
Comparison of Ranking Methods for Virtual Screening in Lead-Discovery Programs

David Wilton* and Peter Willett

Krebs Institute for Biomolecular Research and Department of Information Studies, University of Sheffield,
Sheffield S10 2TN, UK

Kevin Lawson and Graham Mullier

Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK

Received August 20, 2002

This paper discusses the use of several rank-based virtual screening methods for prioritizing compounds in
lead-discovery programs, given a training set for which both structural and bioactivity data are available.
Structures from the NCI AIDS data set and from the Syngenta corporate database were represented by two
types of fragment bit-string and by sets of high-level molecular features. These representations were processed
using binary kernel discrimination, similarity searching, substructural analysis, support vector machine, and
trend vector analysis, with the effectiveness of the methods being judged by the extent to which active test
set molecules were clustered toward the top of the resultant rankings. The binary kernel discrimination
approach yielded consistently superior rankings and would appear to have considerable potential for chemical
screening applications.

INTRODUCTION

Virtual screening is the name given to a range of
computational methods that are used to prioritize the biologi-
cal testing of large chemical data sets, with the aim of
ensuring that those molecules with the largest a priori
probabilities of activity are assayed first in a lead discovery
program.1-3 At the risk of oversimplification, it is possible
to identify four main classes of virtual screening methods,
these differing in the amount of structural and bioactivity
data that is available. If just a single active molecule is
available, such as a competitor’s compound or a natural
product, then similarity searching can be used, in which a
database is ranked in decreasing order of similarity to the
known active structure.4 If several actives have been identi-
fied, then pharmacophore mapping can be carried out to
ascertain common patterns of features that may be respon-
sible for the observed activity, with a 3D substructure search
of the database then being carried out to identify further
molecules that contain the pharmacophore.5 If it is not
possible to identify a common pharmacophore, as often
occurs with heterogeneous sets of actives (e.g., the initial
weak leads from a high-throughput screening program), and
if a fair number of both active and inactive molecules are
available, then these can be used as training data for a
machine learning system.6 Finally, if the 3D structure of the
biological target is known, then a docking study can be
carried out to identify those database molecules that are
complementary to the binding site.7

This paper reports a comparison of methods that can be
used for the third class of virtual screening methods, which
includes such common approaches as substructural analy-
sis,8,9 genetic algorithms,10 neural networks,11,12and decision
trees.13-15 Two main classes of approach are possible:

ranking methods order a database in order of decreasing
probability of activity and classification methods divide a
database into those molecules that are predicted to be active
and those that are predicted to be inactive. We focus here
on ranking methods. The next section of the paper describes
the various methods that we have chosen to test, and this is
then followed by an evaluation of their effectiveness using
two large databases that contain both structural and bioac-
tivity data: the first of these is the well-known NCI AIDS
file16 while the second of these is a large file ofin ViVo data
from the multinational agrochemicals company Syngenta.
The paper concludes with a summary of our major findings.

VIRTUAL SCREENING METHODS

Similarity Methods. The simplest way of predicting the
likely activities of a set of compounds is by computing their
similarities to a training set of known actives and or inactives,
i.e., ak-nearest neighbor classifier. Four different versions
of this basic approach were tested as follows. Assume that
the training set containsNA actives andNI inactives and that
S(i,j) is the similarity between a test set moleculej and a
training set moleculei. ThenSA is defined to be the mean
similarity to all the actives, i.e.

DI is defined to be the mean dissimilarity to all the inactives
(not something that is expected to be a good predictor but
included here for purposes of comparison), i.e.
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Smax is defined to be the similarity to the most similar training
set active, i.e.

and, finally,SA-I is defined to be the mean similarity to all
the actives minus the mean similarity to all the inactives

In these methods, as with all the others considered here, the
test set molecules are ranked in descending order of the
calculated scores, i.e., similarity values in the present context,
with the expectation that the top-ranked molecules have the
greatest probability of activity.

Trend Vectors. The trend vector (TV) is the first moment
of activity in descriptor space17,18 and is analogous to the
dipole moment (the first moment of electronic charge in
normal 3D space). In general for a set ofN compounds, the
j-th element (1e j e K, whereK is the total number of
descriptors used for characterizing the molecules in the
training set and the test set) of the trend vector is defined by

whereDij is the value of descriptorj for compoundi, ai is
the activity of compoundi, andA is the average activity of
all N compounds. A score can then be calculated for any
moleculei by calculating the dot product of its vector with
the trend vector representing the training set, i.e., for an
arbitrary compoundi we compute the score

Substructural Analysis. Substructural analysis was first
described by Cramer et al.,8 and many different weighting
schemes have been described for this purpose.9 For each
fragment or bit,j, in the binary fingerprints which character-
ize the training set molecules, a weight is calculated that is
a function of the numbers of active and inactive molecules
in the training set that have thej-th bit set. A score is then
computed for a test set molecule by summing (or otherwise
combining) the weights of those bits that are set in its
fingerprint.

Many different weighting schemes have been described
for substructural analysis, and in this study, we have
evaluated four such schemes: these are the R1, R2, AVID,
and WT2 weights that performed well in the comparative
study of Ormerod et al.9 Let Aj and Ij be the numbers of
active and inactive molecules with bitj set, withTj being
the total number of compounds with bitj set (i.e.,Aj+Ij).
Similarly, let NA andNI be the total numbers of active and
inactive molecules, with a total ofNT (i.e.,NA+NI) molecules
in the training set. Then the four weighting schemes tested
are shown in Table 1. For the R1 and R2 schemes, the score
for each molecule is computed by summing the weights for
each bit present, while for the AVID and WT2 weights this
sum is then divided by the number of bits set for that

particular molecule.9 Note that TV is a substructural analysis
method; indeed, it is identical to the MAS weight that was
one of the weights studied by Ormerod et al. However, we
have kept it separate here as it is also applicable to nonbinary
data, whereas this is not the case for R1, R2, AVID, and
WT2.

Bioactivity Profiles. Gillet et al. describe a method, called
a bioactiVity profile (BP), that is similar to substructural
analysis and that computes weights for a range of a high-
level structural features using a genetic algorithm.10 Each
feature is divided into bins covering a single value or range
of values. For example, the feature ‘H-bond donors’ is
divided into bins for molecules containing one H-bond donor,
molecules containing two H-bond donors, etc. up tog 20
H-bond donors; while each bin for a continuous feature such
as molecular weight covers a range of values. A molecule
will be assigned to one bin for each feature depending on
the value of that feature in that molecule: the features used
here were molecular weight, number of H-bond donors,
number of H-bond acceptors, number of aromatic rings,
number of rotatable bonds, and the2kR shape index.

Each bin for each feature has a weight associated with it,
and the score for a specific molecule is the sum of the
weights for each bin to which it has been assigned, thus
enabling the training set molecules to be ranked in order of
their bioactivity scores. A measure of the extent to which
the training set actives occur at the top of this ranking is
used as the fitness function of a genetic algorithm that seeks
to optimize the bin-weights so as maximize the degree of
separation of the actives and inactives when the summed
scores are ranked. The resulting weights can then be applied
to test set data. Although such high-level descriptors are very
simple, they proved sufficient to discriminate between drug
and (presumed) nondrug compounds in the World Drug
Index and SPRESI databases, respectively, and were sub-
sequently applied successfully to screening data at Glaxo-
SmithKline.10

Binary Kernel Discrimination. The final ranking ap-
proach considered here are the binary kernel discriminators
(BKD) that have recently been described for chemical
applications by Harper et al.19,20 For two compoundsi and
j, characterized by binary fingerprints of lengthM, that differ
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Table 1. Weighting Schemes for Substructural Analysisa

weighting scheme weight

AVID (Aj + 1)/(Tj NA

NT
+ 1)

R1 log(Aj /NA

Tj /NT
)

R2 log(Aj /NA

Ij /NI
)

WT2
Aj - Ij

Nj

a In this table,Aj andIj are the numbers of active and inactive training
set compounds with bitj set,Tj is the total number of compounds with
bit j set, i.e.,Aj + I j, NA andNI are the total numbers of training set
active and inactive compounds, andNT is the total number of training
set compounds, i.e.,NA + NI.
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in dij positions, the kernel functionKλ, suggested by Aitchison
and Aitken,21 is

whereλ is a smoothing parameter to be determined. This
function can then be used to estimate the probability that
acompound is active. Following Harper et al., we have used
the scoring function

to rank the molecules in the test set, using the optimum value
of λ found for the training set. This is obtained by computing
scores for each training set compound using the other training
set compounds for a number of different values ofλ in the
range 0.50 to 0.99. For each value ofλ the sum of the ranks
of the active compounds is computed. If this is plotted against
λ a clear minimum should be observed indicating the
optimumλ, i.e., that which minimizes the summed ranks of
the actives in the training set. If a clear minimum cannot be
observed then a modified form of eq 1 may be used, as
described by Harper20

