 39.5 22.6 34.7 33.5 61.7 68.6 74.4
mmp8 19.1 50.0 30.9 18.2 32.7 24.6 36.4 33.6 55.5 55.5 57.3
ren 35.3 55.2 46.4 37.0 54.2 45.2 49.9 55.0 57.8 55.7 57.6
thr 49.5 66.6 57.2 51.2 50.7 55.5 62.3 58.8 74.0 67.5 73.7
try 37.1 54.4 41.4 38.1 37.3 42.1 40.2 46.2 61.0 57.5 61.4
average 33.2 41.4 37.8 33.4 39.0 36.0 39.9 39.8 45.8 46.2 48.0

TGD
ace2 30.0 32.6 31.7 30.9 30.9 31.7 46.5 25.7 33.0 27.4 37.4
cal2 33.2 24.3 32.5 29.3 27.3 31.4 42.1 38.6 36.1 32.3 44.1
cas3 45.8 45.1 46.2 45.8 46.2 45.4 47.8 49.5 45.1 48.8 49.0
catD 78.5 83.2 83.9 78.3 86.9 82.9 84.2 87.2 83.9 83.5 83.5
catL 14.8 13.7 14.8 14.8 15.1 15.1 17.0 18.6 19.0 15.2 18.5
mgcp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
metap2 33.4 29.4 33.8 33.6 34.0 33.5 32.8 18.3 35.9 27.3 39.6
mmp2 24.5 52.7 34.4 26.0 43.2 26.8 39.5 30.4 78.3 71.4 89.9
mmp8 33.6 66.4 43.6 33.6 56.4 36.4 49.1 46.4 70.9 73.6 72.7
ren 59.3 59.6 60.0 59.4 59.9 60.2 60.0 59.3 59.4 59.8 59.4
thr 60.3 74.7 64.8 61.1 61.8 66.0 76.5 76.3 80.9 79.2 80.7
try 60.8 67.7 65.0 61.2 62.7 65.0 63.3 63.7 72.9 73.1 73.7
average 39.5 45.8 42.6 39.5 43.7 41.2 46.6 42.8 51.3 49.3 54.0

a Recovery rates (in %) for all targets in data set 1 are reported for selection sets of 1.000 compounds averaged over 10 independent trials
per target.

Table 6. Search Results for Ligand Prediction Using SVM TLK (Set 1)a

uniform needle water PROFEAT spectrum SSEA GO cleavage SCOP Topmatch MEROPS

MACCS
ace2 20.9 20.4 24.4 23.5 20.4 23.0 0.4 3.9 4.4 17.8 11.3
cal2 46.4 55.5 59.3 40.9 54.3 43.6 61.8 79.6 74.1 62.5 78.0
cas3 27.9 28.2 32.8 30.4 34.9 31.4 25.9 34.9 36.0 35.9 36.1
catD 58.5 70.3 75.2 66.8 90.2 71.5 81.1 87.5 68.5 67.4 68.6
catL 28.8 30.8 33.8 29.7 30.8 27.3 31.0 39.7 41.6 35.3 42.3
mgcp 2.2 0.0 1.1 2.2 1.1 0.0 3.3 1.1 0.0 1.1 0.0
metap2 8.6 7.1 8.1 8.4 8.5 8.4 4.6 5.5 10.0 7.9 9.0
mmp2 22.7 49.2 46.7 23.6 48.3 34.4 40.6 50.4 65.3 70.1 73.1
mmp8 34.6 55.5 58.2 36.4 44.6 47.3 47.3 56.4 56.4 59.1 57.3
ren 21.2 54.3 42.1 27.6 54.0 39.3 58.6 49.1 57.5 55.7 57.4
thr 55.8 68.7 67.0 58.1 52.8 66.2 36.4 65.9 72.9 69.6 72.8
try 39.0 57.1 51.7 41.5 37.3 53.3 43.9 52.9 61.4 59.2 60.6
average 30.5 41.4 41.7 32.4 39.8 37.1 36.2 43.9 45.7 45.1 47.2

