
Dynamic Alignment Kernels

Chris Watkins

Department of Computer Science

Royal Holloway� University of London

C�Watkins�dcs�rhbnc�ac�uk

Technical Report

CSD�TR������

��th January ����

�����
����	
���
Department of Computer Science

Egham� Surrey TW�� �EX� England



Abstract

There is much current interest in kernel methods for classi�cation� re�

gression� PCA� and other linear methods of data analysis� Kernel methods

may be particularly valuable for problems in which the input data is not

readily described by explicit feature vectors� One such problem is where

input data consists of symbol�sequences of di�erent lengths� and the re�

lationships between sequences are best captured by dynamic alignment

scores�

This paper shows that the scores produced by certain dynamic align�

ment algorithms for sequences are in fact valid kernel functions� This is

proved by expressing the alignment scores explicitly as dot�products�

Alignment kernels are potentially applicable to biological sequence

data� speech data� and time series data�

The kernel construction may be extended from pair HMMs to pair

probabilistic context�free grammars�
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� Introduction� Linear Methods using Kernel Functions

In many types of machine learning� the learner is given a training set of cases
or examples a� � � � al � A� A denotes the set of all possible cases� cases may
be vectors� pieces of text� biological sequences� sentences� etc� For supervised
learning� the cases are accompanied by a set of corresponding labels or values
y� � � �yl� The cases are mapped to feature vectors x� � � � xl � X � where the X
is a real vector space termed the feature space� The mapping from A to X is
denoted by �� so that xi � ��ai�� Sometimes the cases are given as feature
vectors to start with� in which case � may be the identity mapping� otherwise
� denotes the method of assigning numeric feature values to a case�

Once a feature vector xi has been de	ned for each case ai� it becomes pos

sible to apply a wide range of linear methods such as support
vector machines�
linear regression� principal components analysis �PCA�� and k
means cluster
analysis�

As shown in �Vap�� for SV machines� in for example �Wah��� for linear re

gression� and in �SSM��� for PCA and k
means cluster analysis� the calculations
for all of these linear methods may be carried out using a dual rather than a
primal formulation of the problem�

For example� in linear least
squares regression the primal formulation is to
	nd a coe�cient vector � that minimises kX��yk whereX is the design matrix�
an l by d matrix in which the ith row is xi� and each xi has d elements� If l is
larger than d� the usual method of 	nding � is to solve the normal equations
XTX� � XTy� This requires the solution of a set of linear equations with
coe�cients given by the d� d matrix XTX �

The dual formulation is to 	nd a coe�cient vector � that minimises
kXXT�� yk� so that one coe�cient �i is found for each case vector xi� This
requires the solution of a set of linear equations with coe�cients given by the
l � l matrix XXT �

Both methods lead to the same predicted value �y for a new case x� If
there are more cases than features� that is if l � d� the primal method is more
economical because the d � d matrix XTX is smaller than the l � l matrix
XXT � For example� if there are ��� cases� each described by a vector of ��
measurements� then the primal method requires solving a �� by �� system of
linear equations� while the dual method requires solving a ��� by ��� system�
which will have rank at most ��� For such a problem� the dual method has no
advantage�

The potential advantage of the dual method for regression is that it can be
applied to very large feature vectors� The coe�cient matrix XXT contains the
dot
products of pairs of feature vectors� the ijth element of XXT is xi � xj � In
the dual calculation� it is only dot
products of feature vectors that are used�
feature vectors never appear on their own�

As the feature vectors xi � ��ai� appear only in dot
products� it is often
possible to avoid computing the feature vectors� and to compute dot
products
directly in some economical fashion from the case descriptions ai instead� A
kernel is a function k that computes a dot
product of feature vectors from the
corresponding cases�
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De�nition � A kernel is a function k such that for all a� b � A�

k�a� b� � ��a� � ��b�

where � is a mapping from A to a feature space X �

The mapping � determines k uniquely� but k determines only the metric prop

erties of the image under � of the case
set A in feature space� � is not in general
invertible� and indeed ��A� need not even be a linear subspace of X � � need not
be and in general is not a linear mapping� indeed� addition and multiplication
need not even be de	ned for elements of A�

The dual formulation often has a computational advantage over the pri

mal formulation if the kernel function k is easy to compute� but the mapping
to feature space � is infeasible to compute� A well
known example of this is
the �homogeneous polynomial kernel� of �Vap�� in which the cases are real d
dimensional vectors a � ha� � � � adi� and

k�a� b� � �a � b�n ���

�
dX

i���

� � �
dX

in��

�
ai� � � �ain

� �
bi� � � �bin

�
���

for some positive integer n� and � � i�� � � � � in � d� A mapping � that induces
this kernel is

��a� �
D
ai� � � �ain � � � i� � � � in � d

E
���

In the character recognition application described in �Vap��� the cases were
vectors with dimension �� and values of n up to � were used� so that the
vectors in ��� had billions of terms� and the expression ��� was vastly easier to
compute than the explicit dot
product ����

� Applying Linear Methods to Structured Objects

Not all data comes naturally as vectors� data may consist of �structured ob

jects�� such as sequences of di�erent lengths� trees� or sentences� To apply linear
methods to such data� it is necessary either to construct feature vectors explic

itly� or to use a kernel function� The recent success of the methods of �Joa��� in
text classi	cation has shown how valuable it can be to apply linear statistical
methods to inductive problems where such methods have not previously been
used� This section describes three approaches to mapping structured objects to
vectors in order to apply linear statistical methods�

��� Sparse Vector Kernels

�Joa��� considered the problem of classifying text news stories by subject� Es

sentially� Joachims considered a text as a sparse vector� with one dimension for
each possible word� With an e�cient sparse representation� the dot
product of
two sparse vectors can be computed in a time proportional to the total number
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of non
zero elements in the two vectors� A kernel implemented as a sparse dot

product is a natural method of applying linear methods to sequences� Examples
of such sparse
vector mappings are�

� mapping a text to the set of words it contains

� mapping a text to the set of pairs of words that are in the same sentence

� mapping a symbol sequence to the set of all subsections of some 	xed
length m

�Sparse
vector kernels� are an important extension of the range of applica

bility of linear methods�

��� Case�based Features

Often� there are natural matching functions or similarity scores that may be
applied to structured objects� These are functions that can be applied to a pair
of objects� and which return a real
valued score� Although such a matching is
not necessarily representable as a dot
product� any such function can be used
to create features in the following way�

Given any function f � A�A ��� IR� and an indexed set of cases� a�� � � � � an
a possible feature space mapping is

��b� � hf�a�� b�� � � � � f�an� b�i ���

This is not really a kernel method� as the feature vector is computed explicitly�
and there is no computational advantage in using a kernel�

��� Diagonal�dominance Kernels

A second canonical construction for a kernel k given any f � A �A ��� IR� for
a 	nite or countable set A� uses a feature space with dimensions indexed by
A� A� and for any x � A the ha� bith element of the vector ��x� is de	ned as

���x��ha�bi �

�
f�a� b� if a � x or b � x

� otherwise
��

so that k is de	ned as

k�a� b� � f�a� b��� f�b� a�� if a �� b ���

and
k�a� a� � f�a� a���

X
c�A�c��a

f�a� c���
X

c�A�c��a

f�c� a�� ���

This �diagonal
dominance� kernel does in some sense provide a computa

tional advantage� for it enables an arbitrary non
negative symmetric function
k�x� z� � f�x� z��� f�z� x�� for x �� z to be used as a kernel� provided that the
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diagonal entries k�x� x� are made su�ciently large that any 	nite matrix of dot

products of distinct elements of A will be diagonally dominant� and therefore
positive semide	nite�

The size of diagonal element required may be reduced by de	ning � with
respect to a reference data set R 	 A

���x��ha�bi �

��
�
f�a� b� if �a � x or b � x� and

�a � R or b � R �
� otherwise

���

If R is taken to be a small subset of A�perhaps the training data set itself�
then the diagonal elements of the matrix of dot
products of the training data
can be set to the sums of the rows� The diagonal elements from ��� may be
much smaller than those from ���

It is curious that this construction of an explicit dot
product for a diagonally
dominant matrix only works for matrices with non
negative elements�

Unfortunately matrices with large diagonal elements are likely to provide
poor generalisation in learning� Nevertheless� this construction may sometimes
be of use�

� Conditional Symmetric Independence Kernels

Joint probability distributions are often used as scoring functions for match

ing� two objects �match� if they are in some sense similar� and the degree of
similarity or relatedness is de	ned according to a joint probability distribution
that assigns pairs of related objects higher probabilities than pairs of unrelated
objects� A joint p�d� used in this way will be described in section ��� below� It
is sometimes possible to show that such a joint p�d� is a valid kernel by showing
that the p�d� is conditionally symmetrically independent�

De�nition � A joint probability distribution is conditionally symmetrically in

dependent �CSI� if it is a mixture of a �nite or countable number of symmetric
independent distributions�

CSI joint probability distributions may be written as dot
products in the
following way� Let X�Z be two discrete random variables� and let p be the joint
distribution function� de	ned as

p�x� z� � Pr�X � x and Z � z� ���

and let p be symmetric�that is� p�x� z� � p�z� x� for all x� z�
Let C be a random variable such that

Pr�X�Z j C� � Pr�X j C�Pr�Z j C� ����

and� given C� the distributions of X and Z are identical� Then

p�x� z j c� � p�x j c�p�z j c� ����
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for each c in the range C of C �C is the set of values that C may take�� Then

p�x� z� �
X
c

p�x j c�p�z j c�p�c�

�
X
c

�
p�x j c�

q
p�c�

��
p�z j c�

q
p�c�

�
����

where c takes all values in the range of C� This is a dot
product� with the
feature
space mapping de	ned as

��x� �

�
p�x j c�

q
p�c� � c � C

	
����

so that
p�x� z� � ��x� � ��z� ����

We believe that this de	nition can be extended to benign cases in which p is
a probability density which is a mixture of an uncountable number of symmetric
independent densities� indexed by some real
valued parameter c� The technical
complications of such an extension are beyond the scope of this paper�

It is evident that any CSI joint p�d� must be positive semide	nite� but we
are so far unable to establish whether the converse holds� even in the 	nite

dimensional case� That is� we do not know whether all positive semide	nite
	nite joint probability distributions are CSI�

� Pair Hidden Markov Models

A pair hidden Markov model �PHMM� is an HMM that generates two symbol
sequences simultaneously� the two sequences need not necessarily be of the same
length� The PHMM� therefore� de	nes a joint probability distribution over 	nite
symbol sequences� Models of this type are used in bioinformatics to construct
probabilistic models of relatedness of pairs of protein or DNA sequences� as
described in �DEKM���� A PHMM is de	ned as follows�

� a 	nite set S of states� which is the disjoint union of four subsets�

SAB � states that emit two symbols� one for A and one for B

SA � states that emit one symbol only for A

SB � states that emit one symbol only for B

S� � states that emit no symbols

� Distinguished states start and end� The process starts in start� and
ends in the absorbing state end� For notational reasons� it will be con

venient to de	ne that start� end � SAB � but both start and end emit
no symbols�

� A function T that gives state transition probabilities� T �s� t� is the prob

ability that the next state is t given that the current state is s�

� An alphabet B
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� For states that emit symbols� probability distributions over B�

� For each state s � SAB � a probability distribution over B � B

� For each state s � SAor SB a probability distribution over B

The class S� of non
emitting states is included for notational convenience�
all states in S� can be eliminated with no change to the joint distribution of
emitted sequences�

A realisation of the PHMM is a sequence of states� starting with start

and 	nishing with end � together with the symbol�s�� if any� emitted in each
state� Each realisation� therefore� is a complete record of the construction of
two particular sequences a and b�

The probability of any one realisation of a PHMM is straightforward to
calculate� But any particular pair of sequences a and b may be generated by
exponentially many di�erent realisations� Happily there are well
known e�cient
dynamic programming algorithms for summing over all possible realisations to
calculate the joint probability of any two particular sequences a and b�

The point of using a PHMM is that it is easy to compute joint probabilities
of pairs of sequences� Under what circumstances can this joint probability be
represented as a dot
product and used as a kernel�

� Conditionally Symmetrically Independent PHMMs

The state diagram of a useful CSI PHMM is shown in  below�

B

1
ε

1−ε

ε
1−ε

δ

1−δ

γ

γ

1−γ

1−γ

1

END

AB

START

A

Figure � A CSI pair HMM for Matching

The state AB emits matching� or nearly matching symbols for both se

quences� the states A and B emit insertions� parts of one sequence that are not
parts of the other� �� �� and � are all small probabilities� The most frequently
taken state
transitions are drawn with thicker arrows� The PHMM starts in
START� and then typically repeatedly cycles through AB� Occasionally it will
reach the state A or B� and then generate an insertion of several symbols� before
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going back to AB� Eventually� the state END will be reached� and the process
will stop�

This PHMM is useful even though it only has three states that emit symbols�
which is the minimum number for a non
trivial PHMM� The joint distribution
de	ned by this PHMM gives high probabilities to sequences that match along
large parts of their lengths� where �match� means that pairs of corresponding
symbols are generated by the state AB�

To state su�cient conditions for a PHMM H to be CSI requires some de	

nitions�

Let TAB be the transition probabilities restricted to SAB � That is� for
s� t � SAB� let TAB�s� t� be the probability that� starting from s� the next state
in SAB reached is t�

Let A��s� t� be the random variable denoting the possibly empty subsequence
of states in SA that the process passes through� given that the process starts
in state s � SAB � and given that state t is the next state in SAB reached� Let
B��s� t� be a random variable de	ned similarly�

De�nition � A PHMM H has the independent insertion property if� for all
s� t � SAB� A��s� t� and B��s� t� are independent�

Proposition � Let H be a PHMM such that�

�� The joint distribution over sequences induced by H is unchanged if SA is
relabelled as SB and SB as SA�

�� For all states s � SAB� the symbol�emission joint p�d� over B �B is CSI�

	� H has the independent insertion property�

Then the joint p�d� induced by H over pairs of sequences of symbols is CSI�

Proof

The proof is in two stages� It is shown 	rst that any PHMM that satis	es
condition � may be transformed into an equivalent PHMM in which all states
in SAB have symmetric independent joint emission distributions� Next� it is
shown that the probability of a realisation may be factored so that sequences A
and B are independent given the subsequence of states from SAB that occurs
in the realisation� The result follows�

From condition �� it follows for each s � SAB � the symbol
emission p�d� is a
mixture of symmetric independent distributions� It is possible to construct an
equivalent PHMM to H in which all states in SAB have symmetric independent
emission distributions� by replacing each state in SAB with a network of states�

As shown in 	gure �� the state s can be decomposed into a non
emitting
entry state sentry� a set of alternative atomic doubly emitting states s�� s�� � � �
and an exit state sexit� The number of atomic states may be 	nite or countably
in	nite� note that even if there are in	nitely many atomic states� the entire
PHMM is still� by construction� equivalent to 	nite PHMM in the sense that it
generates an identical joint p�d� over symbol sequences�
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S 1 S 2

