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ABSTRACT We introduce a computational method for classification of individual DNA molecules measured by an a-he-
molysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in
their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train
and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA
hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature
vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and
were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker
discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled
biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was
used for better feature selection.

INTRODUCTION

Molecular classification using nanopore detectors holds

promise in biophysics and biotechnology (Akeson et al.,

1999; Kasianowicz et al., 1996; Meller et al., 2000; Meller

et al., 2001; Vercoutere et al., 2001). Such detectors use

a nanometer-scale pore to relate ionic current blockade mea-

surements to single molecule translocation (Akeson et al.,

1999; Kasianowicz et al., 1996; Meller et al., 2000) or to

capture by the pore (Vercoutere et al., 2001). Biologically

based a-hemolysin channels are elegant in this regard in that

they self-assemble in lipid bilayers (Gouaux et al., 1994;

Song et al., 1996), thereby providing inexpensive and re-

producible nanopores. The size of the a-hemolysin pore is

also optimal for DNA measurement in that single-stranded

DNA (ssDNA) translocates whereas double-stranded DNA

(dsDNA) does not, being held instead in a vestibule of the

pore (Vercoutere et al., 2001). Modifications to the a-he-

molysin channel have been examined (Bayley 2000), and

semiconductor nanopores are being developed (Li et al.,

2001).

For DNA measurements using nanopores, an important

milestone is the ability to rapidly identify individual bases or

basepairs in single DNA molecules. One end of double-

stranded DNA (dsDNA) can be captured by the a-hemolysin

pore and held for an extended period of time (Vercoutere

et al., 2001). Extensive characterization of the ionic current

blockade associated with such an event is thus made

possible. In this report, we show that a nanopore detector

coupled with machine learning methods can discriminate

with high accuracy between DNA hairpins that differ in only

one basepair.

In our nanopore signal analysis, an HMM is used to

extract a feature vector from each blockade example. Hidden

Markov Models (HMMs) (Chung et al., 1990; Chung and

Gage, 1998; Colquhoun and Sigworth, 1995) can character-

ize current blockades by identifying a sequence of sub-

blockades as a sequence of state emissions. HMMs have

also been used to estimate state transition and emission

probabilities on sequential data in more general contexts,

including genomic analysis (Krogh et al., 1994; Stormo,

2000) and voice recognition (Jelinek, 1997). The parameters

of an HMM are usually estimated using a method called

Expectation/Maximization (Durbin, 1998). Although HMMs

can be used to discriminate among several classes of input,

multiclass computational scalability tends to favor their use

as feature extractors. In particular, HMMs are well suited to

extraction of aperiodic information embedded in stochastic

sequential data. Support Vector Machines (SVMs) are then

used to classify the feature vectors (for a single blockade

event) obtained by the HMM. SVMs are fast, easily trained

discriminators (Vapnik, 1999; Burges, 1998). Given a train-

ing set of feature vectors, some labeled positive, some

labeled negative, SVM training produces an optimized

hyperplane that separates the clusters of positives and

negatives. Implicit in this is a mapping of feature vectors

to points in a higher dimensional space, together with

a notion of distance between those points. The distance

properties are determined by the choice of kernel in the

SVM. Such generality permits strong discrimination,

whereas the structural risk minimization that underlies the
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SVM formulation helps to prevent over-fitting (Vapnik,

1999).

METHODS

Nanopore implementation

Each experiment was conducted using onea-hemolysin channel inserted into

a diphytanoyl-phosphatidylcholine/hexadecane bilayer (Fig. 1), where the

bilayer was formed across a 20-micron diameter horizontal Teflon aperture

(Vercoutere et al., 2001). The bilayer separates two 70-mL chambers

containing 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/KOH). A

completed bilayer between the chambers was indicated by the lack of ionic

current flow when a voltage was applied across the bilayer (using Ag-AgCl

electrodes). Once the bilayer was in place, a dilute solution of a-hemolysin

(monomer) was added to the cis chamber. Self-assembly of the a-hemolysin

heptamer and insertion into the bilayer results in a stable, highly reproducible,

nanometer-scale channel with a steady current of 120 pA under an applied

potential of 120 mV at 238C (60.18C using a Peltier device). Once one

channel formed, further pores were prevented from forming by thoroughly

perfusing the cis chamber with buffer. Molecular blockade signals were then

observed by mixing analytes into the cis chamber.