TGD
ace2 39.6 37.0 38.3 38.7 34.8 44.8 11.3 19.6 32.6 27.8 43.9
cal2 30.9 21.4 32.7 25.0 24.8 24.1 36.1 38.2 40.9 36.8 44.8
cas3 45.4 45.1 46.3 45.9 45.4 45.2 42.6 48.8 43.9 48.8 48.6
catD 80.0 78.6 85.7 79.2 83.2 83.9 83.2 82.9 80.6 80.8 77.9
catL 12.9 12.1 13.8 13.2 14.3 12.9 16.6 19.7 18.6 14.3 19.2
mgcp 1.1 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0
metap2 42.3 35.4 41.2 41.8 37.4 42.0 34.5 20.9 38.6 33.5 42.1
mmp2 34.0 71.9 56.9 35.0 56.0 43.9 53.2 60.4 87.7 88.6 91.8
mmp8 46.4 71.8 70.0 48.2 70.0 51.8 68.2 75.5 70.9 69.1 70.9
ren 57.8 59.5 60.6 58.6 60.1 60.8 60.2 59.7 59.8 59.7 59.6
thr 65.8 75.4 72.5 66.8 62.4 75.2 67.5 80.3 80.8 80.7 80.8
try 76.7 74.0 81.7 78.9 72.9 83.7 74.8 76.0 78.7 84.4 79.2
average 44.4 48.5 50.0 44.3 46.8 47.4 45.8 48.5 52.8 52.0 54.9

a Recovery rates (in %) for all targets in data set 1 are reported for selection sets of 1000 compounds averaged over 10 independent trials per
target.
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recovery rates of approximately 30%-55% for both finger-
prints and all target kernels for a database selection set size
of 1000 compounds. Moreover, there was relatively little
variation in kernel performance, much less so than anticipated

given the significant differences in target kernel complexity
and encoded protein information. Equivalent trends were
observed for database selection sets of 100 compounds. The
secondary structure-based SSEA kernel and the PROFEAT

Figure 4. Ligand prediction for target set 2. Search results for target set 2 are shown corresponding to Figure 3.

Table 7. Search Results for Ligand Prediction Using SVM LC (Set 2)a

uniform needle water PROFEAT spectrum SSEA GO cleavage SCOP Topmatch MEROPS

MACCS
cal1 76.8 67.6 77.3 77.3 67.8 77.1 76.1 76.8 73.2 75.6 69.0
cal2 90.5 92.5 95.2 92.3 87.3 94.1 98.6 98.9 99.6 98.0 95.7
cas1 35.0 30.0 36.3 35.0 36.9 36.3 39.4 40.0 50.0 40.0 50.0
cas3 36.7 46.3 40.3 37.0 43.9 40.6 32.1 45.0 47.0 45.8 47.0
catB 79.2 83.3 80.0 79.2 81.7 80.8 86.7 76.7 82.5 85.8 77.5
catK 45.2 55.5 46.3 46.3 54.6 48.5 49.1 48.1 53.6 53.8 52.1
catL 57.0 74.1 59.7 58.6 71.6 62.1 63.2 67.8 73.7 74.0 73.3
catS 44.4 62.1 43.2 46.1 60.6 50.3 50.9 48.0 57.4 55.8 60.7
faXa 10.7 27.8 15.3 11.3 24.3 15.9 16.1 22.8 38.0 33.8 38.0
thr 37.8 63.9 49.5 39.5 51.3 49.8 67.6 54.2 72.4 68.5 72.4
try 39.8 57.0 45.1 40.8 46.0 45.9 44.5 51.1 61.3 57.2 61.3
average 50.3 60.0 53.5 51.2 56.9 54.7 56.8 57.2 64.4 62.6 63.4