wherek is an integer less thanM. In principle, this modified
kernel function should also include a constant multiplier
derived from the values ofλ, M, andk, but as the sameλ is
used in the numerator and denominator of (2) this term would
cancel out when the scores are computed. It is assumed that
the optimal value in the training set is also optimal for the
test set. This is clearly a strong assumption, but the results
we have obtained suggest that it does not result in poor
predictive performance and it is difficult to use a technique
such as this without such an assumption. All of the optimum
values ofλ obtained in our experiments described below were
found in the range 0.52 to 0.70.

EXPERIMENTAL DETAILS AND RESULTS

NCI Data Set.Our initial experiments used the NCI AIDS
file16 which contains compounds that have been checked for
anti-HIV activity. We used a total of 1129 confirmed actives
or confirmed moderately actives and 34 862 inactives. Sets
of 200 actives and 200 inactives were selected at random
from this file to provide the training set data with the
remaining 35 591 compounds forming the test set: three such
training sets were generated for the experiments. The test
set and training set molecules were represented in one of
three ways: by 988-bit Tripos UNITY fingerprints;22 by
1024-bit Barnard Chemical Information (BCI) fingerprints;23

and by the set of six high-level structural features noted
previously as having been used by Gillet et al. in their work
on bioactivity profiles. The effectiveness of the various
methods was determined by plotting cumulative recall
curves24 over the top 5% of the ranked test set and by noting
the numbers of actives retrieved in the top 1% and the top
5% of the ranking. The results obtained with the three

different training sets were all very similar, in that though
there were variations in the precise values obtained with the
different test sets there was very little difference in the
relative performance of the various methods, and we hence
consider only one of them, as summarized in Table 2. In
this table, the best result in each column has been italicized
and starred, and any result within 10% of this best result
has been italicized.

Inspection of Table 2 demonstrates that the nonbinary
structural features perform consistently poorly, in some cases
retrieving a number of actives that is little different from
the number that might be expected using random selection.
The two bit-string representations are much to be preferred,
with Unity bit-strings being superior in some cases, and the
BCI bit-strings in others.Smax is clearly the method of choice
from among the four similarity methods. This has the
advantage of being extremely simple, based as it is just on
the single most similar member of the training set; it does,
however, mean that it might not be particularly effective in
the absence of well-marked series in the test set and the
training set. TheDI method does very poorly, but this is
hardly surprising as it was included to provide a baseline of
performance for the similarity methods, rather than as a
realistic tool for ranking a test set. R1 is the best of the
substructural analysis methods but is significantly out-
performed by BKD: this yields the largest number of actives
with the BCI fingerprints at the 1% level and with the Unity
fingerprints at 5%.

Figure 1 shows the cumulative recall plots for several of
the methods to illustrate diagrammatically the range of
performance levels that were achieved. This figure also
includes the plots for the best possible performance (i.e.,
where all of the actives are clustered right at the top of the
ranking) and for completely random performance (i.e., where
the actives are distributed equally throughout the entire
ranking).

Similar qualitative results were obtained using the other
two training sets, BKD with Unity fingerprints always
yielding the largest number of actives at the 5% level.

Syngenta Data Set.The Syngenta data set contained
132784 molecules that had been tested in variousin ViVo
whole organism screens; of these 7127 were active in at least

Kλ(i, j) ) λM-dij(1 - λ)dij (1)

LA( j) )

∑
i ∈ ActiVe

Kλ(i, j)

∑
i ∈ InactiVe

Kλ(i, j)

(2)

Kλ(i, j) ) [λM-dij(1 - λ)dij ] k/M (3)

Table 2. Numbers of NCI Actives Retrieved in the Top 1% and in
the Top 5% of the Rankingsa

top 1% of ranking top 5% of ranking

method Unity BCI features Unity BCI features

SA 26 52 16 78 119 48
DI 9 7 5 27 27 70
Smax 76 132 24 361 343(*) 114
SA-I 97 83 72(*) 199 166 167(*)
TV 112 69 62 181 183 160
R1 107 110 199 209
R2 14 49 153 138
AVID 58 19 177 122
WT2 50 8 170 112
BP 30 138
BKD 127(*) 138(*) 397(*) 317

a The best result in each column is italicized and starred, and any
result within 10% of this best result is italicized. For BKD Unity, the
value ofλ used was 0.59 with the modified kernel function (3) andk
) 100. For BKD BCI, the value ofλ used was 0.66 with the unmodified
kernel function (1).
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one screen, with the remaining 125 657 having a response
in the screens less than a predefined threshold value. As
before, three different training sets were randomly generated,
each containing 713 actives (i.e., 10% of the total actives)
and 713 inactives with the remaining 131 358 compounds
in each case forming the test sets. As with the NCI data set
there was little variation from one training set to another so
we have again reported only one set of results, as shown in
Table 3.