DNA hairpin design

The nine basepair hairpin molecules examined in this study share an eight

basepair hairpin core sequence, to which we attached one of the four

permutations of Watson-Crick basepairs that may exist at the blunt end

terminus, i.e., 5-G�C-39, 59-C�G-39, 59-T�A-39, and 59-A�T-39. These are

denoted 9GC, 9CG, 9TA, and 9AT. The sequence of the 9CG hairpin was 59

CTTCGAACGTTTTCGTTCGAAG 39. The basepairing region is under-

lined. An eight basepair DNA hairpin with a 59-G�C-39 terminus was also

tested (see Fig. 2). This control molecule is denoted 8GC. The DNA

oligonucleotides were synthesized using an ABI 392 Synthesizer, purified

by PAGE, and stored at �708C in TE buffer. The prediction that each hairpin

would adopt one basepaired structure was tested and confirmed using the

DNA mfold server (http://bioinfo.math.rpi.edu/mfold/dna/form1.cgi), which

is based in part on data from SantaLucia (1998).

FIGURE 1 Examination of DNA duplex ends using a voltage-pulse routine. An observation cycle for a 9GC hairpin blockade event is shown. At the start of

each voltage cycle the voltage across the pore is reset to 0 mV. A potential difference of 120 mV (trans side positive) is then applied for 250 ms, initially

resulting in an open channel current of 120 pA (image A, with arrow indicating the open channel region of the current trace). In time, duplex DNA is pulled

into the pore by the applied potential causing an abrupt current decrease (image B, with arrows and solid bar delineating region of blockade signal). After the

250-ms forward bias, the potential is briefly reversed (�40 mV, trans side) then set at 0 mV for 50 ms which clears the pore (image C, with arrow indicating

the voltage reversal spike). The cycle is then repeated to examine the next molecule. Only the first 100 ms of blockade signal is used to identify each current

signature. In the diagrams, the stick figure in blue is a two-dimensional section of the a-hemolysin pore derived from x-ray crystallographic data (Song et al.). A

ring of lysines that circumscribe a 1.5-nm-limiting aperture of the channel pore is highlighted in red. A ring of threonines that circumscribe the narrowest, 2.3-

nm-diameter section of the pore mouth is highlighted in green. In our working model, the four dT hairpin loop (yellow) is perched on this narrow ring of

threonines, suspending the duplex stem in the pore vestibule (Vercoutere et al., 2001, Winters-Hilt et al., in preparation). The terminal basepair (brown) dangles

near the limiting aperture. The structure of the 9bp hairpin shown here was rendered to scale using WebLab ViewerPro. See the Discussion section for further

details on the mechanism behind the blockade signals.
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Sampling protocol

The solution sampling protocol used periodic reversal of the applied

potential to accomplish the capture and ejection of single DNA molecules

(added to the cis chamber in 20 mM concentrations). The voltage toggling

protocol was based on a 300-ms cycle: 250 ms at ;120 mV for capture/

measurement, followed by 1 ms at �40 mV for ejection, and then 49 ms

at 0 mV for reset. The 300-ms voltage-toggle cycle was chosen to

accommodate signal acquisition of the first 100 ms of blockade signal (as

shown in Fig. 1). If less than 100 ms of blockade signal was acquired before

the ejection phase of the cycle, the signal was ignored. The effective duty

cycle for the 100-ms blockade measurements was one reading every 0.4 s.

