Dynamic Alignment Kernels

Chris Watkins

Department of Computer Science
Royal Holloway, University of London
C.Watkins@dcs.rhbnc.ac.uk

Technical Report
CSD-TR-98-11
15th January 1999

‘ Royal Holloway

University of London {
A

Department of Computer Science
Egham, Surrey TW20 0EX, England

Abstract

There is much current interest in kernel methods for classification, re-
gression, PCA, and other linear methods of data analysis. Kernel methods
may be particularly valuable for problems in which the input data is not
readily described by explicit feature vectors. One such problem is where
input data consists of symbol-sequences of different lengths, and the re-
lationships between sequences are best captured by dynamic alignment
scores.

This paper shows that the scores produced by certain dynamic align-
ment algorithms for sequences are in fact valid kernel functions. This is
proved by expressing the alignment scores explicitly as dot-products.

Alignment kernels are potentially applicable to biological sequence
data, speech data, and time series data.

The kernel construction may be extended from pair HMMs to pair
probabilistic context-free grammars.

Introduction: Linear Methods using Kernel Functions 1

1 Introduction: Linear Methods using Kernel Functions

In many types of machine learning, the learner is given a training set of cases
or examples a;...a; € A. A denotes the set of all possible cases: cases may
be vectors, pieces of text, biological sequences, sentences, etc. For supervised
learning, the cases are accompanied by a set of corresponding labels or values
y1...-y;- The cases are mapped to feature vectors ¢y...x; € X, where the X
is a real vector space termed the feature space. The mapping from A to X is
denoted by ¢, so that z; = ¢(a;). Sometimes the cases are given as feature
vectors to start with, in which case ¢ may be the identity mapping; otherwise
¢ denotes the method of assigning numeric feature values to a case.

Once a feature vector z; has been defined for each case a;, it becomes pos-
sible to apply a wide range of linear methods such as support-vector machines,
linear regression, principal components analysis (PCA), and k-means cluster
analysis.

As shown in [Vap95] for SV machines, in for example [Wah90] for linear re-
gression, and in [SSM98] for PCA and k-means cluster analysis, the calculations
for all of these linear methods may be carried out using a dual rather than a
primal formulation of the problem.

For example, in linear least-squares regression the primal formulation is to
find a coefficient vector 3 that minimises || X 3 —y|| where X is the design matrix,
an I by d matrix in which the ith row is #;, and each z; has d elements. If [is
larger than d, the usual method of finding 3 is to solve the normal equations
XTXp = XTy. This requires the solution of a set of linear equations with
coefficients given by the d x d matrix XTX.

The dual formulation is to find a coefficient vector a that minimises
| X XTa — y||, so that one coefficient «; is found for each case vector z;. This
requires the solution of a set of linear equations with coefficients given by the
I x I matrix XXT.

Both methods lead to the same predicted value § for a new case z. If
there are more cases than features, that is if [> d, the primal method is more
economical because the d x d matrix XTX is smaller than the [x [matrix
XXT. For example, if there are 200 cases, each described by a vector of 10
measurements, then the primal method requires solving a 10 by 10 system of
linear equations, while the dual method requires solving a 200 by 200 system,
which will have rank at most 10. For such a problem, the dual method has no
advantage.

The potential advantage of the dual method for regression is that it can be
applied to very large feature vectors. The coefficient matrix X X7 contains the
dot-products of pairs of feature vectors: the ijth element of X X7 is @; - z;. In
the dual calculation, it is only dot-products of feature vectors that are used—
feature vectors never appear on their own.

As the feature vectors #; = ¢(a;) appear only in dot-products, it is often
possible to avoid computing the feature vectors, and to compute dot-products
directly in some economical fashion from the case descriptions a; instead. A
kernel is a function k that computes a dot-product of feature vectors from the
corresponding cases.

Applying Linear Methods to Structured Objects 2

Definition 1 A kernel is a function k such that for all a,b € A,

k(a,b) = ¢(a) - ()
where ¢ is a mapping from A to a feature space X.

The mapping ¢ determines k uniquely, but k& determines only the metric prop-
erties of the image under ¢ of the case-set A in feature space. ¢ is not in general
invertible, and indeed ¢(.A) need not even be a linear subspace of X'. ¢ need not
be and in general is not a linear mapping: indeed, addition and multiplication
need not even be defined for elements of .A.

The dual formulation often has a computational advantage over the pri-
mal formulation if the kernel function k is easy to compute, but the mapping
to feature space ¢ is infeasible to compute. A well-known example of this is
the “homogeneous polynomial kernel” of [Vap95] in which the cases are real d
dimensional vectors a = {a'...a%), and

b)" (1)
d
z_: (- ain) (5 bin) (2)

k(a,0) = (

a .
d

71=1
for some positive integer n, and 1 < ¢1,...,7, < d. A mapping ¢ that induces
this kernel is

¢(a):<ai1---ai":1§i1...in§d> (3)

In the character recognition application described in [Vap95], the cases were
vectors with dimension 256 and values of n up to 8 were used, so that the
vectors in (3) had billions of terms, and the expression (1) was vastly easier to
compute than the explicit dot-product (2).

