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ABSTRACT
Motivation: In drug discovery a key task is to identify
characteristics that separate active (binding) compounds
from inactive (non-binding) ones. An automated prediction
system can help reduce resources necessary to carry out
this task.
Results: Two methods for prediction of molecular bioac-
tivity for drug design are introduced and shown to perform
well in a data set previously studied as part of the KDD
(Knowledge Discovery and Data Mining) Cup 2001. The
data is characterized by very few positive examples, a very
large number of features (describing three-dimensional
properties of the molecules) and rather different distribu-
tions between training and test data. Two techniques are
introduced specifically to tackle these problems: a feature
selection method for unbalanced data and a classifier
which adapts to the distribution of the the unlabeled test
data (a so-called transductive method). We show both
techniques improve identification performance and in
conjunction provide an improvement over using only one
of the techniques. Our results suggest the importance of
taking into account the characteristics in this data which
may also be relevant in other problems of a similar type.
Availability: Matlab source code is available at http://www.
kyb.tuebingen.mpg.de/bs/people/weston/kdd/kdd.html
Contact: jason.weston@tuebingen.mpg.de
Supplementary information: Supplementary material is
available at http://www.kyb.tuebingen.mpg.de/bs/people/
weston/kdd/kdd.html.

INTRODUCTION
The first step in the discovery of a new drug is usually to
identify and isolate the receptor to which it should bind,
followed by testing many small molecules for their ability
to bind to the target site. This leaves researchers with the
task of determining what separates the active (binding)
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compounds from the inactive (non-binding) ones. Such
a determination can then be used in the design of new
compounds that not only bind, but also possess certain
other properties required for a drug. See KDD (2001) for
an overview. The task of determination can be seen in
a machine learning context as one of feature selection
(choosing relevant features to describe the unknown
dependency between characteristics and labeling of the
data). The present task is a particularly challenging one
for at least three reasons:

1. Few positive examples: Only a few of the tested
compounds may bind to the target site. Thus little
information is given indicating positive correlations
between features and the labels.

2. Large number of features: The relevant features have
to be selected from a huge collection of potentially
useful features. This makes it likely that at least
some of the features that are in reality uncorrelated
with the labels appear to be correlated due to noise.

3. Different distributions: Finally, to make matters even
worse, one cannot expect the data to come from a
fixed distribution. In the real-world of distributions
drug design environment the test molecules are
compounds engineered based on previous (training
set) results and therefore will have a distribution
of their own. The training set is thus not fully
representative of the test examples.

Many conventional machine learning algorithms are ill-
equiped to deal with these problems. Often, algorithms
employ a cost model and feature selection method which
rely on the data being balanced. Many algorithms general-
ize poorly due to the high dimensionality of the problem,
moreover also because of the problem size many meth-
ods are no longer computationally feasible. Finally, most
machine learning algorithms cannot deal with training and
testing data coming from different distributions.
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The task then is to design methods that try to overcome
these three problems. To do this we employed a feature se-
lection criterion, called the unbalanced correlation score,
which attempts to take into account the unbalanced nature
of the data and is simple enough to avoid overfitting (and
computational expense). Secondly, we designed a classi-
fier which takes into account the different distributions in
the test data compared to the training data when perform-
ing feature selection and classification. This was done us-
ing a type of inference procedure called transduction (see
e.g. Vapnik, 1998), as opposed to the usual technique of in-
duction. Induction builds a model based only on the distri-
bution of the training data, transduction also takes into ac-
count the test inputs, i.e. properties of the molecules whose
activity we wish to predict. Combining these two tech-
niques we obtained improved prediction accuracy com-
pared to using one of the techniques alone, although even
using the techniques alone we obtained improved perfor-
mance compared to existing techniques we tried.

We focussed on a well studied data set that was part
of the KDD Cup 2001 competition. KDD (Knowledge
Discovery and Data Mining) is one of the premier
meetings of the data mining community. It holds an
annual competition where several large scale real-world
benchmarks are made available. In 2001, there were
three benchmarks. There were 116 competitors from
academic institutions and industrial laboratories who
analyzed the Thrombin benchmark, see KDD (2001). We
had knowledge of their results and methods, making it
difficult to compare our work directly. Nevertheless, we
also make a short discussion concerning the competition’s
results.

MATERIALS AND METHODS
Data set
The data set used to examine the effectiveness of the pre-
diction methods was provided by DuPont Pharmaceuticals
for the KDD Cup 2001 competition. The problem is to pre-
dict whether a given drug binds to a target site on throm-
bin, a key receptor in blood clotting. See KDD (2001) for
more information.

The data for the competition was split into a training
and a test set. Each example (observation) has a fixed
length vector of 139,351 binary features (variables) in
{0, 1} which describe three-dimensional properties of the
molecule†. We will refer to examples that bind as having

† Unfortunately, this is the only information given by the data set provider
concerning the nature of the features. The reason for this was so that the
competition would evaluate the effectiveness of the algorithms without ad-
vantage being gained from the designer’s prior biological knowledge. How-
ever, one guess could be that the features are calculated by superimposing
the compounds and measuring field values of pharmacophore properties at
grid points. These are probably also supplemented with other features, like
total hydrophobicity.

label +1 (and hence being called positive examples).
Conversely, negative examples (that do not bind) are
labeled −1.

In the training set there are 1909 examples, 42 of which
bind. Hence the data is rather unbalanced in this respect
(42 positive examples is 2.2% of the data).‡ The test
set contains 634 additional compounds that were in fact
generated based on the assay results recorded for the
training set.

An important characteristic of the data is that very
few of the feature entries are non-zero (0.68% of the
1909 × 139 351 training matrix). See the Supplementary
information for further statistical analysis of the data set.

System assessment
The task is to determine which of the features are critical
for binding affinity and to accurately predict the class
values using these features.

Performance is evaluated according to a weighted
accuracy criterion due to the unbalanced nature of the
number of positive and negative examples. That is, the
score of an estimate ŷ of the labels y is:

�bal(y, ŷ) = 1

2

(
#{ŷ : y = 1 ∧ ŷ = 1}

#{y : y = 1}
)

+1

2

(
#{ŷ : y = −1 ∧ ŷ = −1}

#{y : y = −1}
)

where complete success is a score of 1. In this report
we also multiply this score by 100 and refer to it as the
percentage weighted success rate.

Methodology
Our analysis is comprised of learning to predict the labels
on the test set by using a machine learning algorithm. Most
machine learning algorithms have a number of tunable
parameters (hyperparameters). The tunable parameters of
these algorithms that we did not fix before-hand are
chosen via cross validation. The positively and negatively
labeled training examples are split randomly into n groups
for n-fold cross validation such that as close to 1/n of
the positively labeled examples are present in each group
as possible (we call this balanced cross validation). This
balanced version of cross validation is necessary as there
are so few positive examples, otherwise some folds would
not give meaningful results. The method is then trained
on n − 1 of the groups and is tested on the remaining
group. This procedure is repeated n times each time using
a different group for testing, taking the final score for the
method as the mean of the n scores. We use n = 8.

‡ As we will see later in the final analysis the test set is not as unbalanced.
There are in fact 150 positive and 484 negative examples (23.66% and
76.34% respectively).
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Hyperparameters are thus chosen by selecting the values
with the best score.

Note that our entire procedure has probably been biased
by knowledge of the method of the KDD Cup Winner. This
bias is difficult to avoid when analyzing a benchmark data
set after conclusion of the competition.

In the next sections we will describe the methods that
we used: feature selection algorithms, inductive classifiers
and transductive classifiers.

Feature selection
We propose the following feature selection criterion,
which we call the unbalanced correlation score: rank the
features according to the criterion:

f j =
∑
yi =1

Xi j − λ
∑

yi =−1

Xi j (1)

where the score for feature j is f j , the training data is
denoted as a matrix X where columns are features and
examples are rows, and a larger score is assigned a higher
rank.§ We suggest to take λ very large in order to select
features which have non-zeros entries only for positive
examples. In this data set, λ � 3 achieves this goal. One
then chooses d features by selecting those with the highest
rank.

This score is an attempt to encode prior information that
the data is unbalanced, has a large number of features and
only positive correlations are likely to be useful.

Justification We can justify the unbalanced correlation
score using methods of information theory (see e.g. Cover
and Thomas, 1991). Entropy, as defined in information
theory, measures the unlikeliness that an event will
occur, being −pi ln(pi ), where pi is the probability of
appearance of event ‘i’. To compute the entropy of a given
feature we will need to assign it a probability. A feature
with a low probability of random appearance is unlikely to
be randomly generated and is more likely to describe some
underlying input–output correspondence. The probability
of random appearance of a feature with an unbalanced
score of N = Np − Nn (i.e. for λ = 1), where Np and
Nn are, respectively, the number of one entries associated
to class +1 and class −1 samples in the feature, is:

P1(Tp, Tn, Np, Nn) =
(

Np + Nn
Np

)

Np+Nn−1∏
i=0

1

Tp + Tn − i

Np−1∏
i=0

(Tp − i)
Nn−1∏
i=0

(Tn − i) (2)

where Tp and Tn are, respectively, the total number of
positive and negative labels in the training set. This

§ As suggested by one of the referees of this article, one could also consider
more general versions of this criterion which converge to the Fisher score
when the number of positive and negative examples become more equal.

Table 1. Features selected by the unbalanced correlation score and the
entropy criteria

1 2 3 4 5 6

Feature UCS 79 650 90 405 91 838 3391 27 150 29 152
Feature Entr. 79 650 90 405 29 152 91 838 16 793 27 150

probability can be used to compare features that add up
to the same value in the same N , but, to compare the
probability of appearance of features that add up to a
different value, we will need to compute the probability
that a certain N might occur randomly. This probability is
given by:

P2(Tp, Tn, N ) = 1

T p + T n

min(Tp−N ,Tn−N )∑
i=0

P1(Tp, Tn, max(0, N ) + i, max(0, −N ) + i) (3)

Finally, one can compute the entropy for each feature
as −P1 P2 log(P1 P2). The entropy and unbalanced score
will not reach the same features in any setting, because
the unbalanced correlation score will not select samples
with low negative N . However in this particular problem,
they do reach a similar ranking of the features due to the
unbalanced nature of the data. In Table 1, we show the first
6 features for both scores in which it can be seen than 5 out
of 6 are the same ones (for 16 features, 12 coincide).

Informally, we can justify this score by noticing the
data has very few non-zero values. This means to make a
classifier using negative correlations would require a large
amount of features, but it will be very easy for a feature to
be noisy and appear (partially) negatively correlated. We
therefore pay more attention to the positive correlations.

Multivariate unbalanced correlation Note that the
feature selection algorithm described so far is univariate,
the simplicity of such an algorithm reduces the chance of
overfitting (see, e.g. Kohavi, 1995). On the other hand,
if dependencies between the inputs and targets are too
complex this assumption may be too restrictive.

We can extend our criterion to assign a rank to a subset
of features rather than just a single feature to make the
algorithm multivariate. This can be done by computing the
logical OR of the subset of features S (as they are binary),
i.e. Xi (S) = 1 − ∏

j∈S(1 − Xi j ) and then evaluating
the score on the vector X (S). A feature subset which has
a high score could thus be chosen using, for example, a
greedy forward selection scheme (see, e.g. Kohavi, 1995).

Comparison techniques In our experiments we compare
the unbalanced correlation score to that of a standard
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(univariate) correlation score: the so-called Fisher score

f j = (µ j (+) − µ j (−))
2

(σ j (+))2 + (σ j (−))2
, (4)

where µ(+) and µ(−) are the mean of the feature values for
the positive and negative examples respectively, and σ(+)

and σ(−) are their respective standard deviations. Note that
in this score negative correlations are just as important as
positive ones.

We also compared to some rather more sophisticated
multivariate methods called RFE and AL0M developed as
wrapper techniques for support vector machines ((Guyon
et al., 2002)). See the Supplementary results.

In each case, the algorithms are evaluated for different
numbers of features d, in the range d = 1, . . . , 40.
This range was chosen as the task is to choose a small
number of features in order to render interpretability of
the decision function. Secondly, it is anticipated that a
large number of the features are noisy and should not be
selected. We note again however how we have been biased
here by the results of the KDD competition itself.

(Inductive) Classification algorithms
The task may not simply be just to identify relevant
characteristics via feature selection, but also (as in the
KDD Cup problem) to provide a prediction system. This
system can also be used to validate the quality of the
selected features.

As our feature selection technique selects features with
non-zero entries only for positive examples it leaves little
information to train standard machine learning algorithms.
We therefore selected one of the simplest of classifiers:

f (x) = 1, if

∑d
i=1 x(i)

d
> 0 (5)

= −1, otherwise (6)

which assigns the prediction that a new molecule binds
if any of the selected features (represented as a vector x ,
where x(i) indexes the i th feature) were non-zero. We call
this a (logical) OR classifier. (Note that we wrote it in
this form because later we will also use it for real-valued
inputs.)

The advantage this classifier has over more complex
ones for this task is there is no training involved so it is less
likely to overfit, moreover there are no hyperparameters
to adjust. Finally, as it classifies examples positive given
only the smallest amount of evidence (a single non-zero
feature) it is quite suited to the weighted success criterion.

Comparison techniques In our experiments we com-
pared a number of rather more sophisticated classification
algorithms: support vector machines (SVMs), k-nearest

neighbors (k-NN) and C4.5, a decision tree learner (see
e.g Duda et al. (2001) for descriptions).

We compare with a version of (linear) support vector
machines (SVMs, see e.g. Vapnik, 1998) that attempts
to optimize the weighted success criterion following, e.g
Brown et al. (2000). See the Supplementary results for
more details.

To adapt k-NN to the prediction criterion (1) we consid-
ered the following modification: as usual the decision rule
is to assign the class of the majority of the k-nearest neigh-
bors xi=1,...,� of a point x we wish to classify. However,
we altered the distance measure so that if xi is a positive
example we scale the measure of distance to x by a param-
eter γ . By controlling γ one controls the importance of the
positive class. In our experiments we looked at the maxi-
mum performance on the test set over the possible choices
of γ and k to know the highest attainable success rate of
k-NN. We refer to these results as k-NN∗.

We performed a similar search procedure with SVMs,
where we make a search over all possible values of the
threshold parameter in the linear model after training,
which we refer to as SVM∗. However, no attempt was
made to adapt C4.5.

Transductive inference
Most learning algorithms, such as the ones described in the
previous section, use what is called inductive inference.
In this procedure one is given labeled data from which
one builds a general model, and then applies this model
to classify previously unseen (test) data. Most well known
machine learning algorithms are of this type, for example
support vector machines, k-NN and C4.5 to name a few.

In transductive inference, in contrast to inductive infer-
ence, one takes into account not only the given (labeled)
training set but also (unlabeled) data that one wishes to
classify. Although there are many definitions of what is a
transductive algorithm (see, e.g. Vapnik, 1998) in this ar-
ticle we will mean algorithms which use unlabeled data
when building a model in order to improve predictions.
Hence, in contrast to inductive inference, different mod-
els can be built when trying to classify different test sets
even if the training set is the same in all cases. Note that
a transductive method can but does not need to improve
the prediction for a second independent test set of data:
the result is not independent from the test set of data. It
is this characteristic which could help to solve problem 3
(described in the Introduction): that the data we are given
has different distributions in the training and test sets. This
point is illustrated in Figure 1.

Transduction is not useful in all tasks: it depends
on the expense of obtaining the extra unlabeled points
relative to labeling them. In drug discovery in particular
we believe it is useful. Developers often have access
to huge databases of compounds, and compounds are
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Fig. 1. Toy example demonstrating transductive inference. The
training set is denoted as circle and cross symbols for the two
classes. The test set, which has a different distribution than the
training set, is denoted as dots, the labels of which are unknown.
Inductive algorithms only use the training set, leading to decision
rules like the solid line. Transductive algorithms take into account
the positions of points in the unlabeled test set which can lead to
improved decision rules such as the dashed line.

often generated using virtual Combinatorial Chemistry,
so compound descriptors can be computed, even though
the compounds have not been synthesized yet. In fact,
unlabeled data has been used before for query learning
(choosing which of the unlabeled points to label next),
see e.g Warmuth et al. (2002). Drug discovery is an
iterative process where the principal role of a machine
learning method is to help choose the next test set. If
the test set is the best that highly specialized experts can
produce, it is certainly worth something to further improve
it. Essentially using transduction can be seen as the second
step in a two-step candidate selection procedure after a
candidate test set has been produced, and its result is the
final test set.

We propose to use a transductive scheme inspired by the
ones used in Vapnik (1998); Jaakkola et al. (2000); Bennet
and Demiriz (1998), and Joachims (1999). The algorithm
is as follows.

Algorithm Firstly, we require an inductive classification
algorithm C and an update function h. The classifier C
should learn a real valued function g(x) given data xi ∈
RN , yi ∈ [−1, 1], i = 1, . . . , �. A label yi = ±1 indicates
high confidence that the i th example is labeled positive or
negative; a value of yi = 0 indicates no knowledge of
the label; values in between describe differing degress of
confidence. The magnitude of g(x) should be proportional
to the confidence in classification of assigning the label
y = 1, if g(x) > 0, or y = −1 otherwise. Finally,

the update function h(x), which should be given as input
a confidence level of the type output by g(x), outputs
a predicted label of the form y ∈ [−1, 1] for the next
iteration of the algorithm.

The iterative procedure is the following.

(1) One is given a training set of � examples and a test
set of m examples. Denote n = � + m and D =
{xi , yi }i=1,...,n where the first � vectors are from the
training set. Assign labels yi := 0, i = � + 1, . . . , n
to the (unlabeled) test examples.

(2) Train the classifier C using the data D to obtain the
function g.

(3) Update the test set labels, yi := h(g(xi )), i =
� + 1, . . . , n.

(4) Repeat from step 2 until convergence or a maximum
number of iterations have occurred.

(5) The final predictions for the test examples are given
by yi = 1, if g(xi ) > 0, or yi = −1 otherwise.

The function h can be based on an estimate of the
conditional probability of y given g(xi ). We chose the
function h(x) = tanh(s(x/n + b)) where s and b
were estimated using cross validation. This was done by
choosing a grid of values of the free parameters and then
choosing the instantion of the variables which resulted in
the best weighted success rate. More details are given in
the Supplementary information.

For the classifier C we choose the simple OR classifer
given in the previous section in Equations (5) and
(6) trained with the d features with the largest
value of the unbalanced correlation score f j =∑

yi >0 yi Xi j + λ
∑

yi <0 yi Xi j which is a real-valued gen-

eralization of Equation (1). Hence, g(x) = (
∑d

i=1 x(i))/d
is used as a measure of confidence in classification, whilst
f (x) defined in Equations (5) and (6) is used as a
predictor. The weighted labels yi of the test set are thus
incorporated into the classifier C via the feature selection
procedure. The transductive version of the OR classifier
should improve results by incorporating extra information
about the distribution of the test data. By combining the
transductive classifier with our feature selection approach
we hope to provide improved results over using only one
of the techniques.

Comparison techniques We also tried using an SVM in
conjunction with the unbalanced correlation score. This
comparison was included to see if any improvements
given by the transductive approach were universal, and
as a sanity check to see if the OR classifier is a powerful
enough classifier to predict accurately.
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Table 2. Percentage weighted test success rate of algorithms after selecting d = 2, . . . , 40 features with the unbalanced correlation score (cub)

2 4 6 8 10 15 20 25 30 35 40

k-NNcub 63.1 66.3 64.0 61.6 59.5 58.9 58.1 58.2 57.8 57.0 56.8
k-NN*cub 72.8 75.0 76.6 74.5 73.9 72.3 64.1 59.5 58.5 58.0 56.8
SVM*cub 72.8 75.0 76.6 74.5 73.9 73.2 64.1 60.8 57.8 56.5 55.2
ORcub 72.8 75.0 76.6 74.5 73.9 72.3 64.1 59.5 58.5 55.9 56.7
TRANS-ORcub 72.8 75.0 79.7 81.0 81.6 82.5 82.5 82.5 82.5 82.5 82.5

Table 3. Percentage weighted success rate of algorithms after selecting d = 2, . . . , 40 features with the Fisher score (fish)

2 4 6 8 10 15 20 25 30 35 40

C4.5 f ish 50.0 52.4 52.4 51.7 50.6 48.2 51.9 48.7 48.6 49.0 49.0
k-NN* f ish 50.0 55.2 56.6 58.3 58.2 54.3 56.4 54.4 53.0 54.8 54.4
SVM* f ish 57.7 57.7 57.9 55.7 56.0 52.7 51.5 53.2 50.0 52.6 52.0
OR f ish 53.0 52.5 52.0 52.7 52.2 52.1 52.2 51.7 51.7 51.7 51.5

Summary of methods
In summary we have proposed two techniques: a feature
selection score and a transductive classifier. They can be
used together, in conjunction with a base classifier. Base
classifiers we consider are: OR, SVM, C4.5 and k-NN.
We also consider alternative feature selection schemes, in
particular we study using the Fisher score. Finally, in the
results section we will also briefly discuss the results of
the KDD competition itself.

RESULTS
Accuracy of tested methods
Test performance of the algorithms is given in Tables 2
and 3. Table 2 shows the results of using the unbalanced
correlation score to select d = 1, . . . , 40 features and
then training k-NN, SVMs, OR and TRANS-OR. Train-
ing C4.5 was also attempted but gave only 50% success
rate for all feature set sizes, it appears this algorithm can-
not deal well with our particular success criterion (which it
was not designed for). The transductive method TRANS-
OR performs best out of the methods, giving 82.5% bal-
anced test success using 15–40 features. The model picked
by cross validation (that gave the best cross validation suc-
cess rate) had 10 features (the other free parameters were
chosen to be s = 4 and b = −0.15), giving a test success
of 81.6%. In comparison, the inductive version of the same
classifier was a few percentage points worse for each value
of d (the number of features selected) for d > 4. Note
that the difference between the algorithms also becomes
greater as d increases. This indicates that the transductive
algorithm is consistently selecting more relevant features
than the inductive one. The (usual) k-NN algorithm per-

formed worse than both of these classifiers, reported here
is the maximum success rate over choices k = 1, . . . , 8.
The modified k-NN algorithm (k-NN∗), altered to maxi-
mize the weighted success rate as described in the Meth-
ods, perfomed slightly better. Reported are the maximum
success rates over λ and k. The best results are still only
comparable with the inductive OR classifier. SVMs and
OR were also comparable. These comparisons justify that
the OR classifier is not too poor a classifier for this prob-
lem.

Table 3 shows the results of using the same classification
algorithms but using the Fisher score as a feature selector
instead. Again C4.5 performs poorly, but this time SVMs
and k-NN are slightly better than the OR classifier.

Further results We also conducted several other experi-
ments, all these results are described in more detail in the
supplementary material. Here, we will just briefly describe
some of these points. Firstly, we also tested some more
sophisticated multivariate feature selection methods (e.g
from Guyon et al., 2002) but the results were not as good
as using the unbalanced criterion score. We tried using
non-linear SVMs, but again, this did not improve results.
Training an SVM using all the features results in only 50%
success (chance level). We attempted to use SVMs as a
base classifier for our transduction algorithm which was
an improvement over using SVMs without transduction,
and in fact the results were about as good as the best ones
we achieved (using TRANS-ORcub). In this experiment
we also used the unbalanced correlation criterion with the
parameter λ = 1, showing the score is somewhat robust
with respect to this parameter. We also tried training the
classifiers with larger numbers of features, and while in-
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Fig. 2. Cumulative distribution functions for the random variable
‘number of nonzero features in the given examples’. The results
show rather different distributions in the training and test sets.

ductive methods failed to learn anything after 200 features,
the transductive methods continue to exhibit generaliza-
tion behaviour up to 1000 features (TRANS-ORcub ob-
tains 58% success with d = 1000 and 77% with d = 200),
indicating that many of the features are in fact relevant to
the problem, but can be difficult to find. We also compared
the univariate and multivariate versions of the score (de-
scribed in the Methods) and found an improvement when
using the multivariate version.

Competition results
In the KDD competition itself only 7% of all entrants
achieved a weighted success rate higher than 60%. The
winner of the competition used a Bayes network; to be
more precise, tree augmented Naive–Bayes (TAN). In
Cheng et al. (1997a,b) the authors describe some of the
Bayes network techniques which they employ. A summary
of their procedure is given at http://www.cs.wisc.edu/
∼dpage/kddcup2001/Cheng.ppt. Their result on the test
set is a weighted success rate of 68.4%. Note that it is hard

Table 4. Distribution of one and zero attributes for the positive and negative
classes with different feature sets: the features of TRANS-ORcub and 1000
randomly chosen features. Note the distribution changes between training
and test set for the random features, which would hinder generalization

TRANS-ORcub solution
Train set +ve −ve Test set +ve −ve

1s 24.05% 0.11% 1s 56.93% 7.17%
0s 75.95% 99.89% 0s 43.07% 92.83%

Random features
1s 6.47% 0.54% 1s 3.95% 5.90%
0s 93.53% 99.46% 0s 96.05% 94.10%

to compare with our results because we had knowledge of
the competition results and methods.

DISCUSSION
Data distribution
The data look rather different on the training and test
sets, and do not appear to be i.i.d. To illustrate this, we
consider constructing a single feature (random variable)
from the original 139 351 binary features by summing
them, for each example, i.e. we are left with the data
x̂ j = ∑139 351

i=1 X ji . One would expect two large samples
from the same distribution to converge rather rapidly to
the same empirical cumulative distribution functions for
this random variable. We measured this on the training and
test set, the results can be seen in Figure 2.

The training and test data are given in two separate plots,
and for each data set the distributions for the negative
and positive examples are also shown separately. Note that
positive examples have a larger value of this variable than
negative examples on the training set, but in the test set
the opposite is the case. In the training set 10 of the 11
largest values of this variable belong to positive examples
(and as there are only 42 positive examples this looks
encouraging as a discriminative feature) but in the test set
the largest 29 are all negative examples (and the test set is
smaller in size but with more positive examples). Indeed,
the two distributions for negative and positive examples
almost switch characteristics from training to test set. See
the Supplementary information for more details.

What can we conclude from this? With respect to the
discriminative ability of features exhibited in both training
and test set we can conclude there are many noisy features.
These features appear to be discriminative on the training
set (are +1 for positive examples and 0 for negative
examples) but do not have the same behaviour on the test
set. In this situation where many features may not be i.i.d.
it is still possible that there exist a few features that are (or
are close to) i.i.d. We would conclude that to perform well
on this data set one may be required to perform feature
selection to find these type of features.
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Distribution of selected features
Let us now consider the features found by the model we
selected by cross validation (TRANS-ORcub with d =
10), The question is: do the features selected by this
method appear to be more i.i.d. ? Is this why it generalizes
well? To try to answer these questions we measured the
mean percentage of zeros and non-zeros across the chosen
features separately for each class on both the training and
test sets. The results are given for the features from the
selected model, and from 1000 randomly selected features
in Table 4.

The results in part suggest that the selected features are
indeed more consistent than randomly chosen features.
Although the number of non-zeros in positive examples
increases from around 24% in the training set to 57% in the
test set, the same trends are apparent in both the training
and test sets (interestingly in the inductive algorithm a
decrease is observed, see the Supplementary information).
In the random features, on the other hand, one finds
less correlation. For the training set the percentage of
nonzeros for the positive examples is larger than the
percentage of non-zeros for the negatives (6.47 versus
0.54%) whereas in the test set the converse is true (3.95
versus 5.90%). This makes discrimination very difficult. In
the chosen features no such adverse affect is inherent and
consequently improved generalization ability is observed.

Summary
Prediction of molecular bioactivity for drug design is a
difficult problem which requires non-general techniques
to obtain reasonable performance. The data is highly
unbalanced, has a very large number of features and,
although unlabeled data can be available to augment
the labeled training data, it can have a rather different
distribution. Of the large number of features, only a few
seem to be relevant to the problem. Complex feature
selection methods overfit and simple standard methods as
the Fisher score also do not perform well. Constructing a
criterion which does not overfit but also takes into account
the unbalanced nature of the data when selecting features
improves performance. Secondly, using transduction to
take into account the distribution of the (unlabeled) test
data to both build predictions and select features also
improves results. Using both techniques together helps to
select features which have similar distributions between
training and test set, which can help to explain the positive
results observed. However, we believe these results are
relevant more from a general point of view (in terms of
building algorithms which are suited to the problem) than
in terms of their specific performance on this problem.

Transduction algorithms in the i.i.d. setting have
produced only modest improvements over inductive
algorithms. It is possible that their real strength lies in the
type of problem studied in this article. We note that in this

setting standard methods for measuring generalization
performance such as cross validation on the training set
are no longer reliable methods for model selection. Fi-
nally, transduction in the context of the data set analyzed
can be seen as the second step in a two-step candidate
selection procedure after a candidate test set has been
produced using another selection / prediction method. It is
possible that more direct ways of performing (combining)
this procedure can be derived, and they remain the subject
of further research.
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