Inspection of Table 3 reveals both similarities and differ-
ences between it and Table 2. The nonbinary structural
features perform just as badly, when compared with the two
types of bit-string, as previously, and it is again the case
that neither of these is consistently superior to the other. That
said, some of the individual differences here are proportion-
ally quite large (especially with the 1% threshold), and where
this is the case then it is normally Unity that is the better of
the two. Broadly speaking, the bit-string results can be
divided into three groups:SA andDI both do poorly; BKD
does very well, and all the rest are broadly the same
(especially at the 5% threshold). The BKD/Unity combina-
tion is especially noteworthy here: it retrieved 29.5% more

actives than the next-best combination (R2/Unity) at the 1%
threshold and 14.2% more actives than the next-best com-
bination (BKD/BCI) at the 5% threshold (if this other BKD
combination is excluded then the margin of difference rises
to 24.3%).

The cumulative recall curves for some of the best-
performing methods are plotted in Figure 2, again with the
best-possible and completely random lines for comparison.

Again, similar qualitative results were obtained using the
other two training sets, BKD with Unity fingerprints always
yielding the largest number of actives at the 5% level.

Other Experiments. We carried out many other experi-
ments in addition to those reported above, the majority of
them involving the smaller NCI data set. The most substan-
tive were those involving a support vector machine (SVM),25

a classification approach that has been suggested as being
particularly appropriate for chemical applications26 and that
involved use of the popular SVMlight software.27 Unlike the
ranking methods, the SVM score for a test set compound
merely classifies it as either likely active (if the score is
positive) or likely inactive (if the score is negative). Each
of the ranking methods can be converted to a classification
method by applying a threshold to the ranked scores, with
everything above (or below) the threshold being classified
as active (or inactive); the application of such a threshold
then allows a direct comparison of the performance of the
SVM with the ranking methods. In an extensive comparative
study using the NCI data set, we found that the SVM results
were never better than the other methods considered here
and were normally so markedly inferior that we did not
consider it worth applying the procedure to the much larger
Syngenta data set. For example Table 4 shows a comparison
of the results for an SVM and BKD Unity using the same
NCI data set as that for Table 2 and Figure 1. In this case
the SVM classified 6286 compounds as active; therefore,
for comparison, we regard the top 6286 BKD ranked
compounds as classified active. Both methods correctly
classify just over half the actives, but of those compounds
predicted active most are actually inactive. Similar experi-
ments with the other training sets and other descriptors
yielded equally poor classifications.

Figure 1. Cumulative recall plot for ranking of the NCI data set.

Table 3. Numbers of Syngenta Actives Retrieved in the Top 1%
and in the Top 5% of the Rankingsa

top 1% of ranking top 5% of ranking

method Unity BCI features Unity BCI features

SA 119 186 62 498 597 324
DI 65 66 47 485 401 397
Smax 375 412 238(*) 1222 1278 755(*)
SA-I 424 372 144 1225 1256 587
TV 379 303 65 1078 1108 431
R1 437 407 1199 1279
R2 445 187 1318 1146
AVID 422 237 1296 1223
WT2 424 233 1308 1222
BP 86 512
BKD 631(*) 426(*) 1741(*) 1493(*)

