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Teaser  This paper discusses the use of binary-encoded fragment substructures to scan 
databases to find molecules that are structurally similar to a bioactive query compound. 
 
Abstract  This paper summarises recent work at the University of Sheffield on virtual 
screening methods that use 2D fingerprint measures of structural similarity.  A detailed 
comparison of a large number of similarity coefficients demonstrates that the well-known 
Tanimoto coefficient remains the method of choice for the computation of fingerprint-
based similarity, despite possessing some inherent biases related to the sizes of the 
molecules that are being sought.  Group fusion involves combining the results of 
similarity searches based on multiple reference structures and a single similarity measure.  
We demonstrate the effectiveness of this approach to screening, and also describe an 
approximate form of group fusion, turbo similarity searching, that can be used when just 
a single reference structure is available.   
 
Introduction 
 
Virtual screening (VS) is increasingly used as a cost-effective complement to high-
throughput screening [1], and employs a range of computational methods to prioritise the 
selection and testing of large chemical datasets so as to ensure that those molecules that 
have the largest a priori probabilities of activity are assayed first in a lead discovery 
programme [2-4].  There are two principal types of virtual screening system: the popular 
structure-based approaches, such as docking and de novo design, can be used when the 
3D structure of the biological target is available; alternatively, the simpler, ligand-based 
approaches are applicable in the absence of such structural information.  Examples of 
ligand-based approaches include: pharmacophore methods, which involve the 
identification of the pharmacophoric pattern common to a set of known actives and the 
use of this pattern in a subsequent 3D substructure search; machine learning methods, in 
which a classification rule is developed from a training-set containing known active and 
known inactive molecules; and the similarity methods that form the focus of this paper.   
 
The basic idea underlying similarity-based VS is a very simple one that was first 
enunciated explicitly by Johnson and Maggiora [5], whose Similar Property Principle 
states that molecules that are structurally similar are likely to have similar properties.  
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Thus, if the Principle holds, then a database-molecule that has not been tested for 
biological activity but that is structurally similar to a molecule that is known to exhibit 
the activity of interest (the so-called reference or target structure) then the database-
molecule is also likely to be active; moreover, this molecule is more likely to be active 
than another database-molecule that has a lesser degree of similarity to the reference 
structure.  A simple VS strategy hence involves computing the similarity between the 
known reference structure and each of the molecules in a database, ranking the database-
molecules in decreasing order of the computed similarities and then carrying out real 
screening on just the top-ranked database-molecules.   
 
The ranking of a database in order of decreasing similarity was first described in two 
papers that were published in the mid-Eighties [6,7] and that both focused on the use of 
2D fingerprints, i.e., binary strings encoding the presence or absence of substructural 
fragments [8,9], for the measurement of inter-molecular structural similarity.  This 
approach was rapidly taken up and there is now a very large body of evidence that 
supports the use of fingerprint-based measures for VS [10-18].  It must be emphasised 
that many other types of structural representation have been suggested for the 
computation of molecular similarity, including physicochemical properties, chemical 
graphs, topological indices, 3D pharmacophore patterns and molecular fields inter alia 
[19-22].  However, the simple 2D fingerprint continues to be the representation of choice 
for similarity-based VS, not only because of its computational efficiency but also because 
of its demonstrated effectiveness in the many comparative studies that have been carried 
out.  Indeed, there is a continuing debate as to whether there is any benefit to be gained 
from the use of more sophisticated approaches to the computation of molecular similarity 
(see, e.g., [11,12,23-29]).  Note that we focus here on the use of 2D fingerprints to 
compute measures of molecular similarity; there is also an extensive literature associated 
with their use for applications in molecular diversity and in the clustering of chemical 
databases (see, e.g., [8,9,30-34]). 
 
The current importance of VS has led to a resurgence of interest in the use and further 
development of similarity measures based on 2D fingerprints, with much of the work 
being carried out by the group under Bajorath at the University of Washington (see, e.g., 
[35-39], by the group under Sheridan at Merck (see, e.g., [15,26,40-43]) and by the 
chemoinformatics research group in the University of Sheffield. This paper summarises 
recent work at Sheffield, focusing on the effects of varying the similarity coefficient that 
is used for searching, and of combining multiple database searches [44-51].   
 
