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This paper discusses the use of several rank-based virtual screening methods for prioritizing compounds in
lead-discovery programs, given a training set for which both structural and bioactivity data are available.
Structures from the NCI AIDS data set and from the Syngenta corporate database were represented by two
types of fragment bit-string and by sets of high-level molecular features. These representations were processed
using binary kernel discrimination, similarity searching, substructural analysis, support vector machine, and
trend vector analysis, with the effectiveness of the methods being judged by the extent to which active test
set molecules were clustered toward the top of the resultant rankings. The binary kernel discrimination
approach yielded consistently superior rankings and would appear to have considerable potential for chemical
screening applications.

INTRODUCTION ranking methods order a database in order of decreasing
Virtual screening is the name given to a range of probability_ of activity and classification met.hods divide a
computational methods that are used to prioritize the biologi- database into those molecules that are p_redlcted to be active
cal testing of large chemical data sets, with the aim of and tho_se that are predicted to be inactive. We focus here
ensuring that those molecules with thé largest a priori on rank_lng methods. The next section of the paper descrl_be_s
probabilities of activity are assayed first in a lead discovery the various methods that we have chqsen o t est, and th's IS
programt-3 At the risk of oversimplification, it is possible then followed by an evaluation pf their effectiveness using
to identify four main classes of virtual scréening methods two large databgses that contain both structural and bioac-
these differing in the amount of structural and bioactivity’ t!V'ty dat_a: the first of these is _the We”'k’?OW” NCI AIDS

file'® while the second of these is a large fileiofvivo data

data that is available. If just a single active molecule is from the multinational agrochemicals company Syngenta.

available, SUCh. as a competitor's compound ora nqtural The paper concludes with a summary of our major findings.
product, then similarity searching can be used, in which a

database is ranked in decreasing order of similarity to the
known active structurélf several actives have been identi- VIRTUAL SCREENING METHODS

fied, then pharmacophore mapping can be carried out 10 gjmijarity Methods. The simplest way of predicting the
ascertain common patterns of features that may be responyjyely activities of a set of compounds is by computing their
sible for the observed activity, with a 3D substructure search ginjiarities to a training set of known actives and or inactives,
of the database then being carried out to identify further j o "4y nearest neighbor classifier. Four different versions
molecules that contain the pharmacophoré.it is not of this basic approach were tested as follows. Assume that
possible to identify a common pharmacophore, as Often q {raining set contairl¥a actives and\; inactives and that
occurs with heterogeneous sets of actives (e.g., the initial i) is the similarity between a test set moleciilend a

weak leads from a high-throughput screening program), andyaining set moleculé. ThenSs is defined to be the mean
if a fair number of both active and inactive molecules are similarity to all the actives, i.e.

available, then these can be used as training data for a
machine learning systefrFinally, if the 3D structure of the 1
biological target is known, then a docking study can be S\(j)=—
carried out to identify those database molecules that are N, i e Aiives
complementary to the binding site.

This paper reports a comparison of methods that can beD, is defined to be the mean dissimilarity to all the inactives
used for the third class of virtual screening methods, which (not something that is expected to be a good predictor but
includes such common approaches as substructural analyincluded here for purposes of comparison), i.e.
sis&9 genetic algorithm&? neural networkd>*?and decision
treest® > Two main classes of approach are possible:
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Snaxis defined to be the similarity to the most similar training Table 1. Weighting Schemes for Substructural Analysis

set active, i.e. weighting scheme weight
Shax(J) = max{(i,j)} i € Actives AVID (*+ 1)/(%\+ 1)

N

and, finally, Sy— is defined to be the mean similarity to all AN
the actives minus the mean similarity to all the inactives R1 Iog(T /NA)
JNT

1 ..o 1 . N
Sp1=— Sp-— > Si) R2 Iog(?,NA)

NA i € Actives N| i € Inactives [

.

In these methods, as with all the others considered here, the WT2 Tj

test set molecules are ranked in descending order of the
Ca.IICUIated Scores.’ 1€, Slmllamy values in the present context, In this table A andl; are the numbers of active and inactive training
with the expectation that the top-ranked molecules have the e compounds with bitset,T; is the total number of compounds with
greatest probability of activity. bit j set, i.e., A + I;, Na andN, are the total numbers of training set
Trend Vectors. The trend vector (TV) is the first moment  active and inactive compounds, aNg is the total number of training
of activity in descriptor spaéé!8and is analogous to the Set compounds, i.eNa + Ni.
dipole moment (the first moment of electronic charge in
normal 3D space). In general for a setdtompounds, the
j-th element (1< j < K, whereK is the total number of
descriptors used for characterizing the molecules in the
training set and the test set) of the trend vector is defined by

particular moleculé.Note that TV is a substructural analysis
method; indeed, it is identical to the MAS weight that was
one of the weights studied by Ormerod et al. However, we
have kept it separate here as it is also applicable to nonbinary

1 N data, whereas this is not the case for R1, R2, AVID, and
=~ (&—AD; wrz2. o .
Nis1 Bioactivity Profiles. Gillet et al. describe a method, called

a bioactivity profile (BP), that is similar to substructural
whereDj is the value of descriptgrfor compoundi, & is analysis and that computes weights for a range of a high-
the activity of compound, andA is the average activity of  |evel structural features using a genetic algorifiriEach
all N compounds. A score can then be calculated for any feature is divided into bins covering a single value or range
moleculei by CalCUlating the dot prOdUCt of its vector with of values. For examp|e, the feature ‘H-bond donors’ is
the trend vector representing the training set, i.e., for an divided into bins for molecules containing one H-bond donor,

arbitrary compound we compute the score molecules containing two H-bond donors, etc. upt®0
K H-bond donors; while each bin for a continuous feature such
as molecular weight covers a range of values. A molecule
T.D; ; . . .
£ 1 will be assigned to one bin for each feature depending on

the value of that feature in that molecule: the features used

Substructural Analysis. Substructural analysis was first here were molecular weight, number of H-bond donors,
described by Cramer et &land many different weighting ~ number of H-bond acceptors, number of aromatic rings,
schemes have been described for this purfdaer each ~ number of rotatable bonds, and the shape index.
fragment or bitj, in the binary fingerprints which character- Each bin for each feature has a weight associated with it,
ize the training set molecules, a weight is calculated that is and the score for a specific molecule is the sum of the
a function of the numbers of active and inactive molecules weights for each bin to which it has been assigned, thus
in the training set that have theh bit set. A score is then  enabling the training set molecules to be ranked in order of
computed for a test set molecule by summing (or otherwise their bioactivity scores. A measure of the extent to which
combining) the weights of those bits that are set in its the training set actives occur at the top of this ranking is
fingerprint. used as the fitness function of a genetic algorithm that seeks

Many different weighting schemes have been describedto optimize the bin-weights so as maximize the degree of
for substructural analysis, and in this study, we have separation of the actives and inactives when the summed
evaluated four such schemes: these are the R1, R2, AVID,scores are ranked. The resulting weights can then be applied
and WT2 weights that performed well in the comparative to test set data. Although such high-level descriptors are very
study of Ormerod et d.Let A, andl; be the numbers of  simple, they proved sufficient to discriminate between drug
active and inactive molecules with itset, with T; being and (presumed) nondrug compounds in the World Drug
the total number of compounds with hitset (i.e.,A+l)). Index and SPRESI databases, respectively, and were sub-
Similarly, let Na andN, be the total numbers of active and sequently applied successfully to screening data at Glaxo-
inactive molecules, with a total & (i.e.,Na+N,) molecules ~ SmithKline!°
in the training set. Then the four weighting schemes tested Binary Kernel Discrimination. The final ranking ap-
are shown in Table 1. For the R1 and R2 schemes, the scorgoroach considered here are the binary kernel discriminators
for each molecule is computed by summing the weights for (BKD) that have recently been described for chemical
each bit present, while for the AVID and WT2 weights this applications by Harper et &:2° For two compounds and
sum is then divided by the number of bits set for that j, characterized by binary fingerprints of lendith that differ
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in dj positions, the kernel functiol;, suggested by Aitchison  Table 2. Numbers of NCI Actives Retrieved in the Top 1% and in

