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Abstract

This paper collects together a miscellany of results
originally motivated by the analysis of the general-
ization performance of the “maximum-margin” al-
gorithm due to Vapnik and others. The key feature
of the paper is its operator-theoretic viewpoint. New
bounds on covering numbers for classes related
to Maximum Margin classes are deriveddirectly
without making use of a combinatorial dimension
such as the VC-dimension. Specific contents of the
paper include:

� a new and self-contained proof of Maurey’s
theorem and some generalizations with small
explicit values of constants;

� bounds on the covering numbers of maximum
margin classes suitable for the analysis of their
generalization performance;

� the extension of such classes to those induced
by balls in quasi-Banach spaces (such as��-
norms with� � � � �).

� extension of results on the covering numbers
of convex hulls of basis functions to�-convex
hulls (� � � � �);

� an appendix containing the tightest known bounds
on the entropy numbers of the identity opera-
tor between���� and���� (� � �� � �� � �).

1 Introduction

Linear classifiers have had a resurgence of interest in recent
years because of the development of Support Vector ma-
chines [22, 24] which are based on Maximum Margin hy-
perplanes [25]. The generalization performance of support
vector machines is becoming increasingly understood with
an analysis of the covering numbers of the classes of func-
tions they induce. Some of this analysis has made use of
entropy number techniques.

In this paper we focus on the simple maximum margin
case more closely and do not consider kernel mappings at
all. The effect of the kernel used in support vector machines
has been analysed using similar techniques in [32, 11] The
classical maximum margin algorithm effectively works with

the class of functions

� ��
�
� �� � � � � ������ � �� ������ � �

�
�

(The standard notation used here is defined precisely below
in Definition 3 .) The focus of the present paper is to consider
what happens when different norms are used in the definition
of �.

Apart from the purely mathematical interest in develop-
ing the connection between problems of determining cov-
ering numbers of function classes to those of determining
entropy numbers of operators, the results in the paper indi-
cate the effect to be expected by using different norms to de-
fine linear function classes in practical learning algorithms.
There is a considerable body of work in the mistake-bounded
framework for analysing learning algorithms for linear func-
tion classes exploring the effect of different norms. The
present paper can be considered as a similar exercise in the
statistical learning theory framework.

The following section collects all the definitions we need.
All proofs in the paper are relegated to the appendix.

2 Definitions

We will make use of several notions from the theory of Ba-
nach spaces and a generalization of these called a quasi-
Banach spaces. A nice general reference for Banach spaces
is [33]; for quasi-Banach spaces see [8].

Definition 1 (Banach space)A Banach space ��� � � ��� is
a complete normed linear space � with a norm on � , i.e. a
map � � �� � � � ����� that satisfies

1. ���� � � if and only if � � �;

2. ����� � ������� for scalars � � � and all � � �;

3. ��� ��� � ���� � ���� for all ��� � � .

Definition 2 (Quasi-norm) A quasi-normis a map like a
norm which instead of satisfying the triangle inequality (3
above) satisfies

3�. There exists a constant � such that for all ��� � � ,
��� ��� � ������ � �����

All of the spaces considered in this paper are real. A norm
(quasi-norm) induces ametric (quasi-metric) via ������ �
�� 	 ��� . We will use� to denote both the norm and the



induced metric, and use��� �� to denote the induced metric
space. Aquasi-Banach space is a complete quasi-normed
linear space.

Definition 3 (�� Norms) Suppose � � �
� with 	 � � or

� � �
� (for infinite dimensional spaces). Then

� for � � � � �, ����� �� ���� � �
��
��� �
�������

(provided the sum converges).

� for � ��, ����� �� ���� � �	
� �
��.
If ��
� � �, we often write ��� to explicitly indicate the
dimension. The space ��� is defined as ��� �� 
� � ������ �

��. Given ��� � � � ��� � ��� , write �� � ���� � � � ����.
Suppose � is a class of functions defined on �

� . The ���
norm with respect to�� of � � � is defined as

�����

� �� �������� � � � � ���������� � (1)

For � � � � �, � � ���� is a norm, and for� � � � � it is a
quasi-norm. Note that a different definition of the��� norm
is used in some papers in learning theory, e.g. [28, 34]. A
useful inequality in this context is the following (cf. e.g. [16,
p.21]):

Theorem 4 (Hölder’s inequality) Suppose �� 
 � � satisfy
�
� �

�
� � � and that � � �� and � � �� . Then

�� � �� � ���������
Suppose��� �� is a metric space and let� 
 �. We say
�	 
 � is an �-cover for� if for all � � �, there is an
� � �	 such that���� �� � �.

Definition 5 (Covering and Entropy number) The �-cover-
ing numberof �, denoted by ���� �� ��, is the size of the
smallest �-cover of �. The 	th entropy numberof a set
� 
 � is defined by

����� � ����� �� �� ���
� � �� ���� �� �� � 	� (2)

Given a class of functions � 
 �
� , the uniform covering

numberor �-growth function is

�
������ �� �	


�����
������ � � ���

� �� (3)

Covering numbers are of considerable interest to learning
theory because generalization bounds can be stated in terms
of them [1, 30].

Definition 6 (Operator Norm) Denote by � � ��� �� a
(quasi)-normed space, �
 is the (closed) unit ball: �
 ��

� � � � ���� � ��. Suppose � and � are (quasi)-
Banach spaces and � is a linear operator mapping from �
to � . Then the operator normof � is defined by

��� �� �	

����� � � � ���� (4)

and � is called boundedif ��� � �.