TGD
cal1 44.6 45.4 44.9 44.9 44.6 45.4 46.8 46.1 48.3 47.1 46.3
cal2 81.1 88.6 84.1 83.0 88.2 83.4 83.0 84.1 89.1 87.1 89.3
cas1 56.3 70.0 58.1 56.3 63.8 58.1 53.8 72.5 86.9 76.9 86.9
cas3 50.6 52.9 51.7 50.8 52.7 51.8 50.6 53.3 54.1 53.6 54.1
catB 65.8 66.7 65.8 65.8 67.5 67.5 70.8 64.2 65.0 66.7 65.0
catK 49.0 48.4 50.9 49.6 47.4 50.1 46.3 49.6 49.2 50.4 45.8
catL 22.6 27.0 24.0 22.5 29.2 23.6 23.4 25.5 28.9 28.5 27.7
catS 16.6 26.9 16.9 17.2 28.2 18.2 19.7 16.5 25.1 23.2 28.0
faXa 35.9 52.7 43.3 37.2 51.6 44.0 46.9 51.0 56.0 55.8 56.0
thr 76.5 80.4 80.1 77.1 80.3 80.0 81.4 80.1 82.0 80.8 82.0
try 58.3 75.3 63.0 59.4 66.2 63.4 63.6 69.3 84.5 76.8 84.5
average 50.7 57.7 53.0 51.2 56.3 53.2 53.3 55.6 60.8 58.8 60.5

a Recovery rates (in %) for all targets in data set 2 are reported for selection sets of 1000 compounds averaged over 10 independent trials per
target.
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kernel, which is based on biophysical descriptors calculated
from protein sequence, did not produce higher recovery rates
than the uniform kernel that does not take protein similarity
into account and hence served as a reference for target
kernels. Differences in kernel performance were rather subtle,
but the overall highest recovery rates were achieved with
the MEROPS kernel that encodes a hierarchical protein
organization scheme.

Equivalent observations were made for target set 2. Figure
4 (and Supplementary Figure S2) reports average results of
the search calculations on set 2 (corresponding to those
reported in Figure 3 and Supplementary Figure S1), and
Tables 7 and 8 report recovery rates on a per target basis
(Supplementary Tables S3 and S4 report corresponding
results for database selection sets of 100 compounds). In this
case, the recovery rates were generally higher than for set

Table 8. Search Results for Ligand Prediction Using SVM TLK (Set 2)a

uniform needle water PROFEAT spectrum SSEA GO cleavage SCOP Topmatch MEROPS

MACCS
cal1 74.6 70.5 77.3 77.1 72.2 77.1 76.3 76.3 73.7 74.9 72.4
cal2 71.6 84.8 84.8 81.1 81.6 84.8 88.9 92.1 89.1 90.5 88.2
cas1 29.4 32.5 34.4 31.3 39.4 35.6 38.1 51.9 46.9 44.4 54.4
cas3 32.3 46.0 42.0 36.0 45.4 42.2 32.2 46.4 47.5 47.0 47.3
catB 78.3 80.0 80.8 82.5 83.3 83.3 77.5 77.5 75.8 84.2 79.2
catK 40.5 56.5 46.0 45.2 55.7 48.6 45.2 46.7 52.8 53.5 52.0
catL 53.3 70.7 58.2 57.3 70.1 61.2 59.0 64.7 68.4 71.0 71.0
catS 37.6 62.3 37.2 42.9 61.4 47.9 44.6 44.4 58.3 55.2 60.9
faXa 16.1 33.8 28.6 19.3 29.6 29.9 31.0 34.6 39.1 37.1 39.1
thr 42.4 67.8 60.3 45.6 54.2 60.2 64.6 62.1 72.4 70.1 72.2
try 40.2 60.9 52.1 43.6 47.4 53.6 50.2 58.1 66.0 58.9 66.0
average 46.9 60.5 54.7 51.1 58.2 56.8 55.2 59.5 62.7 62.4 63.9