a The best result in each column is italicized and starred, and any
result within 10% of this best result is italicized. For BKD Unity, the
value ofλ used was 0.57 with the modified kernel function (3) andk
) 100. For BKD BCI, the value ofλ used was 0.53 with the unmodified
kernel function (1).
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Another set of experiments involved using the cosine
coefficient and the Euclidean distance4 as an alternative to
the Tanimoto coefficient for the four similarity methods.
Neither of these provided any obvious improvement over
the Tanimoto coefficient with any of the representations, and
they were sometimes noticeably less effective. We also
looked at the down-weighting of fragments in substructural
analysis that occurred in nearly-equal numbers of actives and
inactives. Specifically, for each of these weighting schemes
there will be a weight, normally 0, that corresponds to a bit
being found in the same number of actives as inactives: we
refer to this as theneutralvalue. We set an integer valueN.
If the number of actives containing a bit differs from the
number of inactives containing that bit by less thanN we
set that bit’s weight to the neutral value. WithN ) 10, this
change had little effect on the performance of TV, AVID,
R1, and WT2 weights but improved the results for R2 to
the extent that they were then almost as good as those for
R1 and TV. Experiments were also carried out on one of
the NCI training sets using the PASS weighting scheme
described recently by Anzali et al.:28 this gave results
comparable to, but no better than, the best of the schemes
in Table 1.

Finally, experiments were also carried out with the
Syngenta data where the training sets were selected so as to
be diverse, rather than representative. Specifically, three sets
were generated so that no pair of actives had a Tanimoto/
Unity similarity more than 0.85, and three sets so that no
pair of actives and no pair of inactives had such a threshold

similarity. Perhaps unsurprisingly, the results from these
diverse training sets were consistently lower than for the
representative training sets; however, the relative perfor-
mance of the various ranking methods was broadly similar.

Thus far, we have focused on the effectiveness of the
various methods; however, a highly effective virtual screen-
ing method is of little practical use if it cannot be applied to
data sets of realistic size. Assume that the training set and
the test set containM and N molecules, respectively, and
that these are characterized by a total ofK features. The
computational requirements are in three parts: the analysis
of the training set; the scoring of each of the molecules in
the test set; and then the ranking of the test set in descending
order of the calculated scores. This last component has an
time complexity of O(NlogN) for all of the methods and is
not considered further. The analysis of the training set and
then the scoring of the test set for TV and for the
substructural analysis methods is of complexity O(MK) and
O(NK), respectively. The complexities for BKD are O(M2K)
for analysis and O(MNK) for scoring, but there is an
additional factor that needs to be considered as the training
set here must be processed repeatedly to identify the optimal
value for the parameterλ. For the similarity methods, there
is no training set analysis and the scoring is of complexity
O(MNK); however, the complexity can be reduced to O(NK)
if the cosine coefficient is used and if the similarities are
calculated using the centroid approach.29 In practice, BKD
is the most time-consuming: not only mustλ be optimized
but each calculation, whether during training or scoring,
involves exponentiations that are not required by the other
methods. Even so, its requirements are not overly large.
Using programs written in C and run on a Silicon Graphics
R12000 processor, training for the Syngenta data set took
about 36 s for each value ofλ that is tested during the training
phase; the subsequent scoring using the optimal value ofλ
took 3730 CPU seconds.

CONCLUSIONS

In this paper, we have reported a comparison of several
virtual screening methods that can be used given a training

Figure 2. Cumulative recall plot for ranking of the Syngenta data set.

Table 4. Classification of the NCI Data Set with a SVM and BKD
Unity, Classifying 6286 Compounds as Activea

SVM BKD

number of actives classified active 512 552
number of actives classified inactive 417 377
number of inactives classified active 5774 5734
number of inactives classified inactive 28888 28928

a The SVM was implemented with the SVMlight software27 using a
polynomial kernel function and all other parameters as default.
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set for which both structural and bioactivity data are avail-
able. Our experiments suggest that the application of the
binary kernel discrimination method of Harper et al. to sets
of molecules characterized by Unity fingerprints provides
an effective way of prioritizing compounds for biological
testing.

Although a large number of experiments have been carried
out, there are many other approaches that could have been
considered. Thus, the three representations are all inherently
2D in character: not only are there other, widely used 2D
representations (such as Daylight fingerprints, molecular
holograms, or topological indices) but there is also an
increasing number of 3D representations that are sufficiently
rapid for large-scale virtual screening applications (such as
four-point pharmacophores and topomeric shape descriptors).
Again, considering methods rather than representations, there
is much interest in alternative approaches to chemical
machine learning, such as hierarchic decision trees and neural
networks. Accordingly, our experiments can in no sense be
regarded as comprehensive; however, they do provide
sufficient evidence for us to consider further investigations
of the binary kernel discriminant approach for chemical
screening applications. Areas for development that we intend
to investigate include the following: its use with other types
of representation; the structural diversity of the top-ranked
structures that result from its use; the optimization of theλ
parameter in the kernel; its combination with other ranking
approaches using data fusion; and its application in a
predictive mode to real lead-discovery problems.
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