S enter

S exit

1

w2w1

. . . . . .S

1

Figure � Re
writing a doubly emitting state as a mixture of atomic states

For each state t for which a transition to s is possible� the transition occurs
to sentry with the same probability� From sentry� there is a transition to one of
the atomic states s�� s�� � � �� the transition to si having probability wi� From
si there is a transition with probability � to sexit� and from sexit the transition
probabilities are the same as from s� The distribution of symbols emitted by the
substituted network of states consisting of sentry� s�� s�� � � �� and sexit is exactly
the same as the distribution of symbols emitted by s�

The point of this substitution is that all of the doubly emitting states
s�� s�� � � � now emit pairs of independent symbols� From now on� therefore� we
may assume that all states in SAB emit pairs of independent symbols�

Let 	 be a realisation of the PHMM H� Let 	 contain n � � states from
SAB � Let the sequence of states from SAB be c � hc�� � � � � cni� with c� � start

and cn � end�
Let a�i be the possibly empty sequence of states from SA that occur between

ci�� and ci in 	� and let b�i be de	ned similarly�
Let a�ci� denote the symbol in sequence a emitted by the state ci� and let

b�ci� be de	ned similarly� Let a� �
D
a
�
�
� � � � � a�n

E
and let b� �

D
b
�
�
� � � � � a�n

E
be

the complete sequences of insertions of states in SA and SB respectively�
We seek to show that p�a� b j c� � p�a j c� p�b j c�� Now� from the indepen


dent insertion property�

p�a�i � b
�
i j ci��� ci� � p�a�i j ci��� ci� p�b

�
i j ci��� ci� ���

for � � i � n� so that

p�a�� b� j c� �
nY

i��

p�a�i � b
�
i j ci��� ci�

� p�a� j c�p�b� j c� ����

As each ci is an atomic state with an independent emission distribution�

p�a�ci�� b�ci� j ci� � p�a�ci� j ci� p�b�ci� j ci� ����
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for � � i � n� and since states in SA do not a�ect symbols in b� and vice versa�
it follows from ���� that

p�a� b j a�� b�� c� � p�a j a�� c� p�b j b�� c� ����

Hence

p�a� b j c� �
X
a��b�

p�a� b j a�� b�� c� p�a�� b� j c� ����

�
X
a��b�

�
p�a j a�� c�p�a� j c�

��
p�b j b�� c�p�b� j c�

�
����

� p�a j c� p�b j c� ����

where ���� follows from ����� ���� and rearrangement of terms�

This proof shows that a natural and currently used matching function for
sequences can be represented as a dot
product� The feature space has one
dimension for each possible sequence of atomic doubly emitting states c� the
number of such c for which the mapping ��a� is non
zero is in general exponen

tial in the length of the symbol sequence a�

� Conclusion

A natural currently used class of match
scores for sequences have been shown
to be representable as dot
products in a high
dimensional space� It follows
that these match
scores can be used in dual formulations of linear statistical
methods� and also that the match
scores may be used to locate sequences in a
Euclidean space� We are investigating possible applications and extensions of
this approach for bio
sequence analysis and speech recognition�

References

�DEKM��� R� Durbin� S� Eddy� A� Krogh� and G� Mitchison� Biological Se�
quence Analysis� Probabilistic models of proteins and nucleic acids�
Cambridge University Press� �����

�Joa��� T� Joachims� Text categorization with support vector machines�
In Proceedings of the European Conference on Machine Learning�
�����

�SSM��� B� Schoelkopf� A� Smola� and K�
R� Mueller� Nonlinear compo

nent analysis as a kernel eigenvalue problem� Neural Computation�
��������������� �����

�Vap�� Vladimir N� Vapnik� The Nature of Statistical Learning Theory�
Springer
Verlag� New York� ����

�Wah��� Grace Wahba� Spline Models for Observational Data� SIAM�
CBMS
NSF Regional Conference Series� v�� �����


