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Abstract Intrinsically disordered proteins are an important
class of proteins with unique functions and properties. Here, we
have applied a support vector machine (SVM) trained on
naturally occurring disordered and ordered proteins to examine
the contribution of various parameters (vectors) to recognizing
proteins that contain disordered regions. We find that a SVM
that incorporates only amino acid composition has a recognition
accuracy of 87 ± 2%. This result suggests that composition
alone is sufficient to accurately recognize disorder. Interestingly,
SVMs using reduced sets of amino acids based on chemical
similarity preserve high recognition accuracy. A set as small as
four retains an accuracy of 84 ± 2%; this suggests that general
physicochemical properties rather than specific amino acids are
important factors contributing to protein disorder.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

It is becoming increasingly clear that proteins or segments of

proteins that lack a stable and well-defined three-dimensional

structure, often referred to as intrinsically disordered proteins,

have a range of important properties and functions that de-

pend on or derive from being disordered [1–4]. For example,

Wright and colleagues have proposed that intrinsically disor-

dered protein segments confer conformational flexibility to

some proteins allowing a functionally important promiscuity

in binding [5]. Other functions such as regulators of nuclear

port transport and entropic clocks for ion channel gating have

also been proposed [5,6]. Our interest in this problem derives

from a proposal that certain cytoskeletal proteins have in-

trinsically disordered protein segments [7]. In particular, the

side-arms of neurofilament proteins NF-M and NF-H and the

projection domain of MAP2 are highly unstructured and as a

consequence exert long range repulsive forces that are largely
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entropic in origin; these forces are critical to organizing the

neuronal cytoskeleton [8–10].

The emerging importance of disordered proteins has led to

the development of tools and approaches for recognizing and

predicting the propensity for any given protein sequence to be

disordered. Developing and testing these tools requires defin-

ing libraries of disordered protein sequences; however, there

are no rigorous experimental criteria for defining disorder.

Criteria used for identifying collections of disordered regions

include considering data from X-ray crystallography, NMR,

circular dichroism, and protease sensitivity [11–14]. One no-

table feature of disordered proteins identified in such collec-

tions is a strong bias towards charged and polar amino acids

and against hydrophobic amino acids [12]. While there is no

unambiguous test of these groupings, it is reasonable to as-

sume that they are at least strongly biased in their relative

composition of disordered versus ordered proteins. With that

caveat in mind, Dunker and co-workers developed PONDR, a

neural net-based predictor [15]. There are now a variety of

implementations of PONDR with prediction accuracies as

high as 87% [16]. Linding and coworkers also developed a

neural net predictor for disorder, DisEMBL, which uses three

data sets based on different definitions of disorder [13]. These

sets are based on an analysis of proteins with known three-

dimensional structure. Consistent with the previous work, the

propensities of these sets show a bias for charged and polar

amino acids and against hydrophobic amino acids, although

there are significant differences in the relative compositions.

A significant limitation of these neural net-based approaches

is that it is difficult to interrogate the relative contribution of

individual parameters to recognizing or predicting disorder.

Here, we have trained a support vector machine (SVM) to

recognize intrinsically disordered proteins. SVMs are learning

machines based on the development of statistical learning

theory by Vapnik and colleagues [17]. An important feature of

SVMs is that the results of the learning process can be quan-

tified; thus, the relative influence of different parameters on the

ability of the SVM to recognize disordered proteins can be

measured. SVMs operate in two stages: data sets from two

different classes are first mapped into a higher dimensional

space based on vectors that represent some particular param-

eter, then the hyperplane that optimally separates the two

classes is calculated. SVMs are designed to provide a globally

optimized solution that ensures the highest level of recognition
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accuracy. SVMs have been successfully applied to many pat-

tern classification and recognition problems; applications to

biology include predictions of secondary structure, subcellular

location, and solvent accessibility [18–20]. Jones and col-

leagues [21] have recently shown that SVMs are effective tools

for predicting disordered proteins. Here, we use an SVM based

approach to gain further insight into the physicochemical

principles important for recognition of disordered proteins.
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Fig. 1. Schematic of development and testing of the SVM for recog-
nizing intrinsically disordered proteins.
2. Materials and methods

2.1. Protein data
The training set was that compiled by Dunker and colleagues [15].

This set contains 718 segments classified as disordered and 1190
sequence classified as structured.