Comparison of Similarity Coefficients  
 
At the heart of any system for similarity-based VS is the measure that is used to quantify 
the degree of resemblance between the reference structure and each of the structures in 
the database (real or virtual) that is being screened.  A similarity measure comprises three 
components: the representation that is used to characterise the molecules that are being 
compared; the weighting scheme that is used to assign differing degrees of importance to 
the various components of these representations; and the coefficient that is used to 
determine the degree of relatedness between two structural representations.  Thus far, 



there have been only limited studies of the effect of weighting on molecular similarity, 
and, as noted in the introduction, we focus here on one particular structural 
representation, the 2D fingerprint.  Turning then to the similarity coefficient that is used 
for comparing fingerprints, the most popular is the Tanimoto coefficient.  If two 
molecules have a and b bits set in their fragment bit-strings, with c of these bits being set 
in both of the fingerprints, then the Tanimoto coefficient is defined to be  

cba
c . 

The Tanimoto coefficient gives values in the range of zero (no bits in common) to unity 
(all bits the same); it is also known as the Jaccard coefficient, and, when used to measure 
dissimilarity rather than similarity, as the Soergel coefficient [20].  The Tanimoto was 
used in some of the earliest studies of fingerprint-based similarity [7,10] and is now the 
coefficient of choice in both in-house and commercial software systems for chemical 
information management.  Although the Tanimoto coefficient is widely used, Flower has 
noted that it typically yields low similarity values when the reference molecule in a 
similarity search has just a few bits set in its fingerprint [52].  This marked size-
dependency was confirmed in later studies [53-55], and it has also been shown that the 
coefficient has an inherent bias towards certain similarity values [37].  These 
observations were the starting point for our comparative studies of similarity coefficients, 
as described below.   
 
Many different disciplines require the ability to quantify the degree of similarity (or 
conversely, the distance or dissimilarity) between two objects, each characterised by 
some number of attributes or descriptors, and there is thus a very extensive literature 
describing similarity coefficients that can be used for this purpose (see, e.g., [56-58]).  
Although many of these are designed for use with continuous, real-valued data they can 
often be expressed in a form that makes them suitable for determining the similarities 
between pairs of binary records, such as 2D fingerprints [20].  The Tanimoto is one such 
coefficient but there are many others and Holliday et al. [44] carried out a comparison of 
no less than 22 of these in searches of the NCI AIDS database (available from the 
National Cancer Institute at http://dtp.nci.nih.gov/) using Unity 2D fingerprints (available 
from Tripos Inc. at http://www.tripos.com).  Examples of some of the coefficients that 
were used are listed in Table 1.  The results of each search were ranked in decreasing 
similarity order and the rankings for two searches compared by counting the number of 
compounds in common in the top-ranked t structures; these numbers of compounds-in-
common were then input to an hierarchical agglomerative clustering procedure (as first 
suggested by Hubálek [56]).  The procedure was repeated using different values for t, 
different reference structures, and different hierarchical clustering methods.  Whilst there 
were minor variations in the number and the constitution of the clusters identified in a 
particular run, it was clear that some groups of similarity coefficients tend to produce 
analogous rankings when used for fingerprint-based VS, whilst other groups provide very 
different views of the similarity data.  For example, the Cosine and Tanimoto coefficients 
were generally clustered together, as were the Forbes and Hamming Distance, with the 
Russell-Rao coefficient consistently being in the third group of coefficients identified in 
the majority of the experiments.  These three broad groupings are evident in the typical 
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clustering of search outputs shown in Figure 1.  Similar results were obtained in 
additional experiments using other databases and other types of 2D fingerprint [46].   
 
Combination of Rankings Using Similarity Fusion 
 
The comparisons described by Holliday et al. [44] and by Salim et al. [46] suggest that 
some of the available coefficients quantify different types of structural resemblance.  It 
hence seems not unreasonable to suggest that enhanced VS performance might result 
from the use of multiple similarity coefficients, rather than just a single one as is 
normally the case.  This has led us to consider the use of data fusion methods for 
combining the results of database searches that use a common reference structure but that 
use different similarity coefficients.   
 
Data fusion was first developed for use in signal processing and involves combining 
inputs from multiple sensors [59]; it is now used in a range of application domains [60], 
with the application to database searching being first identified in the context of textual 
information retrieval (see, e.g., [61,62]).  The use of data fusion for VS is shown in Box 
1, where a user-defined reference structure is searched against a database using several 
different similarity measures, an approach we refer to as similarity fusion; an analogous 
approach, called consensus scoring, can be used to combine the results of different search 
algorithms and/or scoring functions for ligand-protein docking [63,64].  Typical data-
fusion rules include the maximum, the minimum and the sum of the rank positions, P(I,J), 
allocated to each database-molecule J by each of the similarity measures; in our 
experiments, we have found that the sum of the rank positions normally gives the best 
results.  The similarity scores, S(I,J), can be used instead of the rank positions that are 
derived from them; the latter approach involves some loss of information but provides a 
form of standardisation for the different magnitudes and the different distributions of the 
scores resulting from different similarity measures [65,66].   
 
Early studies of similarity fusion by Kearsley et al. [40] and by Ginn et al. [65,67] 
showed that improvements in screening performance could be achieved when multiple 
structure representations were used, rather than just a single representation.  Our studies 
have sought to determine whether comparable increases in performance could be 
achieved using different types of similarity coefficient.  We selected 13 coefficients 
(including all of those in Figure 1) from the 22 studied in the previous comparison, 
chosen as being representative of the clusters of related coefficients that we had identified 
as yielding very similar database rankings when used for VS.  A series of searches was 
carried out on the MDL Drug Data Report database (MDDR, available from MDL 
Information Systems Inc. at http://www.mdli.com) for molecules belonging to seven 
bioactivity classes (5HT4 agonists, adrenergic , dopamine agonists, ACE inhibitors, 
HIV-1 protease inhibitors, benzodiazepine agonists, and lactamase inhibitors) and three 
different types of 2D fingerprint.  Specifically, fused searches were carried out, as shown 
in Box 1, using all of the IC13 possible combinations for I=1-13 coefficients.  The fused 
runs for all of the activity classes (with the sole exception of the lactamase inhibitors) 
showed an increase in the numbers of active molecules retrieved in response to known-
active reference structures, when compared to the number retrieved in runs that employed 
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just a single similarity coefficient (i.e., I=1 in the formula for the number of 
combinations).  The results indicate that a good combination of the right number 
(typically two to four) of coefficients can improve screening performances over searches 
using a single coefficient and, in particular, over the industry-standard Tanimoto 
coefficient.  However, and unfortunately, there is no one combination which performs 
equally well on all active classes: indeed, the best-performing combination for one type 
of activity class often performs poorly in searches for a different type of bioactive 
molecule.  For example, the Tanimoto and Russell-Rao coefficients appeared in many of 
the best-performing combinations in searches for 5HT4 and benzodiazepine agonists, but 
in none of the best-performing combinations in searches for dopamine agonists and ACE 
inhibitors [46].   
 
It was disappointing to find that it is not consistently possible to identify some single 
combination that can be used to boost screening performance in all circumstances.  
However, this finding led us to seek reasons for the inconsistent behaviour, taking as our 
starting point a consideration of the sizes of the molecules involved.  Specifically, it was 
noted that there was a marked preference for certain coefficients to perform well when 
searching for active molecules of a particular size (as reflected in the numbers of bits set 
in their fingerprints) but to perform less well when the sought molecules were of a 
different size.  As examples of this inherent bias, the Russell-Rao coefficient appeared in 
many of the best combinations involving larger active molecules while the Forbes 
coefficient appeared in many of the best combinations involving smaller active 
molecules.  This behaviour is illustrated in Figure 2, which demonstrates the effect of size 
in searches for 5HT4 agonists averaged over 21 different reference structures.  The figure 
shows the distribution of the numbers of bits set in the top 5% of the ranked MDDR 
database in searches using the Tanimoto, Forbes and Russell-Rao coefficients.  It will be 
seen that the three coefficients retrieve markedly different sizes of molecule: the Forbes 
(or Russell-Rao) coefficient has a marked preference for small (or large) molecules whilst 
the Tanimoto coefficient tends to retrieve molecules from the centre of the size 
distribution.  We have noted previously the effect of molecular size on the performance 
of the Tanimoto coefficient; this study demonstrated that such size-dependency was a 
characteristic not just of the Tanimoto but also of other similarity coefficients that might 
be considered for fingerprint-based VS.   
 
Later work developed a mathematical model relating a coefficient�’s degree of bias to the 
relative sizes (i.e., numbers of bits) of a reference molecule and the database-molecules 
with which it was being compared [45].  This study also showed that analogous size 
effects can come into play in algorithms for dissimilarity-based compound selection, 
which seek to identify molecules that are as dissimilar as possible (whereas VS normally 
seeks molecules that are as similar as possible) [31,32,34].  For example, it was possible 
to rationalise previous reports of the tendency of the Tanimoto coefficient to yield 
structurally diverse database-subsets containing large numbers of small molecules.   
 
The starting point for the work summarised in this and the previous section was a desire 
to identify a similarity coefficient (or coefficients) that could out-perform the Tanimoto 
coefficient when used for fingerprint-based virtual screening.  The studies have been 
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unsuccessful, in the sense that it has not been possible to identify a coefficient (or 
coefficients) with a consistently better level of performance.  That said, improvements in 
VS performance are obtainable, especially when information is available as to the sizes of 
the molecules that are being sought; in the absence of such information, our extended 
studies suggest that the Tanimoto remains the coefficient of choice. 
 
Combination of Rankings Using Group Fusion  
 
As discussed thus far, and as summarised in Box 1, data fusion involves combining the 
rankings (or similarities) that result from searching a database with a single reference 
structure but with multiple similarity measures.  There is, however, an alternative 
approach to data fusion that was first suggested by Xue et al. [38] and by Schuffenhauer 
et al. [68].  This approach, which we refer to as group fusion, can be used when several, 
structurally-diverse reference structures are available, as may be the case from analysis of 
published competitor compounds or from the hits in an HTS experiment.  The 
implementation of group fusion is described in Box 2; this is analogous to Box 1, but 
with two key differences: the reference molecule is allowed to vary and the similarity 
measure is kept constant; the fusion here involves similarity scores, rather than rank 
positions, since experiments showed that better results were obtained from combining the 
similarity scores associated with the molecules in a database, rather than the rank 
positions associated with those scores (whereas the rank positions tend to perform better 
for similarity fusion) [49].  In all of our experiments, the measure was based on the 
Tanimoto coefficient and a 2D fingerprint.  
 
Hert et al. [49] compared several different approaches to VS when a small number of 
actives, ten in their experiments, are available for analysis, and concluded that the group 
fusion procedure shown in Box 2 provided a high level of search effectiveness in 
simulated VS experiments with the MDDR database.  These experiments used the so-
called MAX fusion rule: if database molecule J has a similarity score of S(I,J) with 
reference structure I then the fused score is simply the largest of all the scores {S(I,J)}.   
 
Table 2 summarises the results of MDDR searches for sets of ten, randomly chosen 
active reference structures; the results here are mean values averaged over ten such sets 
for each of the eleven activity classes that were chosen for use in the experiments.  The 
table lists the eleven activity classes, the numbers of active molecules and the mean pair-
wise similarity for each class (the latter approximating to the degree of structural 
diversity in the class) and the recall for searches that retrieved the top-5% of the 
database.  Assume that there is a total of N molecules in the database with the activity of 
interest, and that n of these actives are retrieved when a threshold is applied to the ranked 
database to retrieve the top-ranked molecules; then the recall is defined to be n/N, i.e., the 
proportion of the actives retrieved at the top of the ranking (the top 5% in Table 2).  The 
set of biological activity classes here was selected from MDDR such that: the mode of 
action is known; the activity is of current pharmaceutical interest; and there is a 
substantial number of MDDR molecules categorised as exhibiting that activity.  The 
datasets chosen are quite disparate in nature, some of them being structurally 
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homogeneous (e.g., renin and HIV-1 protease inhibitors) while others are structurally 
diverse (e.g., cyclooxygenase and protein kinase C inhibitors).   
 
The benefits that can be obtained from using multiple reference structures, rather than the 
single reference structures that characterise conventional similarity searching, were 
quantified by using every single active molecule in each of the chosen activity classes as 
the reference structure, and then recording the mean and the maximum recall for these 
searches, as detailed in the right-hand part of Table 2.  The values listed under Mean 
correspond to the performance that might be expected using a single reference structure 
and are clearly much lower than the figures for group fusion: in fact, the use of ten 
actives, rather than just one, typically results in an increase of over two-thirds in the 
number of actives retrieved.  Consider now the figures in Table 2 for the best possible 
single similarity search, i.e., the figures listed under Maximum.  These represent the best 
single similarity searches possible from the many hundreds of individual bioactive 
molecules, and it will be seen that they are broadly comparable with those obtained using 
group fusion: group fusion gives a better average level of performance than does the best-
possible similarity search for five of the activity classes, with the converse applying for 
the other six classes.  On average, therefore, picking any ten active reference structures 
and combining them using group fusion will enable searches to be carried out that are 
comparable to even the very best conventional similarity search that is possible using a 
single reference structure.  This is a striking result, and one that strongly supports the use 
of multiple reference structures, if available, for VS. 
 
Inspection of the table shows that the absolute performance of group fusion tends to 
increase as the self-similarity of the active molecules increases.  The correlation with 
intra-class similarity is not unexpected; what is of importance here is that good screening 
is obtained even with quite diverse activity classes (such as the protein kinase C 
inhibitors, the cyclooxygenase inhibitors and the D2 agonists), where conventional 
similarity searching performs very poorly.  It is for these diverse datasets, therefore, that 
the benefits of group fusion are most evident, when compared to conventional VS.  The 
relationship between relative performance and diversity was analysed in detail by Whittle 
et al. [48] and by Hert et al. [51], using activity classes with a wide range of intra-class 
similarities.  This work demonstrated very clearly that the benefits of group fusion are 
greatest when the sought actives are structurally diverse; conventional similarity 
searching or similarity fusion, conversely, are most effective when the actives are 
strongly clustered in structural space.  The two approaches to data fusion would thus 
appear to be complementary in character.   
 
In concluding this section, we must emphasise that other ligand-based VS approaches are 
possible when multiple active structures are available.  Thus, if the known actives have 
some degree of structural commonality then a pharmacophore mapping program [69] can 
be used to identify the common pharmacophore and then to use this pattern as the basis 
for a 3D database search [70].  Alternatively, if many structurally diverse actives and 
structurally diverse inactives are available then techniques such as substructural analysis 
[71], recursive partitioning [72] or binary kernel discrimination [73] should be used.  
However, when just a few, structurally diverse actives are available then the group fusion 
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approach described here would seem to provide a useful addition to the computational 
tools available for compound selection.  
 
Turbo Similarity Searching 
 
Most recently, the work described above on VS using multiple reference structures has 
led us to devise a novel, but very simple, way of enhancing the effectiveness of 
similarity-based VS when just a single reference structure is available [50].  We refer to 
this approach as turbo similarity searching; a turbocharger increases the power of an 
engine by using the engine�’s exhaust gases, and turbo similarity searching seeks to 
increase the power of a search engine procedure by using the reference structure�’s nearest 
neighbours.  Turbo similarity searching is based on the general applicability of the similar 
property principle, which implies that the nearest neighbours of a reference structure 
possessing some particular biological activity of interest are also likely to possess that 
activity.  This being so, let us assume not just that these nearest neighbours are likely to 
be active but that they actually are active; we can then use group fusion (as described 
above) to combine the results of similarity searches that use these presumed-active 
nearest neighbours as the reference structures.  The overall search strategy is summarised 
in Box 3. 
 
The effectiveness of turbo similarity searching was studied using the MDDR datasets 
described in Table 2, and using both similarity and turbo similarity searches based on 
each and every one of the 8294 active molecules in the eleven activity classes.  In these 
experiments, the 2D fingerprints were those based on circular substructures in the 
Pipeline Pilot software (available from Scitegic Inc. at http://www.scitegic.com), and the 
similarity coefficient was again the Tanimoto.  Some of the search results are listed in 
Table 3, where it will be seen that turbo similarity searching is nearly always superior to 
similarity searching in its ability to identify active molecules, with some of the increases 
in performance being really quite marked.   
 
It is perhaps surprising that the best results are generally obtained with the largest number 
of nearest neighbours, since the more that are used, the greater the number of inactive 
molecules that are likely to be included in the fusion, i.e., it is less and less likely that the 
nearest neighbours will be true actives.  However, the fact that the average recall does 
increase, even with 100 nearest neighbours, means that even these molecules continue to 
provide useful structural information.  At still larger numbers of nearest neighbours (200 
in our experiments with these data), performance does flatten-off and then starts to 
decrease [50].  
 
For comparison with the similarity and turbo similarity searches, Table 3 also lists the 
recalls obtained in upper-bound (or lower-bound) turbo similarity searches.  These were 
obtained by using the top-ranked 100 actives (or inactives) for each reference structure in 
the fusion step.  It will be seen that the lower-bound searches (i.e., using the original 
reference structure and the top-ranked true inactives in the group-fusion step) are, on 
average, little different from conventional similarity searches: this unexpected result 
arises from the fact that even when inactive molecules are used in a turbo search, these 
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nearest-neighbour molecules still contain sufficient relevant substructures in common 
with the reference structure to enable the identification of further active molecules.  The 
upper-bound searches (i.e., using the original reference structure and the top-ranked true 
actives in the group-fusion step) demonstrate the very high level of performance 
obtainable with full knowledge of the actives.  Thus, when a turbo search is carried out, 
the true actives amongst the nearest neighbours increase performance, whilst the true 
inactives have little effect, yielding the overall enhancement in performance evident in 
Table 3.   
 
Conclusions 
 
Similarity searching using 2D fingerprints is one of the simplest VS tools and is thus 
widely used in the early stages of lead-discovery programmes, when only limited SAR 
and structural data are available.  Its principal function is to identify a few actives that 
can then form the basis for more detailed VS studies that employ more sophisticated 
techniques, with by far the most common being pharmacophore mapping and/or docking, 
as exemplified in Kubinyi�’s recent, extensive review of success stories in computer-aided 
drug discovery [74].   
 
In this paper, we have summarised the principal results of a series of studies that sought 
to enhance the effectiveness of current systems for similarity-based VS.  These studies 
have shown that: the well-established Tanimoto is the coefficient of choice for computing 
molecular similarities unless there is specific information about the sizes of the molecules 
required for testing; that similarity fusion and group fusion provide simple, 
complementary ways of combining multiple sources of similarity information; and that it 
is possible to increase search performance by the use of a second-stage search based on 
the nearest neighbours resulting from an initial similarity-based ranking of the database.  
We believe that these techniques provide simple and effective ways of enhancing the 
performance of current systems for similarity-based screening. 
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Coefficient Expression 

cba
c  Tanimoto 

ab
c  Cosine 

cba 2  Hamming 

m
c  Russell-Rao 

ab
cm  Forbes 

 
Table 1.  Similarity coefficients for use with 2D fingerprints.  Assume that two 
molecules, A and B, are represented by binary fingerprints containing a total of m bits; 
assume further that a (or b) of the bits are set to one in the fingerprint for A (or B) and 
that c of the bits are set to one in both of the fingerprints (i.e., the logical AND of the two 
bit-strings).  Note that Hamming is a distance, so that large values correspond to 
dissimilar pairs of molecules, rather than similar pairs of molecules as for the other 
coefficients listed here.  
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Similarity searching 
Activity class name 

Number of 
active 

compounds

Mean 
pair-wise 
similarity 

Group 
fusion 

Mean Maximum

5HT3 antagonists 752 0.35 49.0 21.2 41.0 
5HT1A agonists 827 0.34 37.2 18.4 39.3 
5HT Reuptake inhibitor 359 0.35 49.7 24.0 42.7 
D2 antagonists 395 0.35 37.4 17.4 35.6 
Renin inhibitors 1130 0.57 88.6 80.5 93.2 
Angiotensin II AT1 antagonists 943 0.40 80.4 48.0 81.7 
Thrombin inhibitors 803 0.42 58.6 33.5 63.6 
Substance P antagonists 1246 0.40 47.1 26.9 57.7 
HIV protease inhibitors 750 0.45 61.6 37.6 63.7 
Cyclooxygenase inhibitors 636 0.27 26.5 9.4 21.1 
Protein kinase C inhibitors 453 0.32 48.0 19.4 46.1 