Signal acquisition

Ionic current was filtered at 10 kHz bandwidth using an analog low pass

Bessel filter and recorded at 20 ms intervals using an Axopatch 200B

amplifier (Axon Instruments, Foster City, CA) coupled to an Axon Digidata

1200 digitizer. A time-domain finite state automaton (FSA; Cormen et al.,

1989) with eight states performed the identification and acquisition on the

first 100 ms of blockade signal (Acquisition Stage, Fig. 3). Two states,

sequentially connected, were used for resetting and initializing the FSA.

Transition between the two states, from reset-start to reset-ready, was ac-

complished upon measuring a short section of acceptable baseline current

(200 ms). An abrupt drop in current to 70% residual current, or less, then

triggered transition from the reset-ready state to the signal-active state. From

the signal-active state, processing advanced to one of two states (good- and

bad-end-level states) according to an end-of-signal profile. The profile rule

simply required that the last end-level-range observations had to have cur-

rent above minimum-end-level-value. Satisfying the rule led to the good-

end-level state, otherwise the bad-end-level state was reached. If there was

a normal return to baseline (good-end-level state), or a signal-blockade scan

exited due to truncation (bad-end-level state), the signal complete state

was reached, otherwise further scanning was performed. Further scanning

involved transition through the internal active state, where local signal

properties, observation less than maximum-cutoff and observation greater

than minimum-cutoff, were used to decide whether to exit (to the reset-end

state) or continue the blockade scan (return to the signal-active state).

Similar to the local blockade signal properties that determined how to

transition from the internal-active state, transition to the acquire-signal state

from the signal-complete state was based on several global properties of the

signal trace: maximum blockade sample less than maximum-cutoff and

greater than min-max-internal, minimum blockade sample greater than

minimum-cutoff and less than max-min-internal, and signal duration greater

than or equal to minimum-duration.

The time-domain FSA was tuned so that it would rarely miss signal

acquisitions (low false negatives) by allowing for large numbers of mistaken

signal acquisitions (i.e., large false positives). The acquisition bias was

accomplished by imposing constraints on valid starts that were weak while

maintaining constraints on valid interior and ends that were strong. The bias

toward high sensitivity permitted tuning on FSA parameters with a simplified

objective. For the blockade signatures studied, the FSA parameters for max-

imal signal acquisition shared a broad, common range, allowing one set of

FSA parameters (a single generic FSA) to acquire all signals. After tuning,

the FSA parameters were: minimum-start-drop ¼ 70%, maximum-cutoff ¼
170%, minimum-cutoff ¼�60%, end-level-value ¼ 95%, max-min-internal

¼ 55%, min-max-internal ¼ 70%, end-level-range ¼ 10 (at the 20 ms

sampling this leads to a minimum 200 ms interval between blockade

acquisitions), and maximum-duration ¼ 100 ms ¼ minimum-duration (for

100-ms truncation on acquired signals). Parameters expressed in terms of

percentages refer to current measurements normalized with respect to the

average baseline (determined by a 1024-element baseline sampling on the

contiguous baseline segment nearest and before the blockade signal).

Signal preprocessing

Each 100-ms signal acquired by the time-domain FSA consisted of

a sequence of 5000 subblockade levels (with the 20-ms analog-to-digital

sampling). Signal preprocessing was then used for adaptive low-pass

filtering. For the data sets examined the preprocessing led to length com-

pression on the sample sequence from 5000 to 625 samples (later HMM

processing then required construction of a dynamic programming table with

only 625 columns). The signal preprocessing makes use of an off-line

wavelet stationarity analysis (Diserbo et al., 2000). The stationarity analysis

(Off-line Wavelet Stationarity Analysis, Fig. 3) was based on a training set

FIGURE 2 Typical blockade signatures for each of the five classes of

DNA hairpins. The nine basepair hairpins differ in only their terminal

basepairs. The variants were chosen to include the two possible Watson-

Crick basepairs and the two possible orientations of those basepairs at the

duplex ends. The core 8bp stem and 4dT loop were identical with the primary

sequence 59-TTCGAACGTTTTCGTTCGAA-39, where the basepaired

compliments are underlined. The eight basepair hairpin that was used as

a control had the primary sequence 59-GTCGAACGTTTTCGTTCGAC-39.
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of blockade signals from each of the different classes of blockades to be

discriminated.