2 Applying Linear Methods to Structured Objects

2.1

Not all data comes naturally as vectors: data may consist of “structured ob-
jects”, such as sequences of different lengths, trees, or sentences. To apply linear
methods to such data, it is necessary either to construct feature vectors explic-
itly, or to use a kernel function. The recent success of the methods of [Joa97] in
text classification has shown how valuable it can be to apply linear statistical
methods to inductive problems where such methods have not previously been
used. This section describes three approaches to mapping structured objects to
vectors in order to apply linear statistical methods.

Sparse Vector Kernels

[Joa97] considered the problem of classifying text news stories by subject. Es-
sentially, Joachims considered a text as a sparse vector, with one dimension for
each possible word. With an efficient sparse representation, the dot-product of
two sparse vectors can be computed in a time proportional to the total number

Applying Linear Methods to Structured Objects 3

of non-zero elements in the two vectors. A kernel implemented as a sparse dot-
product is a natural method of applying linear methods to sequences. Examples
of such sparse-vector mappings are:

o mapping a text to the set of words it contains
o mapping a text to the set of pairs of words that are in the same sentence

o mapping a symbol sequence to the set of all subsections of some fixed
length m

“Sparse-vector kernels” are an important extension of the range of applica-
bility of linear methods.

2.2 Case-based Features

Often, there are natural matching functions or similarity scores that may be
applied to structured objects. These are functions that can be applied to a pair
of objects, and which return a real-valued score. Although such a matching is
not necessarily representable as a dot-product, any such function can be used
to create features in the following way.

Given any function f : Ax A+—— IR, and an indexed set of cases, a1,...,a,
a possible feature space mapping is
¢(b) = (f(a1,8), ..., f(an, b)) (4)

This is not really a kernel method, as the feature vector is computed explicitly,
and there is no computational advantage in using a kernel.

2.3 Diagonal-dominance Kernels

A second canonical construction for a kernel k given any f: A x A+—— IR, for
a finite or countable set A, uses a feature space with dimensions indexed by
A x A, and for any z € A the (a, b)th element of the vector ¢(z) is defined as

[$(2)] sy = { f(a,b) ifa=zorb==vx (5)

0 otherwise

so that k is defined as

k(aa b): f(aa b)2+f(b’ a)2 ifa?’éb (6)

and
k(a,a) = f(a, a)2 + Z f(a, c)2 + Z fe, a)2 (7)
c€EA,cta cEA,cta
This “diagonal-dominance” kernel does in some sense provide a computa-
tional advantage, for it enables an arbitrary non-negative symmetric function
k(z,z) = f(z,2)® + f(z,2)? for ¢ # z to be used as a kernel, provided that the

Conditional Symmetric Independence Kernels 4

diagonal entries k(z, z) are made sufficiently large that any finite matrix of dot-
products of distinct elements of A will be diagonally dominant, and therefore
positive semidefinite.

The size of diagonal element required may be reduced by defining ¢ with
respect to a reference data set R C A

f(a,b) if (a=z orb=2) and
[6(2)](apy = { (aeRorbeR) (8)
0 otherwise

If R is taken to be a small subset of A—perhaps the training data set itself—
then the diagonal elements of the matrix of dot-products of the training data
can be set to the sums of the rows. The diagonal elements from (8) may be
much smaller than those from (5).

It is curious that this construction of an explicit dot-product for a diagonally
dominant matrix only works for matrices with non-negative elements.

Unfortunately matrices with large diagonal elements are likely to provide
poor generalisation in learning. Nevertheless, this construction may sometimes
be of use.

3 Conditional Symmetric Independence Kernels

Joint probability distributions are often used as scoring functions for match-
ing: two objects “match” if they are in some sense similar, and the degree of
similarity or relatedness is defined according to a joint probability distribution
that assigns pairs of related objects higher probabilities than pairs of unrelated
objects. A joint p.d. used in this way will be described in section (4) below. It
is sometimes possible to show that such a joint p.d. is a valid kernel by showing
that the p.d. is conditionally symmetrically independent.

Definition 2 A joint probability distribution is conditionally symmetrically in-
dependent (CSI) if it is a mizture of a finite or countable number of symmetric
mndependent distributions.

CSI joint probability distributions may be written as dot-products in the
following way. Let X, Z be two discrete random variables, and let p be the joint
distribution function, defined as

p(z,z) = Pr(X =z and Z = z) 9)

and let p be symmetric—that is, p(z, z) = p(z, 2) for all z, z.
Let C be a random variable such that

Pr(X,Z|C)=Pr(X |C)Pr(Z|C) (10)
and, given C, the distributions of X and Z are identical. Then

p(z,z| c)=p(z | c)p(z]c) (11)

Pair Hidden Markov Models 5

for each ¢ in the range C of C' (C is the set of values that C' may take). Then

p(z,2) = Y p(e]c)p(z] c)p(c)

(4

= 3 (e yot@)) (ot 1 /) (12)

where ¢ takes all values in the range of C. This is a dot-product, with the
feature-space mapping defined as

8@) = (p(e] Np(@) : cec) (13)

so that
p(z, 2) = ¢(z) - ¢(2) (14)

We believe that this definition can be extended to benign cases in which p is
a probability density which is a mixture of an uncountable number of symmetric
independent densities, indexed by some real-valued parameter c. The technical
complications of such an extension are beyond the scope of this paper.

It is evident that any CSI joint p.d. must be positive semidefinite, but we
are so far unable to establish whether the converse holds, even in the finite-
dimensional case. That is, we do not know whether all positive semidefinite
finite joint probability distributions are CSI.

4 Pair Hidden Markov Models

A pair hidden Markov model (PHMM) is an HMM that generates two symbol
sequences simultaneously; the two sequences need not necessarily be of the same
length. The PHMM, therefore, defines a joint probability distribution over finite
symbol sequences. Models of this type are used in bioinformatics to construct
probabilistic models of relatedness of pairs of protein or DNA sequences, as

described in [DEKM98]. A PHMM is defined as follows.

o a finite set S of states, which is the disjoint union of four subsets:

S4B __ states that emit two symbols, one for A and one for B

S84 — states that emit one symbol only for A
SB — states that emit one symbol only for B
S~ — states that emit no symbols
o Distinguished states START and END. The process starts in START, and
ends in the absorbing state END. For notational reasons, it will be con-

venient to define that START, END € S4B, but both START and END emit
no symbols.

o A function T that gives state transition probabilities: T'(s, t) is the prob-
ability that the next state is t given that the current state is s.

¢ An alphabet B

Conditionally Symmetrically Independent PHMMs 6

o For states that emit symbols, probability distributions over B:

— For each state s € S4B, a probability distribution over B x B
— For each state s € S4or SP a probability distribution over B

The class S~ of non-emitting states is included for notational convenience:
all states in S~ can be eliminated with no change to the joint distribution of
emitted sequences.

A realisation of the PHMM is a sequence of states, starting with START
and finishing with END , together with the symbol(s), if any, emitted in each
state. Each realisation, therefore, is a complete record of the construction of
two particular sequences a and b.

The probability of any one realisation of a PHMM is straightforward to
calculate. But any particular pair of sequences a and b may be generated by
exponentially many different realisations. Happily there are well-known efficient
dynamic programming algorithms for summing over all possible realisations to
calculate the joint probability of any two particular sequences a and b.

The point of using a PHMM is that it is easy to compute joint probabilities
of pairs of sequences. Under what circumstances can this joint probability be
represented as a dot-product and used as a kernel?

Conditionally Symmetrically Independent PHMMs

The state diagram of a useful CSI PHMM is shown in 5 below.

Figure 1 A CSI pair HMM for Matching

The state AB emits matching, or nearly matching symbols for both se-
quences; the states A and B emit insertions, parts of one sequence that are not
parts of the other. ¢, 4, and v are all small probabilities. The most frequently
taken state-transitions are drawn with thicker arrows. The PHMM starts in
START, and then typically repeatedly cycles through AB. Occasionally it will
reach the state A or B, and then generate an insertion of several symbols, before

Conditionally Symmetrically Independent PHMMs 7

going back to AB. Eventually, the state END will be reached, and the process
will stop.

This PHMM is useful even though it only has three states that emit symbols,
which is the minimum number for a non-trivial PHMM. The joint distribution
defined by this PHMM gives high probabilities to sequences that match along
large parts of their lengths, where “match” means that pairs of corresponding
symbols are generated by the state AB.

To state sufficient conditions for a PHMM H to be CSI requires some defi-
nitions.

Let TAB be the transition probabilities restricted to SAB. That is, for
s,t € S4B let TAB (s,t) be the probability that, starting from s, the next state
in S4B reached is t.

Let AT(s, t) be the random variable denoting the possibly empty subsequence
of states in S# that the process passes through, given that the process starts
in state s € S4B, and given that state t is the next state in S48 reached. Let
B'(s,t) be a random variable defined similarly.

Definition 3 A PHMM H has the independent insertion property if, for all
s,t € SAB, AT(s,t) and BT(s,t) are independent.