TGD
cal1 42.9 44.9 46.6 45.1 45.4 47.1 47.8 48.5 49.0 49.0 46.6
cal2 61.1 83.9 76.8 68.4 84.8 74.3 74.1 75.0 80.2 78.9 84.3
cas1 70.6 75.6 79.4 72.5 76.3 80.0 75.0 83.8 80.6 88.1 85.0
cas3 51.5 53.0 52.3 51.6 53.0 52.8 50.7 53.9 54.2 54.1 54.1
catB 60.0 64.2 59.2 60.8 60.8 61.7 62.5 55.8 56.7 60.0 58.3
catK 40.5 40.4 42.2 40.8 43.2 41.3 40.9 43.1 40.9 42.6 41.7
catL 20.7 28.8 23.6 20.7 30.4 22.6 23.4 28.2 28.2 29.7 27.8
catS 14.9 30.3 16.7 17.2 29.6 20.6 23.8 18.0 30.8 28.9 31.4
faXa 44.1 53.8 50.9 45.6 53.4 51.1 53.3 52.9 53.2 54.6 54.0
thr 77.8 81.5 81.1 78.8 80.1 81.2 80.8 80.9 82.1 81.3 82.0
try 81.1 87.6 90.2 80.0 74.0 87.4 84.9 88.5 88.7 87.2 88.1
average 51.4 58.5 56.3 52.9 57.3 56.4 56.1 57.2 58.6 59.5 59.4

a Recovery rates (in %) for all targets in data set 2 are reported for selection sets of 1.000 compounds averaged over 10 independent trials
per target.

Figure 5. Target-dependent search performance (set 1). For all targets of set 1, recovery rates are shown for simple SVM ranking and for
the SVM TLK search strategy in combination with the MEROPS kernel. Recovery rates are compared for selection sets of 1000 compounds
averaged over 10 independent trials per target.
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1, ranging on average from approximately 47%-64% for
selection sets of 1000 compounds, but differences between
SVM search strategies and alternative kernels were even
smaller than those observed for target set 1. The uniform
kernel produced an average recovery rate of close to 50%,
and several kernels taking protein similarity at different levels
into account performed only slightly better. Here, the
hierarchical SCOP and MEROPS kernels and the Topmatch
kernel that is based on active site structural similarity
performed equally well but only slightly better than the
sequence similarity-based needle kernel. Thus, taken together,
the results of systematic SVM calculations on our two target
sets revealed surprisingly little differences in search perfor-
mance for target kernels of different design.

7. TARGET-DEPENDENT KERNEL PERFORMANCE

As described in the Methods section, the overall best-
performing MEROPS kernel differs from other target
kernels in that it assigns high weights to closely related
targets, due to its exponential formalism. In order to
explore the contributions of the most closely related targets
to ligand recovery, we analyzed the search performance
for all individual set 1 targets in SVM TLK calculations
using the MEROPS kernel and, in addition, simple SVM

control calculations. In the latter case, the SVM was
trained on the ligands of the target most closely related
to the orphanized target. The results of these SVM TLK
and simple SVM calculations are shown in Figure 5 (and
Supplementary Figure S3). Significant differences in
target-dependent search performance were observed (con-
sistent with the results reported in Tables 4 and 6). The
search performance was found to be highly dependent on
the degree of relatedness between the orphan target and
its nearest neighbor. For those targets having a closely
related nearest neighbor at the subfamily level (i.e., catD,
mmp2, mmp8, ren, thr, try; see Figure 2), highest recovery
rates were observed.

For these targets, simple SVM calculations using the
ligands of the nearest neighbor as positive training examples
matched the performance of SVM TLK calculations using
the MEROPS kernel. By contrast, simple SVM search
calculations produced only low recovery rates, or failed, for
targets that had no closely related neighbor (i.e., all cysteine
proteases in set 1, mgcp, ace2, and metap2; see Figure 2).
The cumulative recall curves shown in Figure 6A,B illustrate
the close correspondence between simple SVM and SVM
TLK calculations when a closely related nearest neighbor
target (see Table 1) was available. However, Figure 6C
shows that taking additional target and ligand information
into account when no closely related neighbor was available
further improved the search performance, a trend that was
especially observed for larger database selection sets.

Different from target set 1, each target in set 2 had a
nearest neighbor at the subfamily level (Figure 2).
Accordingly, one would expect better target-dependent
search performance for targets in set 2 than in set 1. The
SVM TLK (MEROPS) search calculations shown in
Figure 7 (and Supplementary Figure S4) confirm this
expectation. The majority of targets in set 2 produced
recovery rates of at least 40% (with the MACCS and/or
TGD fingerprints for ligand representation). In this case,
simple SVM control calculations were also carried out
after pooling the ligands of all members of the orphan
target’s subfamily for training. As illustrated in Figure
7, the recovery rates observed in these SVM control
calculations were almost indistinguishable from those of
SVM TLK calculations. Furthermore, in Supplementary
Table S5, recovery rates for simple SVM calculations on
set 2 targets are reported for selection sets of 100 and
1000 compounds when either only ligands of the nearest
neighbor target were used for training or, alternatively,
ligands of all subfamily members were pooled. The results
demonstrate that recovery rates for targets having several
closely related subfamily members further improved when
ligands from all related targets were taken into account
compared to ligands of only the most closely related target.