A 1024-sample Haar wavelet transform (Nievergelt, 1999) was applied to

the time-domain information at the start of each blockade in the training set.

The wavelet-domain components were then completed so that a wavelet-

domain FSA could easily reference a ‘‘moving’’ wavelet transform (i.e.,

the Haar transform with forward-shifting time-origin in the 5000-element

sequence). The FSA scanning operation over wavelet components was then

defined. Half the scanning data consisted of values from a 2N-point moving

average (withN equal to a specified order of wavelet component), whereas the

other half of the data consisted of the order-Nwavelet difference coefficients.

The moving sum and difference wavelet components for a given order

provided a dual track of wavelet states. For the data analyzed, the information

in the difference coefficients was only used when the difference coefficient

wasvery large, indicating a transitionbetweenblockade levels, or the start/end

transition of the blockade itself. The dual track of wavelet states was thereby

reduced to a single track, consisting of a sequence of sum wavelet components

with the occasional occurrence of an overriding difference-wavelet compo-

nent. (The single track override also provided the framework for incorporating

fine-scale feature extraction, such as spike detection, from the time-domain

FSA, but such feature passing was not used in the results that follow.)

A tuning process was used by the wavelet-domain FSA to select the

optimal order of wavelet component to use as the basis for the signal

quantization. The tuning method employed an emergent grammar heuristic on

the single-track-compressed sequence of states. The method made use of the

property that, as wavelet order was decreased, the difference wavelet override

was triggered more easily—which eroded the distinctive transition structure

seen in blockade signals. The lowest order that retained a distinctive transition

structure, or grammar, was then used as the basis for the quantization. For the

data examined this corresponded toN¼ 3 for an eightfold reduction in HMM

processing. Blockade binning statistics on the sum wavelet components (at

N¼ 3) were calculated for the different classes of channel blockade. Clearly

discernable sum-wavelet characteristics were possible with a blockade state

grayscale that ranged in 1% increments of the open-channel current. The 1%

gray scale and N ¼ 3 wavelet-order were used as the basis for state

quantization by the HMM in the processing stages that follow.

Feature extraction

Hidden Markov Models (Durbin 1998) provide a statistical framework for

sequences of observations obeying stationary Markov statistics. The

‘‘hidden’’ part of the HMM consists of the labelings, si, for each observation,

and zi, where the index i labels the observation. The stationary statistics for

a first-order HMM are described in terms of emission probabilities, eni ¼
p(Zj ¼ zi j Sj ¼ n), transition probabilities, anm ¼ p(Sj ¼ m j S(j�1) ¼ n).
(The indexing on j is left in for clarity on the transition probability definition;

from stationarity the expressions are valid for any choice of j.) Given the

above stationarity statistics, the probability for a sequence of L observations

can be expressed as p(Z0 ¼ z0, . . . , Z(L�1) ¼ z(L�1)) ¼ Skfkibki, where fki
are the forward probabilities, fki ¼ p(Z0 ¼ z0, . . . , Zi ¼ zi, Si ¼ k), and bki
are the backward probabilities, bki¼ p(Z(iþ1)¼ z(iþ1), . . . , Z(L�1)¼ z(L�1) j
Si¼ k). The forward and backward variable can be recursively defined by fki
¼ abkeki fb(i�1) and bki ¼ akbeb(iþ1) bb(iþ1) (Durbin 1998), where we use

the Einstein convention of implied summation over repeated Greek letter

indices. The recursive definitions on forward and backward variables permit

efficient computation of observed sequence probabilities using dynamic

programming tables.