Proposition 1 Let H be a PHMM such that:

1. The joint distribution over sequences induced by H is unchanged if S4 is
relabelled as ST and SB as S4.

2. For all states s € SAB, the symbol-emission joint p.d. over B x B is CSI.
3. H has the independent insertion property.

Then the joint p.d. induced by H over pairs of sequences of symbols is CSI.

Proof

The proof is in two stages. It is shown first that any PHMM that satisfies
condition 2 may be transformed into an equivalent PHMM in which all states
in S4B have symmetric independent joint emission distributions. Next, it is
shown that the probability of a realisation may be factored so that sequences A
and B are independent given the subsequence of states from S48 that occurs
in the realisation. The result follows.

From condition 2, it follows for each s € S4B, the symbol-emission p.d. is a
mixture of symmetric independent distributions. It is possible to construct an
equivalent PHMM to H in which all states in S48 have symmetric independent
emission distributions, by replacing each state in S4B with a network of states.

As shown in figure 2, the state s can be decomposed into a non-emitting
entry state Sentry, a set of alternative atomic doubly emitting states sqi,ss,...
and an exit state sexi. The number of atomic states may be finite or countably
infinite: note that even if there are infinitely many atomic states, the entire
PHMM is still, by construction, equivalent to finite PHMM in the sense that it
generates an identical joint p.d. over symbol sequences.

Conditionally Symmetrically Independent PHMMSs 8

N

-

Figure 2 Re-writing a doubly emitting state as a mixture of atomic states

For each state t for which a transition to s is possible, the transition occurs
tO Sentry With the same probability. From sentry, there is a transition to one of
the atomic states si,ss,..., the transition to s; having probability w;. From
s; there is a transition with probability 1 to set, and from se i the transition
probabilities are the same as from s. The distribution of symbols emitted by the
substituted network of states consisting of sentry, 51,52, ..., and st is exactly
the same as the distribution of symbols emitted by s.

The point of this substitution is that all of the doubly emitting states
1,52, ... Now emit pairs of independent symbols. From now on, therefore, we
may assume that all states in S4B emit pairs of independent symbols.

Let w be a realisation of the PHMM H. Let w contain n 4+ 1 states from
S4B, Let the sequence of states from S48 be ¢ = (cy, .. .,c,), With cg = START
and ¢,, = END.

Let aj be the possibly empty sequence of states from S# that occur between
c;_1 and ¢; in w, and let bj be defined similarly.

Let a(c;) denote the symbol in sequence a emitted by the state c;, and let
b(c;) be defined similarly. Let a' = <ag, . a,TL> and let bT = <bg, .. .,a,TL> be
the complete sequences of insertions of states in S4 and SP respectively.

We seek to show that p(a,b | c) = p(a|c) p(b | c). Now, from the indepen-
dent insertion property,

p(al, bl | cii1,ci) = p(al | cii1, i) p(b] | cii1,ci) (15)
for 1 < i < n, so that

p@ah,b") = [[p(al,b] |cii1,ci)
=1
= p(a" | c)p(b? | ¢) (16)

As each ¢; is an atomic state with an independent emission distribution,

pla(ei), b(ei) | i) = pla(e:) | <) p(b(es) | i) (17)

Conclusion 9

for 1 < i < n, and since states in S# do not affect symbols in b, and vice versa,
it follows from (17) that

p(a,b | al, b, c)=pla] al, c) p(b] b, c) (18)
Hence
pla,b|c) = Z p(a,b | al, b, c) p(aT, bT | c) (19)
aT,bT
= Y (plala’,op(@" <)) (p(5 | bT,0)p(b" |) (20)
aT bt
= pla]c)p(b]c) (21)

where (20) follows from (18), (16) and rearrangement of terms. 1

This proof shows that a natural and currently used matching function for
sequences can be represented as a dot-product. The feature space has one
dimension for each possible sequence of atomic doubly emitting states c; the
number of such ¢ for which the mapping ¢(a) is non-zero is in general exponen-
tial in the length of the symbol sequence a.

6 Conclusion

A natural currently used class of match-scores for sequences have been shown
to be representable as dot-products in a high-dimensional space. It follows
that these match-scores can be used in dual formulations of linear statistical
methods, and also that the match-scores may be used to locate sequences in a
Euclidean space. We are investigating possible applications and extensions of
this approach for bio-sequence analysis and speech recognition.

References

DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Se-
7 Y7 g 7 g
quence Analysis: Probabilistic models of proteins and nucleic acids.
Cambridge University Press, 1998.

[Joa97] T. Joachims. Text categorization with support vector machines.

In Proceedings of the Furopean Conference on Machine Learning,
1997.

[SSM98] B. Schoelkopf, A. Smola, and K.-R. Mueller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299-1319, 1998.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[Wah90] Grace Wahba. Spline Models for Observational Data. SIAM,
CBMS-NSF Regional Conference Series, v59, 1990.