 
Table 2.  Simulated VS using MDDR activity classes.  The mean pair-wise similarity is computed using the Tanimoto coefficient and 
Unity 2D fingerprints, averaged over all of the molecules in an activity class.  The figures in the right-hand part of the table are mean 
recalls at 5% for group fusion and similarity searching. 
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Turbo similarity searching 
 

Top-100 
inactive NNs Activity class Similarity 

searching 
10 NNs 20 NNs 100 NNs 

Reference 
and top-

100 active 
NNs  

5HT3 antagonists 31.7 36.8 38.6 44.0 65.7 32.1 
5HT1A agonists 26.3 29.6 31.8 36.2 55.3 31.9 
5HT reuptake inhibitors 21.6 24.0 23.8 24.1 62.8 21.7 
D2 antagonists 25.1 26.9 27.5 30.3 68.6 28.8 
Renin inhibitors 90.4 92.1 93.1 94.7 96.6 89.8 
Angiotensin II AT1 antagonists 77.4 83.5 86.7 92.0 95.2 92.2 
Thrombin inhibitors 44.5 47.1 48.3 50.7 71.6 33.9 
Substance P antagonists 28.6 31.7 32.2 34.1 53.8 15.8 
HIV protease inhibitors 51.6 52.6 53.3 55.2 76.1 49.0 
Cyclooxygenase inhibitors 13.7 15.0 15.3 14.4 49.2 12.0 
Protein kinase C inhibitors 21.0 21.1 21.1 20.6 58.1 18.3 
Average over all classes 39.2 41.9 42.9 45.1 68.4 38.7 

 
Table 3.  Simulated VS using MDDR activity classes.  Mean recall at 5% for similarity searching with just a single reference 
structure, turbo similarity searching using different numbers of nearest neighbours (NNs), and upper- and lower-bound searches. 



 
 
 
Figure 1.  Typical clustering of similarity coefficients using the group average hierarchic 
agglomerative clustering method, based on the numbers of nearest neighbours in common 
in searches of the NCI AIDS database. The numbers 1-22 denote the 22 similarity 
coefficients that were considered: of these, the Tanimoto, Cosine, Hamming, Russell-Rao 
and Forbes coefficients listed in Table 1 are numbered 1, 12, 7, 3 and 14, respectively.  
Alpha denotes the complement of the similarity coefficient at which the clustering takes 
place in each stage of the agglomeration, with the three broad clusters identified in most 
of the clustering experiments being evident by alpha ~ 0.3. 
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Figure 2.  Distribution of number of bits set in the top-ranked 5% of the molecules, 
averaged over 21 searches of a subset of the MDL Drug Data report database for 5HT4 
agonists.  The molecules are characterised by Unity 2D fingerprints and the searches use 
the Tanimoto, Russell-Rao and Forbes coefficients.   Reprinted with permission from 
Salim, N. et al. (2003) Combination of fingerprint-based similarity coefficients using data 
fusion. Journal of Chemical Information and Computer Sciences 43, 435-442.  Copyright 
2003 American Chemical Society.  
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For each similarity measure, I 
Compute the similarity, S(I,J), between R and each database-molecule J 
Rank the database in decreasing order of the similarity scores 

 Note the rank position, P(I,J) corresponding to S(I,J) for each database-molecule 
Combine the set of rank positions {P(I,J)} for each molecule J to give a new fused score  
Rank the database in decreasing order of the fused scores. 
 
Box 1.  Combination of multiple database rankings using a fixed reference structure, R, 
and using similarity fusion of rank positions.   
 
 
For each reference molecule, I 

Compute the similarity, S(I,J),  between I and each database-molecule J 
Combine the set of similarities {S(I,J)} for each molecule J to give a new fused score 
Rank the database in decreasing order of the fused scores. 
 
Box 2.  Combination of multiple database rankings using group fusion of similarity 
scores.   
 
 
Compute the similarity, S(R,J), between the reference structure R and each database-

molecule J 
Identify the nearest neighbours of R   
For each such nearest neighbour, I  
 Compute the similarity, S(I,J), between I and each database-molecule J  
Combine the set of similarities {S(R,J),{S(I,J)}} for each molecule J to give a new fused 

score 
Rank the database in decreasing order of the fused scores 
 
Box 3.  Turbo similarity searching 
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