The recursive algorithm for the most likely state path given an observed

sequence (the Viterbi algorithm) is expressed in terms of vki, the probability

of the most probable path that ends with observation Zi ¼ zi, and state Si ¼
k. The recursive relation is vki ¼ maxnfekiankvn(i�1)g, where the maxnf. . .g
operation returns the maximum value of the argument over different values

of index n, and the boundary condition on the recursion is vk0 ¼ ek0pk. The

Viterbi path labelings are then recursively defined by (Si j S(iþ1) ¼ n) ¼
argmaxkfvkiakng, where the argmaxnf. . .g operation returns the index n with

maximum value of the argument. The evaluation of sequence probability

(and its Viterbi labeling) take the emission and transition probabilities as

a given. Estimates on the emission and transition probabilities are obtained

by an Expectation/Maximization (EM) algorithm (Durbin, 1998; commonly

referred to as the Baum-Welch algorithm in the context of HMMs).

An HMM was used to remove noise from the acquired signals, and to

extract features from them (Feature Extraction Stage, Fig. 3). The HMM was

implemented with 50 states, corresponding to current blockades in 1%

increments ranging from 20% residual current to 69% residual current. The

HMM states, numbered 0–49, corresponded to the 50 different current

blockade levels in the discrete sequences that it processed. The state

emission parameters of the HMM were initially set so that the state j, 0\¼ j

\¼ 49 corresponding to level L ¼ j þ 20, could emit all possible levels,

with the probability distribution over emitted levels set to a discretized

Gaussian with mean L and unit variance. All transitions between states were

possible, and initially were equally likely.

Each blockade signature was denoised by five rounds of Expectation-

Maximization (EM) training on the parameters of the HMM. During this

estimation, the state emission distribution of each state j was constrained

FIGURE 3 Machine learning strategy. Sig-

nal acquisition was performed using a time-

domain, thresholding, Finite State Automaton.

This was followed by adaptive prefiltering

using a wavelet-domain Finite State Auto-

maton. Feature extraction on those acquired

channel blockades was done by Hidden

Markov Model processing; and classification

was done by Support Vector Machine. The

optimal SVM architecture is shown for classi-

fication of molecules 9CG, 9GC, 9TA, 9AT,

and 8GC. The linear tree multiclass SVM

architecture benefits from strong signal skim-

ming and weak signal rejection along the line

of decision nodes. Scalability to larger multi-

class problems is possible inasmuch as the

main on-line computational cost is at the

Hidden Markov Model feature extraction

stage. The accuracy shown is for single-species

mixture identification upon completing the

15th single molecule sampling/classification

(in ;6 s on hardware described in Methods).
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to remain a Gaussian with mean j þ 20; only the variance was adjusted. The

50 transition parameters for each state were freely readjusted, but a pseudo-

count of three was used to smooth the estimations. After the EM itera-

tions, 150 parameters, described below, were extracted from the HMM.

The resulting parameter vector, normalized such that (nonzero) vector

components sum to unity, was used to represent the acquired signal in

discrimination at the later Support Vector Machine stages.

The 150 parameters extracted from the HMM consisted of three sets of 50

parameters each. The parameters were derived from the HMM’s emission

and transition probabilities and the HMM’s Viterbi-path statistics (Durbin

1998). In the first set, parameter lj, 0 \¼ j\¼ 49, was the a posteriori

estimated fraction of the time the signal was in state j, estimated using the

Viterbi path (upon completion of the EM iterations). In the second set,

parameter sj, 0 \¼ j\¼ 49, was the variance of the Gaussian emission

distribution for state j (normalized by dividing by the sum over sj).

To define the third parameter set (tj, 0\¼ j\¼ 49), we began with the

two states in the first parameter set that had the largest locally maximal

a posteriori probabilities. The posterior probability for state k was said to be

locally maximal if it was greater than the posterior probabilities at either

state k � 1 or state k þ 1. The third parameter set then consisted of

a weighted combination of the outgoing transition probabilities from the two

states with largest locally maximal posterior probabilities. The weighting on

their transition probability combination was their posterior probabilities (lj).

This reduced a 50 3 50 matrix of transition parameters to 50 parameters,

although preserving information about the distinctive bilevel toggling be-

tween major blockade levels that was characteristic of the data.

The normalization on each of the three sets of 50 parameters was unity

before the overall feature vector normalization. Feature vector normalization

then followed with division by 3. The feature vector terms thus described

a (nonzero) partition of unity, a domain that was needed for SVM

discrimination that used information divergences (in addition to discrimi-

nation based on the usual geometric distance measures). The parameters

were nonzero due to the Bayesian origin of the probabilities. Although

mixture kernels were considered over the three sets of parameters

themselves (without the overall normalization), they generally did not

perform as well as the best nonmixture kernels, and will not be discussed in

what follows.

Classification training

The normalized feature vectors obtained from the feature extraction stage

were classified using binary Support Vector Machines (SVMs). Binary

SVMs are based on a decision-hyperplane heuristic that incorporates

structural risk management by attempting to impose a training-instance void,

or ‘‘margin,’’ around the decision hyperplane.

Feature vectors are denoted by xik, where index i labels the M feature

vectors (1 # i # M) and index k labels the N feature vector components (1

# i # N). For the binary SVM, labeling of training data is done using label

variable yi ¼ 6 1 (with sign according to whether the training instance was

from the positive or negative class). For hyperplane separability, elements of

the training set must satisfy the following conditions: wbxib � b $ þ1 for i

such that yi ¼ þ 1, and wbxib � b#�1 for yi ¼ �1, for some values of the

coefficients w1, . . ., wN, and b (again using the convention of implied sum on

repeated Greek indices). This can be written more concisely as: yi(wbxib �
b) � 1 $ 0. Data points that satisfy the equality in the above are known as

‘‘support vectors’’ (or ‘‘active constraints’’).

Once training is complete, discrimination is based solely on position

relative to the discriminating hyperplane: wbxib � b ¼ 0. The boundary

hyperplanes on the two classes of data are separated by a distance 2/w,

known as the ‘‘margin,’’ where w2 ¼ wbwb. By increasing the margin

between the separated data as much as possible, the optimal separating

hyperplane is obtained. In the usual SVM formulation, the goal to maximize

w�1 is restated as the goal to minimize w2. The Lagrangian variational

formulation then selects an optimum defined at a saddle point of L(w,b;a) ¼
(wbwb)/2� agyg(wbxgb� b)� a0, wherea0 ¼Sgag,ag$ 0 (1# g#M).

The saddle point is obtained by minimizing with respect to fw1,. . . ,wN,bg
and maximizing with respect to fa1,. . .,aMg. If yi(wbxib � b) � 1$ 0, then

maximization on ai is achieved for ai ¼ 0. If yi(wbxib � b) � 1 ¼ 0, then

there is no constraint on ai. If yi(wbxib � b) � 1\ 0, there is a constraint

violation, and ai ! ‘. If absolute separability is possible the last case will

eventually be eliminated for all ai, otherwise it is natural to limit the size of ai

by some constant upper bound, i.e., max(ai) ¼ C, for all i. This is

equivalent to another set of inequality constraints with ai # C. Introducing

sets of Lagrange multipliers, jg and mg (1 # g # M), to achieve this, the

Lagrangian becomes: L(w,b;a,j,m) ¼ (wbwb)/2� ag[yg(wbxgb� b) þ jg]

þ a0 þ j0C�mgjg, where j0 ¼Sgjg, a0 ¼Sgag, and ag $ 0 and jg $ 0 (1
# g # M).