We denote by����� � the set of all bounded linear operators
from � to � .

Definition 7 (Entropy numbers of operators) Suppose � �
����� �. The entropy numbers of the operator� are defined
by

���� � � ������� �� ���� ������ (5)

The dyadic entropy numbers���� � are defined by

���� � � ����� �� �� ������� � for � � � � (6)

The main reference for entropy numbers of operators is [7].
Many of the properties shown there for Banach spaces���
actually carry over to quasi-Banach spaces — see e.g. [8].
The factorization theorem for entropy numbers is of consid-
erable use:

Lemma 8 (Edmunds and Triebel [8, p.7]) Let ����� be
quasi-Banach spaces and let �� � � ������ and � �
������. Then

1. ��� � ���� � � ���� � � � � � � �.

2. ��� � � � , ���
������ � ������
���.

Finite rank operators have exponentially decaying entropy
numbers:

Lemma 9 (Carl and Stephani, [7, p.14,21])Denote by
��� Banach spaces, let � � ������ and suppose that
������ � � �. Then for all � � � ,

���� � � �������������� (7)

In fact this bound is tight to within a constant factor of�.
One operator that we will make repeated use of is the

identity operator If� and� are (quasi)-Banach spaces,

�� � � � �� defined by�� � 
 �� 
� (8)

This seemingly trivial operator is of interest when� �� �
because of the definition of the operator norm. As we shall
see below the entropy numbers of�� � ���� � ���� play a cen-
tral role in many of the results we develop. In the following
we will use� to denote a positive constant and��� is loga-
rithm base 2.

3 Entropy Numbers of Linear Function
Classes

Since we are mainly concerned about the capacity of linear
functions of the form

���� �� � � � with ���� � �� and���� � �� (9)

we will consider bounds on entropy numbers of linear opera-
tors. (Here� � �� and� � �� are norms or quasi-norms.) This
will allow us to deal with function classes derived from (9).
In particular we will analyze the class of functions

�
�
��� ��

�
� �� � � � � ������ � �� ������ � �

�
(10)

where� � � , �� 
 � �� and �
� � �

� � �. More specifi-

cally we will look at the evaluation of����� on an�–sample

��� � � � ���� 
 ��� and the entropy numbers of the evalu-
ation map in terms of the��� metric. Formally, we will study
the entropy numbers of the operator��� defined as

��� � ��� � ���
��� � � �� �� � ��� � � � �� � ��� � � ����



The connection between��� and����� is given in Lemma 11
below. Since one cannot expect that all problems can be cast
into (10) without proper rescaling we will be interested in
constraints on� and�� such that�� � ��� � � (and rescale
later).

Lemma 10 (Product bounds from Hölder’s Inequality)
Suppose �� 
 � � with �

��
�
� � �. Furthermore suppose � �

� � � � ��� � � � ��� with ������ � �� and ������ � ��.
Then

�	

������ ����������

����� � ����� (11)

In order to avoid tedious notation we will assume that�� �
�� � �. This is no major restriction since the general results
follow simply by rescaling� by ����.

Our interest in the operator��� and its entropy num-
bers is explained by the following lemma which connects
������� to the uniform covering numbers of�����.

Lemma 11 (Entropy and Covering Numbers) Let � � � .
If for all �� � ����� ��, ������ � ��� � ���� � �, then

�����
�

��������� � � 	 �� (12)

3.1 The Maurey-Carl Theorem

In this section we present a special case of the famous Maurey-
Carl theorem. The proof (in the appendix) presented pro-
vides a (small) explicit constant.

The result is not only of fundamental importance in sta-
tistical learning theory — it is of central importance in pure
mathematics. Carl and Pajor [6] prove the Maurey theorem
via the “Little Grothendieck theorem” which is related to
Grothendieck’s “fundamental theorem of the metric theory
of tensor products”. Furthermore the Little Grothendieck
theorem can be proved in terms of Maurey’s theorem (and
thus they are formally equivalent). See [7, pages 254–267]
for details. The version proved by Carl [3] (following Mau-
rey’s proof) uses a characterization of Banach spaces in terms
of their Rademacher type. The latter is defined as follows.

Definition 12 (Rademacher type of Banach spaces)
A Banach space � is of Rademacher type �, � � � � � if
there is constant  � � such that for every finite sequence


�� � � � � 
�� 
 � we have

� �

�

�����
��
���

!��"�
�

����� �" �  

�
��
���

�
���
����

� (13)

Here !��"� � ��� ������#"� is the �th Rademacher function
on ��� ��. The Rademacher type � constant  ���� is the
smallest constant  satisfying (13).

Theorem 13 (Maurey-Carl) Let � be a Banach space of
Rademacher type �, � � � � �. Let � � � and let � �
����� � ��. Then there exists a constant � such that for all
� � � , � � �

����� � � �������
�
��� ���

��
�

� �
		�� �

�

� (14)

It is of interest to determine an explicit value for the constant
�. Carl [3] proved that for� � ��� � $,

��������
� ���� � � ��$����������� (15)

This leads to the following straight-forward corollary:

Corollary 14 (Small Constants for Maurey’s theorem) If
� is a Hilbert space, (14) holds with � � �,  ��$� � �, and
� � ������.