2.2. Support vector machine
We used the mySVM implementation of support vector machine

theory by R€uping (http://www-ai.cs.uni-dortmund.de/SOFTWARE/
MYSVM/). The initial stage of mapping data sets into higher dimen-
sional spaces was accomplished using a kernel function, Kðsi; xÞ, where
si is a support vector and x is the input sequence. For our analysis, we
chose a dot kernel function where Kðsi; xÞ ¼ si � x. This kernel function
provides high accuracy while avoiding the long training and testing
times associated with higher order kernel functions. The results of the
mapping process are represented as a set of vectors, xi; i ¼ 1; . . . ;N ,
and a label vector yi, which equals 1 for one class and )1 for the al-
ternate class. The optimally separating hyperplane (OSH) is repre-
sented by wTxi þ b ¼ 0, where w is the set of vector weights and b is the
bias. The vector weight w represents the relative importance of each
contributing factor to classification. For ideal data sets, OSH is found
by minimizing 1=2wTw subject to the constraint yiðwTxi þ bÞP 1. For
non-ideal data sets, the individual vectors may not be linearly sepa-
rable. Thus, parameters are introduced to allow for non-linear sepa-
ration while limiting training error. For this case, the OSH is found by
minimizing 1=2wTwþ C

P
ei subject to the constraint that

yiðwTxi þ bÞP 1� ei, where ei P 0. ei are slack variables that represent
the deviation from ideal separation; these values are minimized in the
training process. C is a regularization parameter that balances the
trade-off between complexity and error. For our analysis, a range of
values for C were tested (data not shown) and C was set at 0.07.
Software and data sets used in this analysis are available upon request.

2.3. Measurement of prediction accuracy
Prediction accuracy was determined using 5-fold cross validation

(Fig. 1). The ordered and disordered datasets were combined, and 80%
of this data set was randomly chosen and used to train the SVM. The
prediction accuracy was then measured by testing the SVM on the re-
maining 20% of the original dataset. The overall prediction accuracy is
the average of 10 rounds of testing; 50% reflects random classification.
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Fig. 2. SVM vector weights for the 20 amino acid SVM predictor and
three additional parameters. Positive values indicate residues that are
associated with disorder, while residues with negative values are as-
sociated ordered regions.
3. Results and discussion

Each protein in the data set of ordered and disordered

proteins was translated into a vector representation. Our initial

vector set was based on sequence composition information for

each amino acid; proteins were represented with one vector for

each amino acid (20-AA SVM). The SVM was trained on a

randomly chosen selection of sequences comprising 80% of the

total set. The prediction accuracy was calculated by testing the

ability of the SVM to correctly categorize proteins in the re-

maining 20% of the data set. Using this approach, the 20-AA

SVM has an accuracy of 87 ± 2%, demonstrating that amino

acid composition alone is sufficient to accurately recognize

disordered proteins. The vector weights for the 20 amino acids

indicate a strong bias against hydrophobic groups and a

weaker bias toward charged or polar groups (Fig. 2).
A number of additional parameters that have been associ-

ated with disordered proteins were also examined, including

Wootton sequence complexity [22], phosphorylation content

[23], and net charge. The Wootton complexity is related to the

complexity of the numerical state of a sequence and effectively

is a measure of the number of distinct ways in which a given

sequence can be rearranged. The phosphorylation content is

based on the frequency of consensus motifs cAMP-dependent

protein kinase, protein kinase C, casein kinase II, and tyrosine

kinase obtained from Prosite (http://us.expasy.org/prosite/).

The charge vector reflects net charge, where K and R are

positively charged and D and E are negatively charged. Used

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
http://us.expasy.org/prosite/
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together these three vectors have a recognition accuracy of

71%, poorly compared to the 20-AA SVM. Adding the three

vectors to the 20 individual amino acid vectors resulted in no

change in the accuracy, and the weights of the new vectors

were small, suggesting that they add little new information

over sequence composition (Fig. 2). The role of higher order

parameters was further investigated by using vector sets based

on increased block size. Vector sets were developed for all

possible amino acid dimers (400 vectors) and trimers (8000

vectors). Recognition accuracy for the dimers was identical to

the single amino acids, while using the trimers increased ac-

curacy slightly to 90 ± 1%.

To investigate how a particular class or property of amino

acids affects recognition accuracy and to determine the mini-

mal amount of information needed for recognition, a number

of reduced amino acid sets were studied. Reduced sets devel-

oped by Andorf and colleagues based on the BLOSUM50

substitution matrix were used to decrease the number of vec-

tors needed to represent protein sequences [24,25]. Sets of 15,

10 and 8 vectors each had 85 ± 2% recognition, and a reduced

set of 4 retained 84 ± 1% recognition accuracy (Table 1). Ad-

ditional reduced sets of amino acids were created based on

chemical properties. Sets based on charge had relatively poor

recognition (62 ± 3%), while sets based on hydrophobicity

performed well (82 ± 1%). The vector weights for these re-

duced sets also showed a similar strong bias against hydro-

phobic amino acids and weaker bias for charged or polar

groups (Fig. 3). Random groupings of amino acids into four

categories produced recognition accuracies near random.

A central finding from our SVM analysis is that a small

number of vectors based on general chemical properties of

amino acids is sufficient to recognize disordered protein.

Using a full 20-amino acid representation of protein sequence

can achieve a recognition accuracy of 87%, while a reduced

set as small as 4 preserves an 84% recognition accuracy. In

the 4 vector set, two vectors with amino acids of a more

hydrophilic character show a positive relationship with dis-

order (disorder-associated), while the two vectors represent-

ing more hydrophobic amino acids show a negative

relationship (order-associated) [11]. For all the amino sets,

the negative vectors are stronger than the positive vectors,

suggesting that a high ratio of hydrophilic to hydrophobic

amino acids is characteristic of disordered proteins. There are

a number of ways to interpret these results. It has been

suggested that functionally important properties of disor-

dered proteins may be less sensitive to specific amino acid
Table 1
Summary of the SVM recognition accuracy for all vector sets

Classification property Vector size

20-AA SVM 20
Others (charge, phosphorylation and complexity) 3
20-AA SVM+others 23
Amino acid dimers 400
Amino acid trimers 8000
Reduced 15 (sub. matrix) 15 (FY,IL
Reduced 10 (sub. matrix) 10 (FWY,
Reduced 8 (sub. matrix) 8 (FWY,C
Reduced 4 (sub. matrix) 4 (FWY,C
Hydrophobicity 4 (FILVW
Charge 3 (KR,DE

Amino acids in parentheses denote the grouping of residues in the reduced
content than well-folded proteins [26]. This line of thinking is

based on analytical treatments of polymers of the type de-

veloped by Flory [27] and de Gennes [28], where the polymers

are highly unstructured. In these models, relatively simple

bead-spring representations of polymers, often with only at-

tractive or repulsive interactions, are remarkably powerful in

capturing measurable properties. The general conclusion is

that for polymers (proteins) in this regime, atomic details of

the monomers are much less important than general charac-

ters such as hydrophilicity and hydrophobicity. This is con-

sistent with the findings here, which imply that disorder is

related to general chemical properties rather than interactions

between specific amino acids. We also note that it is well

established that the hydrophobic amino acids play a central

role in stabilizing folded proteins [29]. This fact has been

exploited to recognize native folds [30] and predict protein

globularity [31,32]. In one such approach globularity predic-

tion is based on the ratio of surface accessible to buried

amino acids; given the close relationship between surface

accessibility and hydrophobicity/hydrophilicity, this means

that the general character of amino acid composition pro-

vides information about how well a protein will fold [31]. The

corollary to this finding would be, as we find here, that a

significant under-representation of hydrophobic amino acids

would tend to produce less globular and less well-folded

proteins.

In general, higher-order correlations seem to play little role

in the recognition of disorder. A slight improvement in pre-

diction accuracy was observed for amino-acid blocks of three.

However, this difference is at the border of statistical signifi-

cance; also, when using block sizes larger than one, a potential

drawback is overestimation of the recognition accuracy. This

can occur when the dataset used in SVM training contains

homologous proteins; when large block sizes are used the SVM

can overpredict as a result of this homology. Additionally, the

lower frequency of appearance of some dimers and trimers in

the dataset creates difficulties for statistically accurate predic-

tions. Another issue related to higher-order correlations is the

effect of different sequence arrangements on disorder predic-

tion. A protein with a hydrophobic region followed by a hy-

drophilic region could produce the same SVM score as a

protein with alternating hydrophobic and hydrophilic residues,

even though these arrangements would not be expected to

behave in the same way. However, naturally occurring proteins

tend not to be arranged in blocks of amino acids and thus this

is not a problem with distinguishing between such proteins.
Prediction accuracy

87� 2%
71� 2%
87� 2%
87� 2%
90� 1%

MV,KR) 85� 2%
ILMV,ST,EDNQ,KR) 85� 1%
ILMV,AG,ST,EDNQ,KR) 85� 2%
ILMV,AGPST,DEHKNQR) 84� 1%
Y,ACGMP,DEHNR,KQST) 82� 1%
,ACFGHILMNPQSTVWY) 62� 3%

alphabets.
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Previous work on disordered proteins has demonstrated a

very clear propensity for such proteins to be over-represented

in polar and charged amino acids [11–14]. However, the pro-

pensity itself, based on a composition profile, does not allow

one to evaluate the importance of a given amino acid (or other

parameter) to recognizing or predicting disorder. One signifi-

cant contribution that the SVM approach can make in this

context is that it allows quantitative weights to be assigned to

individual parameters; these weights are objectively tied to the

recognition performance of the SVM. Vector weights for our

-0.5

Propensity

Fig. 4. Comparison of amino acid propensity versus SVM vector
weights. Propensities are calculated by taking the log difference of each
amino acid’s percent composition in the ordered and disordered da-
tasets. Positive propensities denote amino acids overrepresented in
disordered proteins.

W

FY
C

ILMV

H

T A
D

N G KR Q E S P

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

FWY

C

ILMV
H

A G ST EDNQ KR P

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

FWY

CILMV

H

AG ST
EDNQ KR P

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

FWY

CILMV

AGPST DEHKNQR

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Fig. 3. SVM vector weights for reduced amino acid sets based on the
BLOSUM50 substitution matrix. Set of (a) 15, (b) 10, (c) 8 and (d) 4.
20-AA SVM show significant deviations from the overall

amino acid composition profiles of the input data (Fig. 4) [11].

The composition profiles indicate the same hydrophilic/hy-

drophobic separation between order-associated and disorder-

associated amino acids. However, our weight vectors show

deviations from these propensities, most significantly for

tryptophan. The composition profile also indicates that as-

paragine and aspartic acid are associated with order, while the

weight vectors suggest that both are significantly associated

with disorder. This suggests that while asparagines/aspartic

acid content is relatively low in the overall disordered dataset,

high asparagine/aspartic acid content in an individual protein

sequence is an indicator of disorder. This conclusion is in

agreement with the propensity scales developed by Linding

and colleagues: two of the three scales indicate a high pro-

pensity for asparagine and aspartic acid to be disordered [13].

These propensity scales again show similar trends for the

vector weights although with some minor differences. While

the vector weights indicate that charged residues are associated

with disorder, the propensity values for some charged amino

acids show a bias towards order for one propensity scale. This

difference may be a result of the particular scale’s derivation

from known loop regions, which include both ordered and

disordered segments. The SVM vector weights agree best with

the values for the ‘‘hot loop’’ propensity scales, which are ta-

ken from loop regions with high B factors.

The SVM used in our analysis is a binary classifier that as-

sumes that proteins will fall into one of two predefined classes:

they have a disordered segment of >40 amino acids or they do

not. However, naturally occurring proteins can contain both

ordered and disordered segments. This suggests that an anal-

ysis of proteins in nature should use local (along the chain),

rather than overall, amino acid composition as the metric for

identifying regions of disorder. Disordered segments can also

vary in extent and type; it is likely that there are qualitatively

different functions for disordered proteins and it is likely that

the nature of the disorder in these cases will be different.

Identifying the different classes of disordered proteins and their

associated functions will become increasingly important; the

SVM based approach used here may prove useful in that

endeavor.
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