8. NEAREST NEIGHBOR EFFECTS

The findings discussed above reflect a strong influence
of ligand information of nearest neighbor targets on ligand
prediction for orphanized targets. In order to evaluate the
magnitude of nearest neighbor effects, SVM TLK calcula-
tions using the MEROPS kernel were also carried out after
removal of the ligands of the nearest neighbor target from
SVM learning. The search results for set 1 targets are

Figure 6. Cumulative recall curves. Representative recall curves
for simple SVM and SVM TLK (MEROPS) calculations are shown
for three targets, (A) catD, (B) mmp2, and (C) cal2, using TGD as
the ligand descriptor. Recovery rates are averaged over 10
independent trials per target.
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Figure 7. Target-dependent search performance (set 2). For all targets of set 2, recovery rates are shown for simple SVM ranking and for
the SVM TLK search strategy in combination with the MEROPS kernel. For simple SVM ranking, ligands of all members of the orphanized
target’s subfamily were pooled and used as the positive training class. Recovery rates are shown for a selection set of 1000 compounds
averaged over 10 independent trials per target.

Figure 8. Dependence of search performance on ligands of nearest neighbor targets. For all set 1 targets, search results are reported for the
SVM TLK (MEROPS) search strategy. Blue bars show recovery rates obtained by learning with all target set ligands, whereas red bars
show recovery rates obtained when the ligands of the nearest neighbor are excluded from the training set. Recovery rates are shown for a
selection set of 1000 compounds averaged over 10 independent trials per target.
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shown in Figure 8 and Supplementary Figure S5, and
Supplementary Table S6 reports the comparison of SVM
TLK and LC calculations. As can be seen in Figure 8,
removal of ligands led to a sharp decline in recovery rates
when a nearest neighbor target was available at the
subfamily level (effects observed in SVM TLK and LC
calculations were similar). By contrast, removal of ligands
for targets where no closely related neighbor was available
had only little influence on the search performance. Thus,
these findings further corroborated the crucial role of
nearest neighbor ligand information for orphan target
ligand prediction using SVM techniques.

9. CONCLUSIONS

In this study, we have investigated different strategies
for SVM-based ligand prediction for simulated orphan
targets with special emphasis on the evaluation of alterna-
tive target kernel functions that capture protein information
at different levels. The approaches investigated here aimed
at de novo ligand predictions. The way target information
was taken into account presented a major variable in these
calculations, and, accordingly, target kernels of different
complexity and information content were designed and
evaluated. Surprisingly, these alternative kernel functions
influenced the calculations much less than one might
anticipate. Rather, nearest neighbor effects were found to
be the major determinant of ligand prediction performance.
In particular, when ligand information from one or more
closely related targets was available, simple SVM calcula-
tions utilizing this information met or exceeded the search
performance of SVM TLK and LC calculations. For SVM-
based ligand prediction on orphan targets, these findings
have significant implications. Rather than focusing on
information provided by reference systems capturing
protein hierarchies, searching for targets with known
ligands that are closely related to orphan targets (e.g., at
the subfamily level) should be a primary objective. For
this purpose, simple detection of sequence similarity might
often be sufficient. In the presence of strong nearest
neighbor relationships, SVM-based strategies for ligand
prediction can be simplified. In these cases, simple SVM
calculations using nearest neighbor ligands for learning,
or corresponding SVM linear combinations, are expected
to produce promising results. By contrast, if no closely
related targets can be identified, SVM learning using target
kernels capturing protein hierarchy information is likely
to be a preferred approach. Thus, SVM strategies for
ligand prediction can be adjusted based on an initial
exploration of target relationships.
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