and Aitken?! is the Top 5% of the Rankings
g o top 1% of ranking top 5% of ranking
Ki(,) =47 (@2 —=4)" 1) method Unity ~BCl features Unity BCI features
. . . .S 26 52 16 78 119 48
where is a smoothing parameter to be determined. This D’? 9 7 5 27 27 70
function can then be used to estimate the probability that Smax 76 132 24 361  343*) 114
acompound is active. Following Harper et al., we have used ?A\\/—I ﬂz gg 7622(*) 1;’21 1?33 1%(5)
the scoring function R1 107 110 199 209
o R2 14 49 153 138
Z K,(1.]) AVID 58 19 177 122
. i e Active WT2 50 8 170 112
L()=—— ) BP 30 138
o BKD  127*) 138%) 397*) 317
_ _ Ki(i.))
I € Inactive aThe best result in each column is italicized and starred, and any

. . . result within 10% of this best result is italicized. For BKD Unity, the
to rank the molecules in the test set, using the optimum valuevajue of 4 used was 0.59 with the modified kernel function (3) &nd

of A found for the training set. This is obtained by computing = 100. For BKD BCI, the value of used was 0.66 with the unmodified
scores for each training set compound using the other trainingkernel function (1).
set compounds for a number of different valuesl ah the
range 0.50 to 0.99. For each valueidhe sum of the ranks gitferent training sets were all very similar, in that though
of the active compounds is computed. If this is plotted against there were variations in the precise values obtained with the
4 a clear minimum should be observed indicating the gifferent test sets there was very little difference in the
optimumy4, i.e., that which minimizes the summed ranks of rejative performance of the various methods, and we hence
the actives in the training set. If a clear minimum cannot be consider only one of them, as summarized in Table 2. In
observed then a modified form of eq 1 may be used, as thjs table, the best result in each column has been italicized
described by Harpét and starred, and any result within 10% of this best result
o M—dh o 1 kM has been italicized.
Ki(,j) =[A7 (1= A4)7] ®) Inspection of Table 2 demonstrates that the nonbinary
) _ o _ . structural features perform consistently poorly, in some cases
wherek is an integer less tha. In principle, this modified  yayrieving a number of actives that is little different from
kerpel function should also include a constant muI_t|pI|er the number that might be expected using random selection.
derived from the values of, M, andk, but as the sameis The two bit-string representations are much to be preferred,
used in the numerator and denominator of (2) t'hIS term would \yitpy Unity bit-strings being superior in some cases, and the
cancel out when the scores are computed. Itis assumed thac pit-strings in othersSyayis clearly the method of choice
the optimal value in the training set is also optimal for the om among the four similarity methods. This has the
test set. This i; clearly a strong qssumption, but thg resunsadvantage of being extremely simple, based as it is just on
we have obtained suggest that it does not result in poor e single most similar member of the training set; it does,
predictive performance and it is difficult to use a technique however, mean that it might not be particularly effective in
such as this without such an assumption. All of the optimum e apsence of well-marked series in the test set and the
values ofl obtained in our experiments described below were training set. TheD, method does very poorly, but this is
found in the range 0.52 to 0.70. hardly surprising as it was included to provide a baseline of
performance for the similarity methods, rather than as a
EXPERIMENTAL DETAILS AND RESULTS realistic tool for ranking a test set. R1 is the best of the
NCI Data Set. Our initial experiments used the NCI AIDS ~ substructural analysis methods but is significantly out-
file6 which contains compounds that have been checked forperformed by BKD: this yields the largest number of actives
anti-HIV activity. We used a total of 1129 confirmed actives With the BCI fingerprints at the 1% level and with the Unity
or confirmed moderately actives and 34 862 inactives. Setsfingerprints at 5%.
of 200 actives and 200 inactives were selected at random Figure 1 shows the cumulative recall plots for several of
from this file to provide the training set data with the the methods to illustrate diagrammatically the range of
remaining 35 591 compounds forming the test set: three suchperformance levels that were achieved. This figure also
training sets were generated for the experiments. The testincludes the plots for the best possible performance (i.e.,
set and training set molecules were represented in one ofwhere all of the actives are clustered right at the top of the
three ways: by 988-bit Tripos UNITY fingerprints;by ranking) and for completely random performance (i.e., where
1024-bit Barnard Chemical Information (BCI) fingerpriés; ~ the actives are distributed equally throughout the entire
and by the set of six high-level structural features noted ranking).
previously as having been used by Gillet et al. in their work  Similar qualitative results were obtained using the other
on bioactivity profiles. The effectiveness of the various two training sets, BKD with Unity fingerprints always
methods was determined by plotting cumulative recall yielding the largest number of actives at the 5% level.
curved* over the top 5% of the ranked test set and by noting  Syngenta Data Set.The Syngenta data set contained
the numbers of actives retrieved in the top 1% and the top 132784 molecules that had been tested in variousi vo
5% of the ranking. The results obtained with the three whole organism screens; of these 7127 were active in at least
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Figure 1. Cumulative recall plot for ranking of the NCI data set.

Table 3. Numbers of Syngenta Actives Retrieved in the Top 1% actives than the next-best combination (R2/Unity) at the 1%

and in the Top 5% of the Rankings threshold and 14.2% more actives than the next-best com-
top 1% of ranking top 5% of ranking bination (BKD/BCI) at the 5% threshold (if this other BKD

method Unity BCl features  Unity BCl features combination is excluded then the margin of difference rises
Sa 119 186 62 498 597 324 to 24.3%). )

D 65 66 47 485 401 397 The cumulative recall curves for some of the best-
gmax ‘31;‘51 ‘31% 213‘&*) 1%%5 1?;26 755(8*% performing methods are plotted in Figure 2, again with the
A _ i i i

Sy 379 303 55 1078 1108 231 best ppss@lef and co'mplletely random lines fpr comparlson.
R1 437 407 1199 1279 Again, similar qualitative results were obtained using the
R2 445 187 1318 1146 other two training sets, BKD with Unity fingerprints always
AVID 422 237 1296 1223 ialdi i 0

WT2 o4 233 1308 1209 yielding the Iar.gest number of.act|ves at the 5% level. .
BP 86 512 Other Experiments. We carried out many other experi-
BKD  631(*) 426*) 1741(*) 1493%) ments in addition to those reported above, the majority of

aThe best result in each column is italicized and starred, and an them involving the smaller NCI data set. The most substan-
result within 10% of this best result is italicized. For BKD Ur’1ity, the Y tive Wer.e. tho.se involving a support vector machine (S¥M), .
value of4 used was 0.57 with the modified kernel function (3) d&nd a clgssmcatlon app.roach that ha_.S been .SUQ_geSted as being
= 100. For BKD BClI, the value of used was 0.53 with the unmodified  particularly appropriate for chemical applicatiéhand that
kernel function (1). involved use of the popular SVt software?” Unlike the
ranking methods, the SVM score for a test set compound
one screen, with the remaining 125 657 having a responsemerely classifies it as either likely active (if the score is
in the screens less than a predefined threshold value. Aspositive) or likely inactive (if the score is negative). Each
before, three different training sets were randomly generated,of the ranking methods can be converted to a classification
each containing 713 actives (i.e., 10% of the total actives) method by applying a threshold to the ranked scores, with
and 713 inactives with the remaining 131 358 compounds everything above (or below) the threshold being classified
in each case forming the test sets. As with the NCI data setas active (or inactive); the application of such a threshold
there was little variation from one training set to another so then allows a direct comparison of the performance of the
we have again reported only one set of results, as shown inSVM with the ranking methods. In an extensive comparative
Table 3. study using the NCI data set, we found that the SVM results