The dual version of Theorem 13, i.e. bounds on���� �
���� has identical formal structure as Theorem 13. We only
state the Hilbert space case here.

Theorem 15 (Dual Version of the Maurey-Carl Theorem)
Suppose % is a Hilbert space, � � � and � a linear opera-
tor � � % � ���. Then

���� � % � ���� � ����
�
��� ���

��
�

� �
		���

� (16)

where � � ������.

As explained in Appendix B, we suspect that a smaller value
of � is possible (we conjecture 1.86). Theorem 15 can be
improved by taking advantage of operators with low rank via
Lemma 9.

Lemma 16 (Improved Dual Maurey-Carl Theorem) Let
% be a Hilbert space, and suppose �� � � � with � � �
and � is a linear operator � � % � ���. Then

���� � % � ���� (17)

� ���


��
�


� if � � ����

�
�
��� ���

�
�
� � �

�����
if ���� � � � �

���� �
� ����� if � � �

where � � ������.

4 Dimensionality and Sample Size

Lemma 16 already indicated that the size� of the sample
generating the evaluation operator��� plays a crucial role
in the scaling behaviour of entropy numbers. The dimen-
sionality� of � (i.e. the dimension of the samples��) also
comes into play. This guides our analysis in the present sec-
tion. In section 4.1 we will deal with the case where� � �,
section 4.2 deals with the situation where� is polynomial
in �.

Depending on the setting of the learning problem we
need bounds for the entropy numbers of the identity map
between��� and ��� . We will use such bounds repeatedly
below. We have collected together a number of bounds on
this in appendix C.

4.1 Dimensionality of� and Sample Size� are Equal

We begin with the simplest case —� is a finite dimensional
Hilbert space of dimensionality� � �, hence we will be
dealing with�����. Lemma 16 applies. It is instructive to
restate this result in terms of covering numbers.



Theorem 17 (Covering Numbers for�����) There exists
constants �� �� � � such that for all 	 � � , and all � � �,

�������������� �
�

� ��	�	� if � � ���
�


�����	�� ��������� if � � ���
�
�

(18)

It is interesting to note the analogy with the Sauer-Vapnik-
Chervonenkis lemma [31, 20, 1] which shows that the growth
function has two regimes. We will now develop generaliza-
tions of the above result for����� with ��� 
� �� ��� ��. An
existing result in this direction is

Lemma 18 (Carl [3, p. 94]) Let � � ����� � ����, � � �

and let � � � � �. Then there exists a constant � � ����
such that for all � � � ,

����� � � ���
�
��� ���

�
� �

�

�

		 �
�

� (19)

(For � � � one can get a better bound along the lines of
Lemma 16.) This leads to the following theorem:

Theorem 19 (Slack in�����) Let � � �, 
 � �, and �
� �

�
� � �. Then there exist constants �� �� such that with & ��

�
� � �

� 	 �
� we have �������� � �

�
��� ���

�
�
� � �

���
and

�������������� � �� ���� ����� �

4.2 Dimensionality of� is Polynomial in the Sample
Size�

Now we will consider����������� when� � �. We will
derive results that are useful when� is polynomial in�.
With ��� � ��� � ��� defined as before, we proceed to
bound�������.

Lemma 20 (Slack in�����) Let � � � � �, 
 � �, �
� � �

� �
�, and ��� � � . Then there exists a constant �� � � such
that with

�������
�
���� �

�
��

� ����� � �
�
� � ��� ���� ���� � ��� � ���� (20)

� ��
�
��� ���

�
�
� � �

�� �
�� �

�
�
��� ���

�
�
� � �

�� �
�(21)

Consider now the situation that� � � and 
 � �. From
Lemma 20,

�������
�
���� �

�
��

� ��
�
��� ���

�
�

�
� �

�� �
� �

��� ���
��

�
� �
		 �

�

� ����� ������
�
�

�
� �

�
������

��
�

� �
	
�

Thus regression with����� has a sample complexity of���� �
�

	��� ���
���� ignoring ������ factors. Interestingly Zhang

[34] has developed a result going in the other direction: he
makes use of mistake bounds to determine similar covering
numbers, whereas our covering number bounds (computed
directly) recover the general form of the mistake bounds when
turned into batch learning results. (Note, too, that Zhang
uses a normalised definition of� � ���� and so care needs to
be taken in comparing his results to ours.)

5 Covering Numbers of����� �

Adaboost [10] is an algorithm related to the variants on the
maximum margin algorithm considered in this paper. It out-
puts an hypothesis which is the convex hull of the set of weak
learners and its generalization performance can be expressed
in terms of the covering number of the convex hull of weak
learners at a scale related to the margin achieved [21]. In this
section we consider what effect there is on the covering num-
bers of the class used (and hence the generalization bounds)
when the�-convex hull is used (with� � ��� ��). Variants of
Adaboost can be developed which use the�-convex hull and
experimental results indicate that� affects the generalization
in a manner consistent with what is suggested by the theory
below [2]. The argument below is inspired by the results in
[4, 5].

We are interested in���� ����' �� ����when' is a subset
of a Hilbert space% and����' � denotes the�-convex hull
of ' (see Definition 21). Recalling the definition of�����

� ,
let �����

� �� �
��
��� ���
��������. For all 
 � �, we have

�����

� � �����

� and thus���� '� ���� � ���� '� ��� �.
Since� � ���

� induces a Hilbert space we will now bound
���� ����' �� ���� in terms of covering numbers with respect
to the Hilbert space norm� � ���

� . Since the results will hold
regardless of�� in fact we will bound the uniform covering
number����� ����' ��.

Definition 21 (�-Convex Hull) Suppose � � �, and ' is a
set. Then the �-convex hull of ' (strictly speaking the �-
absolutely convex hull) is defined by [13, chapter 6]

����' � �
�
���

�
��
���

(��� � �� � '� (� � � �
��
���

�(��� � �

�

As an example, consider the�-convex hull of the set of Heav-
iside functions on��� ��. It is well known that the convex hull
(� � �) is the set of functions of bounded variation. In Ap-
pendix D we explore the analogous situation for� � � � �.

Lemma 22 Let � � � � �, let � be a set and let �	��� be
an �-cover of �. Then �����	���� is an �-cover of ������.

Lemma 23 Let � � � � �, Æ � �, ��� �� � � and �� � �� �
Æ. Then ��Æ� ������� � ����� �����	�����.

Lemma 24 Let � � 
��� � � � � ��� 
 % where % is a
Hilbert space. Define the linear operator � � ��� � % such
that ��� � ��, � � �� � � � � 	, where �� is the canonical basis
of ��� (e.g. �� � ��� �� � � � � ��, �� � ��� �� � � � � ��, etc.). Then
������ � ������ �.

Theorem 25 (Covering Numbers of�-Convex Hull) Let
% be a Hilbert space, let ' 
 % be compact, and let � ��
�	
��� �)�. Then �����Æ� ����' �� �


��
	�����Æ�

�
� � ��

�
��� ���

�
� � ��	��� �

�

		 �
�� �

�

� Æ 	 ��

�
�

Suppose���� ' � � � �	 �
 for some� � � . We can determine
the rate of growth of�����Æ� ����' �� as follows. Neglect-
ing the� inside the log in (45) we can explicitly solve the



equation. Numerical evidence suggests that the dependence
of the value of� in (45) is not very strong, so we choose
�� � Æ*�. Then a simple approximate calculation yields:

Corollary 26 Suppose ' 
 % is such that for some � � � ,

���� ' � � � �	 �
. Then for � � � � �,

�����Æ� ����' �� � �����

�
�

Æ

� ��
���

��� �*Æ�

For � � � this is +���*Æ�� �����*Æ�� whereas we know

from [4] that the rate should be+���*Æ�
��
��� �. Of course for

large�, the difference is negligible (asymptotically in�*Æ).

6 Conclusions
We have computed covering numbers for a range of vari-
ants on the maximum margin algorithm. In doing so we
made explicit use of an operator theoretic viewpoint already
used fruitfully in analysing the effect of the kernel in SV ma-
chines. We also analysed the covering numbers of�-convex
hulls of simple classes of functions.

We have seen how the now classical results for maximum
margin hyperplanes can be generalized to function classes
induced by different norms. The scaling behaviour of the
resulting covering number bounds gives some insight into
how related algorithms will perform in terms of their gener-
alization performance. In other work [32, 11, 26] we have
explored the effect of the kernel used in support vector ma-
chines for instance. In that case the eigenvalues of the kernel
play a key role. In all this work the viewpoint that he func-
tion class is the image under the multiple evaluation map
(considered as a linear operator) of a ball induced by a norm
has been used.

Gurvits [12] asked (effectively) what can learning theory
do for the geometric theory of Banach spaces. It seems the
assistance flows more readily in the other direction. Perhaps
the one contribution learning theory has made is pointing out
an interesting research direction [27] by giving an answer to
Pietsch’s implicit question where he said of entropy numbers
[19, p.311] that “at present we do not know any application
in the real world.” Now at least there is one!
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[17] A.M. Olevskĭi. Homeomorphisms of the circle, mod-
ifications of functions, and Fourier series.Ameri-
can Mathematical Society Translations (2), 147:51–64,
1990.

[18] A. Pietsch. Operator ideals. North-Holland, Amster-
dam, 1980.

[19] A. Pietsch. Eigenvalues and s-Numbers. Cambridge
University Press, Cambridge, 1987.

[20] N. Sauer. On the density of families of sets.Journal of
Combinatorial Theory, 13:145–147, 1972.



[21] R. Schapire, Y. Freund, P. L. Bartlett, and W. Sun Lee.
Boosting the margin: A new explanation for the effec-
tiveness of voting methods.Annals of Statistics, 1998.
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A Proofs

Proof (Lemma 10) If � � � choose�� � � and
� � �,
otherwise simply set�� � � and
� � �� 	 ������. Since
�
� �

�
� � � we can always find two positive numbers��� 
� �

� such that�� � 
� and �
�� �

�
�� � �. Note that by convexity

�,�� � �,��� for � � ! � !� and therefore��� � ���� . Thus
we may apply Ḧolder’s inequality with�� and
� to obtain

�	

�����

��� ��� � �	

�����

����������� � ���� (22)

which proves (11).

Proof (Lemma 11)Fix ��. We have

������� � ���������� � ���������� �� � � (23)

where the last equality follows from the definition of��� .
Since�� � ����� ��, we have�������� � � �����. Thus

������������ � ���������� � � and thus���������� �
�
�

� � �
����. Since�� � ����� �� was arbitrary, we conclude that

�����
�
�

��������� � � 	 �.

Proof (Corollary 14) The fact that� � � and ��$� � �
follows from the construction of Hilbert spaces [33]. What
remains to be shown is the bound on�. Specializing (15) for
Hilbert spaces, rewriting���� �� �� ���

�
������

�

�
� � (and

conversely������) we obtain

�
�-� � ��������������� (24)

The next step is to find a (simple) function������� such that
�������������� � ���������������� or equivalently�� �
�������*������ for all � � � � �. We choose������� �
�* �����
 � ��. Next we have to bound��. Set

.����� ��
������� �����

�
�

���� ��

���� �

����� � ���

� (25)

One can readily check that for any� � � , .����� attains
its maximum value at� � �. Furthermore� �� .�����
is monotonically non-decreasing. Thus taking the limit (note
that

�

���
�

�
� �




�

�
�

�
and that��� �� ����) we take

��

���

.����� �  ��  �! (26)

Resubstitution yields� � �
�
 ��  �! � "�"��� which com-

pletes the proof.1

Proof (Lemma 16) The first bound (for� � ����) fol-
lows immediately from the definition of entropy numbers by
���� � � ���. The second line of (17) is a direct conse-
quence of Theorem 15. All that remains is the third line:
for � � � we factorise� as� � � Æ �� � ��� � ��� and
subsequently

���� � � ���� ���������� � ��� � ��� �� (27)

1A (marginally) tighter version of the theorem
could be stated by using� directly to bound �� �
�
�
������

�
��� �����

�
� ��

�
���� ���.



By Lemma 9,

��������� � ��� � ��� � � � � ��������� � � � ������

Theorem 15 tells us���� � � ���������. Substituting, we
are done.

Proof (Theorem 17) We distinguish between the two last
bounds of Lemma 16. For� � � � � we can bound

������ � ��� � ���� � �
�
��� ���

��
�

� �
		���

� �
�
��� ����

����
(28)

and hence� � ����� ����. Application of Lemma 11
proves the first inequality of (18)2. For the second inequal-
ity simply note that the third line of Lemma 16 states (for
� � �)

������ � ��� � ���� � � ��
�
��� �

�

� � � 	�

�
� �������� � �

Rewriting the conditions on� in terms of� and collecting
all remaining terms into the constants� and�� completes the
proof.

Proof (Theorem 19)As before we observe that��������� �
������� and we will factorise the operator��� � ��� � ���
as in the diagram (with�� � �	 �

� ):

���
��� ��

�� ���
��

��
��

�
���

���

���

����������

(29)

The idea is that the identity operator uses up the “slack” be-
tween� and! implicit in the constraint�� � �

� � �. As will
be seen, a smaller value of& is achieved for larger values
of !. But ! can be no larger than�� 	 �

� �
�� in order for us

to be able to use Lemma 10. If equality is achieved in the
�� 
 constraint, then�� maps��� to ��� and of course nothing
(additional) is gained.

We will show that����� � � and then use Lemma 8
to bound�������. The operator��� is identical to���

except its domain is��� . Thus��� � � �� �� � ��� � � � �� �
���. By Lemma 10, since������� � �, and �

� �
�
� � �, we

have

����� � �	

�����	

��������
�

� 
��
������� ��

�	

�����	

�� � ��� � �� (30)

By Lemma 8

��������� � �������� Æ �� � ��� � ��� �

� ������� � �
�
� � ��� � � ����������(31)

2A slightly more involved and longer argument gives a bet-
ter bound: there are constants��� ��� �� � � such that

������������� 	
�
�
� � �� �������

���

��
for � � ��


�
�.

Hence using Lemmas 11, 31 and 18 we obtain

������� � �

�
�

�
���

�
��

�
� �

�� �
�� �

	

(32)

�����
�
�

�
���

�
��

�
� �

�� �
�

(33)

� �

�
�

�
���

�
��

�
� �

�� �
��

�
���

(34)

�����
�
�

�
���

�
��

�
� �

�� �
�

(35)

� �������
�
��� ���

��
�

� �
		�

� (36)

Here we used the product inequality for entropy numbers in
(33), (35) holds since���	!�� � ����
��	�, and more-
over there exists a constant�� such that

�
�
� ���

�
��
� � �

�� �
��
�
��� ���

�
�
� � �

��
for � � �. Solving for� then immedi-

ately gives the bound on the covering numbers.

Proof (Lemma 20)Similar to Theorem 17 consider the fac-
torization

���
��� ��

�� ���
��

��
��

���

���


���

����������

(37)

Exploiting the factorization we can bound

��������� � ��� � ����

� ����� � �
�
� � ��� ���� ���� � ��� � ����

which proves (20). Next we have to bound the individual
terms separately. For the first factor Lemma 31 can be ap-
plied. The dual version of the Maurey-Carl theorem ap-
plies to the second term. What remains to be shown is that
� ����� � �. This, however, follows immediately from Lemma
10 in analogy to the previous section.

Proof (Lemma 22) Let � � ������ be arbitrary,� ���
��� (���,

��
��� �(��� � �, where/ may be infinite. For

� � �� � � � � / , let #�� � �	��� be such that�#�� 	 ��� � �.
(Such#�� exist by definition of�	���.) Let #� ��

��
��� (�#��.

We have

�� 	 #�� �

�����
��
���

(��� 	
��
���

(�#��

�����
�

��
���

�(�� �	

�
��� 	 #���

�
��
���

�(��� � � (38)



Proof (Lemma 23)Suppose0	� is an��-cover of�����	�����.
From Lemma 22, for any� � ������, there exists a#� �
�����	����� such that�� 	 #�� � ��. But for any #� �
�����	�����, there exists##� � 0	� such that� #� 	 ##�� � ��.

By the triangle inequality�� 	 ##�� � �� 	 #��� � #� 	 ##�� �
�� � �� � Æ. Thus0	� is anÆ-cover of������.

Proof (Lemma 24)Let� � �
�� � � � � 
�� � ���� . Write� ���
��� 
���. Then�� � ��

��
��� 
���� �

��
��� 
���� ���

��� 
���. Since� � ���� ,
��
��� �
��� � �. Thus������ � �

������. Likewise, for any� � ������, � �
��
��� 
���,

with � � �
�� � � � � 
�� � ���� . Thus������ � ������ �.

Proof (Theorem 25)Let 	 �� ����� ' � and let�����	� ��
��������	��' ��. Thus we have����������	� � �	��' �� � �
and by Lemma 23, if

�����	� � �� � Æ� (39)

then�����Æ� ����' �� � �. Thus

�����Æ� ����' �� � 
��
	�����Æ�


� � ��"� holds�� (40)

By Lemma 24,�����	� � �����. In order to compute�����
we factorise� as follows

����
� ��

�� ���
��

��
��

� %

���


�

����������

(41)

Recalling the definition of�, and observing that�� � ����
for � � �� � � � ��, we obtain

� ��� � 
��
������� ��

� �������� � 
��
������� ��

������� � � (42)

By 8,

���
����� � ����� � �
�
� � ��� ��
� �� � ��� � %�� (43)

Choosing� � � and using Corollary 14 and Lemma 31 we
obtain

������ � ����"�"�� " �

�
������ � ��

�

� �
�� �

�

(44)

Furthermore we have that��� � 
��������� �� ���� � �.
Thus we obtain

�����	� � ��

�
����� � �

� �

�

� �
�� �

�

(45)

Combining (40) and (45) concludes the proof.

B Maurey’s Theorem
In this appendix we provide a proof of Maurey’s theorem
for operators� � % � ��� which gives an explicit value for
the constant. This is considerably more work, and we get
a correspondingly poorer estimate, than in the dual case of
theorem 13 for operators� � ��� � %. The argument of this
section is due to Professor Bernd Carl.

Theorem 27

�
�� � ��� � ���� � ���������
�
�����
 � ��

�

����
� (46)

We compute the entropy of an operator� � ��� � ��� by
factorizing it as

���
� ��

� ���
��

��
��

���

���

��

���������

(47)

where� � � � � is a free parameter that we will optimize
over at the end. The two factors will be dealt with by using
the following two propositions, respectively.

Definition 28 ��� � denotes the average

��� � �

�
��

������1���� (48)

of ����� over the �-dimensional Gaussian measure

1��� ��
�

��#����

�
�

��
�
��������� (49)

Proposition 29 (Pajor, Talagrand)

�������� � � �
�
���� � (50)

We exploit the fact that the entropy numbers of the identity
operator from��� to ��� are known. They take the form:

Proposition 30 (Scḧutt) For � � � � �, there exists a
constant � such that for all � � � ,

����� � ��� � ���� � �

�
�����*� � ��

�

� �
�

(51)

Here and below��� is to base 2. Scḧutt [23] did not pro-
vide an explicit value for�. We compute one below in
Lemma 32.

In order to use Proposition 29 to bound���� � ��� �
��� �, we need to upper bound��� �. Using
�, � � �� � � � ��,
to denote the coordinates of� in the orthonormal basis
e� � � �
�� � � � � 	�, we have

��� � �

�
��

������1���

�
��

��

�������1���
� �

�

�

��
��

��
���

�����
��
���


���e�� e��
�����
�

�1���

� �
�

�

�
��
���

�
��

�����
��
���


���e�� e��
�����
�

�1���

� �
�

�



The Khinchin inequality [33] states that��
��

�����
��
���


�(�

�����
�

�1�
�� � � � � 
��

����

� ��

�
��
���

�(���
����

where

�� � �

�
$��� � ��*��

$��*��

����
� �

��

Hence

��� � �
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����

�
��
���

���e�� e����
������

���

�
�
�

�
� ��
���

�
��
���

���e�� e����
������

���

� �
�

�
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���

�� �e����
����

� �
����� �	


�����
�� �e���

�
�
������� � � ��� � ��� �

�
�
������� � ��� � ����

By Proposition 29, we get

���� � ��� � ��� � � ��
�
� �
�
�
�
������� � ��� � �����

Next, we combine the obtained bound with Schütt’s result,
using

������� � ��� � ���� � ���� � ��� � ��� � ����� � �
�
� � �����

to obtain������� � ��� � ���� �

��
�
� �
�
�
�
������� � ��� � ���� �

�
�����*� � ��

�

� �
�

�

Now choose� � � ������ � ��. Observe� � � for � � �.
Thus

������� � ��� � ���� � ������
�
�
�
�������� � ������

�����
�

� �����
�
����

�
������ � ��

�

����

� � ����
�
������ � ��

�

����
%

where

% � �
�

� �����
�
���

�
������ � ��

�

� �
� �����

�
���

� 

�

� ����
��� �����
� ���
�

� ����
���

with 
 � �*�. Note� � � � 
 � �. Let  � ����
� ��,
so
 � �� 	 �. Then � � and

% � %�"� � ��� 	 ��
�
��  

�
�� �

One can check that��
��� %� � �
�
� and%� � has a

unique maximum for � �����. Computing������� , setting
it equal to zero and solving numerically, one finds the max-
imum occurs for � ��    ���" " ��� � � � at which point
%� � � ��  "!  �� � � � �� �. Thus

������� � ��� � ���� � ������
�
�����

� � ��

�

����
(52)

and all that remains is to bound�, which we now do.
From (66)� � ��������"����. But our choice of� � �

and hence� � ��������"���� � ���!��� � � � . Substituting
this value of� into (52) along with the numerical value of
� we get

������� � ��� � ���� � !�������
�
������ � ��

�

����
�

Noting that����� � ��� � ���� � ������� � ��� � ����, we
obtain a statement valid for even as well as odd numbers. To
infer a bound on�
, � � � , we set� � ��, hence� � �*�.
Then

�
�� � ��� � ���� � !�������
�
� ���� ��
 � ��

�

����
�

Now for ������ � � � � we have��	�
��
� ���



� ��	� ��� ���



�

��	��� �����


 � � ��	��� ���


 � Thus for������ � � � �,

�
�� � ��� � ���� � ���������
�
�����
 � ��

�

����
� (53)

Conjecture on Best Value of Maurey Constant

A value of������ is not particularly satisfying. We believe
in fact it is quite loose. Our reasoning is as follows. Consider
all operators� � ��� � ��� such that��� � �. By definition
���� � � �. Observe that the unit ball���� is the ellipsoid of
maximum volume contained inside���

�

. Since

vol�� ����� �� � ��

	��

���� � ����� ��vol�����
�
�

where���� �� is the covering number of� we have that

vol�� ����� �� � ��

���	vol����� ����� �����

�
��

But vol�� ����� �� is maximized over all� such that��� � �
by choosing� � ��. Thus we have for��� � �

���� � � ������ and ��

��� ���� � � ��


��� �������

We conjecture that for all	 � � and all� with ��� � �

���� � ��� � ���� � ����� � ��� � ����

If this were true, by (55) the Maurey constant would be 1.86.

C Bounds on����� � ���� � �����

We now determine bounds on��������� �� �����
�
������. These

have been given in [29, 4.10.3], [18, page 172], [14, 3.c.8],
[23], and [9, p.141], (see also [8, page 101]). All but the
last two references only considered�� � �. The most recent
contribution by Edmunds and Triebel [9, page 141], [8, page
101] subsumes all of the others and is summarized in the
Lemma below. For�� � � by an argument of Schütt [23] it
is asymptotically optimal in	 and�.



Lemma 31 Let � � �� � �� � �. Then ����� � �
�
�� �

����� �

�


�



� if � � � � ���	
���� ����� � �

�
����������� if ���	 � � � 	

�����	��������� if � � 	

for � � � where � is a positive constant independent of �
and � depends on �� and ��.

We can find a nice (small) explicit value for� for the case
when�� � � which is of interest in its own right. We proceed
with that case now.

C.1 When�� � �

For�� � � by an argument of Schütt [23] it is asymptotically
optimal in� and�. Since we need an explicit value of the
constant we provide the explicit proof below.

Lemma 32 For all � � � , and all � � �,

�
����� � ��� � ���� � ������"���� �����
 � ��

�
(54)

�
����� � ��� � ���� � ��� 

�
�����
 � ��

�

����
� (55)

Proof Let ���� �� denote a�� �-ball in � dimensions. Let
� � �. For a given number of dimensions�, we determine
the smallest� so that��

� can be covered by

��� ��
��
���

����		�
��
����	�

���� �� � �2�e� (56)

where e� is the�th canonical basis vector. For
 � ��
� we

have
��
��� 


�
� � � � �
�� � � � 
� � �����. Setting


� � � (the radius of���� ��) gives�� � �*� � � � ���.
We will now set� � ���. Along each of the� axes of��

� we
have used���*���	�	�*���	���� cubes. We have added
and subtracted one here so we do not multiply count the box
that will live at the very center of��

� . Therefore along all�
axes, we have

�����*��� 	 �� � �

� �����*��� 	 �� � �

� �����*��� ��	 �� � �

� ���*�� �� � ��

Thus���� � � ���*� � �� � �. Observe that by construction
of �, any point in���

� � ��
� � which is not covered by�

must lie within a�� 	 ��-dimension�-ball on one of the
�� 	 �� principal axes of��

� not contained in��
� . Thus

by separately covering all possible choices of� axes in the
manner above, we cover��

� . Since there are
�
�
�

�
ways to

choose the� axes, we have that

������ �� ������� � �� � ��

�
�

�

�
(57)

�-���-balls cover��
� , where� � �

����
. In other words

����������
�
���� � �

����
� (58)

for � � � where������ � ��� ��� � ���. Now set

3����� �� ��� ������� (59)

Thus

� ����������
�
���� � �

����
(60)

Let � � 3����� and so�
�� � �
����

. Suppose)���� is a func-
tion such)��3������ � � for � � �. Then �

����
�����
�

�
����

and so

�
�� � �

�)���������
for � � �� (61)

Choose�)���� � �* �����
 � ��. Thus we need to show

.��� �� �� ��
�)���3������

�
� �� (62)

for some constants�� depending on�. We will then set
)����� � �)����*��. Numerical calculations indicate that
.��� �� �� achieves a maximum value of�� �� ������"����
at ����� � ��� ���. Similarly, we can numerically deter-
mine that.��� �� �� achieves a unique maximum value of
�� � ���!"�� ��� at ����� � ��� ��. Thus for� � 
�� ��,
)���� � �)����*�� will do. We then have from (61) that for
� � �,

�
�����
�
���� �

�
��

�)����

����

�
�
���!"�� ����� ���

��
�
� �
		���

� ���!"" 
�
��� ���

��
�
� �
		���

The following interpolation lemma follows immediately from
[18, p.173].

Lemma 33 Let � � �� � �� � �. Then for all � � �

�����
�
����� � ������

�
���������� (63)

�����
�
����� � ������

�
�������� (64)

�����
�
������ � ������

�
������������� � (65)

Combining this Lemma with (54) gives for� � �,

�����
�
���� � ������

�
������� � �

�
������" ������ � ��

�

����
(66)

C.2 When�� � �

Lemma 31 and the proof of Lemma 32 suggests a similar
form of the result in Lemma 32 should be obtainable when
�� � �. However it turns out that for�� � � the value of
constant obtained is quite unsatisfactory. This is because its
value is dominated by the behaviour of.���� �� 	� for very
small � and	 (��� 	� � ��� ��). For learning applications
these are uninteresting values of� and	. Furthermore for
some applications we are actually interested in how��������
behaves as a function of� for fixed 	. For example if we



wanted to use�� as a “capacity control knob.” In that case it
is necessary to determine the dependence of� on �� explic-
itly. In doing so it turns out that in the case of�� � � one
has to pay too high a price for the elegance of an expression
of the form (54) and we end up being better served by an im-
plicit formula, which nevertheless can be easily computed.
This implicit formuladoes exhibit the expected behaviour in
� for fixed	.

Setting2 �� ���� we have from (60) that

� �������� �
�

�2
� (67)

For a given� we can easily determine�� numerically: Let
2� �� 
2 � 3���2�� � � � ��. Such a2� is unique. Then
�� � �*�2�. Using this method one can plot� � ���� �� �
������������ as a function of� � � for various�. As
one would expect, the log covering numbers decrease with
decreasing�.

D �-Convex Hull of Heavisides

We take the following definitions from [15]. Suppose4 
 �

and� � 4 � � . For( � �,

0!�'� 4� �� �	

��
���

���5��	 ������!

where
���� 5������� is an arbitrary finite system of non-over-
lapping intervals with��� 5� � 4 for � � �� � � � � 	.

Suppose� is continuous on��� 5�. Let 6 be the union of
all open subintervals on which� is either strictly monotonic
or constant. Then

7 � 7" � ��� 5� �6

is theset of points of varying monotonicity. If � is not con-
tinuous everywhere, we let8 denote the set of points of dis-
continuity and set&7 � 7 �8.

If ( � �, � is said to be of bounded(-variation and we
write � � '()! if 0!��� &7� � �. If 0!��� &7� � � we
say� � '()!���.

Let � � 
%�
 	 9� � 9 � ��� 5�� where%�
� is the
Heaviside (step function).

Lemma 34 For any / � � , for � � ( � �, ���! ��� �
'()!���.

Proof For any� � ���! ���, we can write� as

��
� �
��
���

&�%�
	 9��

where we will assume that9� � 9� � � � � 9� . Observe that
&7" � 
9� � � � �� � � � � /�. Thus0!��� &7" �

�
��
���

�����
��
���

&�%�9� 	 9��	
��
���

&�%�9��� 	 9��

�����
!

�
��
���

�����
��
���

&� 	
����
���

&�

�����
!

�
��
���

�&��! � ��

Since���! ��� � '()!��� for all / � � , we have for
� � ( � �

��
���

���! ��� � '()!����

As a way of illustrating the “size” of'()!, in a fashion that
gives some additional intuition to our entropy number results
determined directly, we will now compute the fat-shattering
dimension of'()!���.

Proposition 35 Suppose � � ( � � and � � 1 � �. Then

*�+���
�1� �
�

1!
�

Proof Suppose
��� � � � � ���� 
 '()!��� 1-shatter the
points�
�� � � � � 
�� 
 ��� 5� with respect to�!�� � � � � !��.
We will show that� � �1�!. For � � �� � � � � ��, we have
7"� � 

�� � � � � 
��. There must always be a sign assign-
ment5� � 
	�� ��� which is realized w.r.t.�!�� � � � � !�� by
�� such that

����
��	 ���
����� � �1

for 2 � �� � � � ��. Thus

0!��# � &7"�� �
��
���

����
��	 ���
�����! � ��	 ����1�!�

But by hypothesis0!���� &7"�� � � and so��	 ����1�! �
�. Thus

� � ��!1�! � � � �1�!

for � � � and1 � �.

The smallness of'()! is well illustrated by the following
theorem from [15]. For� � - � � define

,�
�-� � 
� � ��� 5�� � � �7 � �� �
� : � ��� 5��

���:�	 ��
�� � 7�
	 :�$��
For� � � and� � - � � � �,

,�
�-� � 
� � � is �-times differentiable and

� ��� � ,�
�-	 ����
Theorem 36 (Laczkovich and Preiss)Let -� ( � �, - �
�*(. Then � � '()! if and only if there exists a homeo-
morphism ; of ��� 5� into itself such that � Æ ; � ,�
�-�.

(For related results see [17] and references therein.)