Inspection of Table 3 reveals both similarities and differ- were never better than the other methods considered here
ences between it and Table 2. The nonbinary structuraland were normally so markedly inferior that we did not
features perform just as badly, when compared with the two consider it worth applying the procedure to the much larger
types of bit-string, as previously, and it is again the case Syngenta data set. For example Table 4 shows a comparison
that neither of these is consistently superior to the other. Thatof the results for an SVM and BKD Unity using the same
said, some of the individual differences here are proportion- NCI data set as that for Table 2 and Figure 1. In this case
ally quite large (especially with the 1% threshold), and where the SVM classified 6286 compounds as active; therefore,
this is the case then it is normally Unity that is the better of for comparison, we regard the top 6286 BKD ranked
the two. Broadly speaking, the bit-string results can be compounds as classified active. Both methods correctly
divided into three groupsS. and D, both do poorly; BKD classify just over half the actives, but of those compounds
does very well, and all the rest are broadly the same predicted active most are actually inactive. Similar experi-
(especially at the 5% threshold). The BKD/Unity combina- ments with the other training sets and other descriptors
tion is especially noteworthy here: it retrieved 29.5% more yielded equally poor classifications.
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Figure 2. Cumulative recall plot for ranking of the Syngenta data

Table 4. Classification of the NCI Data Set with a SVM and BKD
Unity, Classifying 6286 Compounds as Active

SVM BKD
number of actives classified active 512 552
number of actives classified inactive 417 377
number of inactives classified active 5774 5734
number of inactives classified inactive 28888 28928

2The SVM was implemented with the SVIMI softwaré” using a
polynomial kernel function and all other parameters as default.

Another set of experiments involved using the cosine
coefficient and the Euclidean distafias an alternative to
the Tanimoto coefficient for the four similarity methods.
Neither of these provided any obvious improvement over
the Tanimoto coefficient with any of the representations, and
they were sometimes noticeably less effective. We also
looked at the down-weighting of fragments in substructural

analysis that occurred in nearly-equal numbers of actives and

inactives. Specifically, for each of these weighting schemes
there will be a weight, normally 0, that corresponds to a bit
being found in the same number of actives as inactives: we
refer to this as tha@eutralvalue. We set an integer valdé

If the number of actives containing a bit differs from the
number of inactives containing that bit by less thdmwe

set that bit's weight to the neutral value. With= 10, this
change had little effect on the performance of TV, AVID,
R1, and WT2 weights but improved the results for R2 to
the extent that they were then almost as good as those fo
R1 and TV. Experiments were also carried out on one of
the NCI training sets using the PASS weighting scheme
described recently by Anzali et &f:this gave results
comparable to, but no better than, the best of the scheme
in Table 1.

Finally, experiments were also carried out with the

f

set.

similarity. Perhaps unsurprisingly, the results from these
diverse training sets were consistently lower than for the
representative training sets; however, the relative perfor-
mance of the various ranking methods was broadly similar.
Thus far, we have focused on the effectiveness of the
various methods; however, a highly effective virtual screen-
ing method is of little practical use if it cannot be applied to
data sets of realistic size. Assume that the training set and
the test set contaiM and N molecules, respectively, and
that these are characterized by a totalkofeatures. The
computational requirements are in three parts: the analysis
of the training set; the scoring of each of the molecules in
the test set; and then the ranking of the test set in descending
order of the calculated scores. This last component has an
time complexity of ONlogN) for all of the methods and is
not considered further. The analysis of the training set and
then the scoring of the test set for TV and for the
substructural analysis methods is of complexityvi®j and
O(NK), respectively. The complexities for BKD are I@7K)
for analysis and Q{INK) for scoring, but there is an
additional factor that needs to be considered as the training
set here must be processed repeatedly to identify the optimal
value for the parametél. For the similarity methods, there
iS no training set analysis and the scoring is of complexity
O(MNK); however, the complexity can be reduced tidN&)
if the cosine coefficient is used and if the similarities are
calculated using the centroid appro&@tn practice, BKD
is the most time-consuming: not only muisbe optimized
but each calculation, whether during training or scoring,
involves exponentiations that are not required by the other
methods. Even so, its requirements are not overly large.
Using programs written in C and run on a Silicon Graphics

R12000 processor, training for the Syngenta data set took

about 36 s for each value dfthat is tested during the training
phase; the subsequent scoring using the optimal valie of

Syngenta data where the training sets were selected so as tgyox 3730 CPU seconds.
be diverse, rather than representative. Specifically, three sets

were generated so that no pair of actives had a Tanimoto/

Unity similarity more than 0.85, and three sets so that no
pair of actives and no pair of inactives had such a threshold

CONCLUSIONS

In this paper, we have reported a comparison of several
virtual screening methods that can be used given a training
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