At the variational minimum on the fw1, . . . , wN, bg variables, wb ¼
agygxgb, and the Lagrangian simplifies to: L(a) ¼ a0 � (adydxdb agygxgb)/

2, with 0 # ag # C (1 # g # M) and agyg ¼ 0, where only the variations

that maximize in terms of the ag remain (known as the Wolfe

Transformation). In this form the computational task can be greatly

simplified. By introducing an expression for the discriminating hyperplane:

fi ¼ wbxib � b ¼ agygxgbxib � b, the variational solution for L(a) reduces

to the following set of relations (known as the Karush-Kuhn-Tucker, or

KKT, relations): i), ai ¼ 0$ yifi $ 1, ii), 0\ai\C$ yifi ¼ 1, and iii), ai

¼ C$ yifi # 1. When the KKT relations are satisfied for all of the ag (with

agyg ¼ 0 maintained) the solution is achieved. (The constraint agyg ¼ 0
is satisfied for the initial choice of multipliers by setting the a-values

associated with the positive training instances to 1/N(þ) and the a-values

associated with the negatives to 1/N(�), where N(þ) is the number of

positives and N(�) is the number of negatives.) Once the Wolfe

transformation is performed it is apparent that the training data (support

vectors in particular, KKT class (ii) above) enter into the Lagrangian solely

via the inner product xibxjb. Likewise, the discriminator fi, and KKT

relations, are also dependent on the data solely via the xibxjb inner product.

Generalization of the SVM formulation to data-dependent inner products

other than xibxjb are possible and are usually formulated in terms of the

family of symmetric positive definite functions (reproducing kernels)

satisfying Mercer’s conditions (Vapnik, 1999).

Binary SVMs were grouped into a classifier tree and trained to perform

multiclass discrimination on five classes of DNA hairpin as shown in

classification stages I–IV in Fig. 3. Tuning on the multiclass SVM

architecture was done for performance optimization. Separate tuning was

done on the polarization strength used in the data cleaning (see

Discriminator Implementation Section). Tuning was also done on the

SVM internals, over families of kernels based on regularized distances

(Jaakkola and Haussler, 1998) and regularized information divergences. In

the former case, the squared Euclidean distance between feature vectors x

and y, d2(x,y) ¼ Sk(xk–yk)
2, also known as the squared l2-norm on (x–y),

[l2(x–y)]2 ¼ d2(x,y), is associated with the Gaussian kernel: KG(x,y) ¼
exp(�d2(x,y)/2s2). In the latter case, the information divergence (relative

entropy) between probability vectors x and y, D(xky) ¼ Skxk log(xk/yk),

can be associated with the ‘‘Entropic kernel’’: KE(x,y) ¼ ex-

p(�[D(xky)þD(ykx)]/2s2). The terminating SVM node of the classifier

tree (stage IV in Fig. 3) used the Entropic kernel. The other nodes of the

classifier tree used a regularized-distance type kernel, the ‘‘Indicator

kernel,’’ based on the square root of the l1-norm, where l1(x–y) ¼ Skjxk–ykj,
with kernel KI(x,y) ¼ exp(��l1(x–y)/2s2). The kernels considered were

not restricted byMercer’s conditions. Instead, attention was focused on

exploring kernels based on regularized information divergences as

a parallel to the very successful kernels based on regularized distances

(such as the Gaussian kernel). The Gaussian kernel (which satisfies

Mercer’s conditions) was outperformed in all cases studied by the

Entropic and Indicator kernels.

Discriminator implementation

The SVM discriminators are trained by solving their KKT relations using the

Sequential Minimal Optimization (SMO) procedure (Platt, 1998). The
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method begins by selecting a pair of Lagrange multipliers, fa1,a2g, where at

least one of the multipliers has a violation of its associated KKT relations

(for simplicity it is assumed in what follows that the multipliers selected are

those associated with the first and second training instances: fx1,x2g). The

SMO procedure then ‘‘freezes’’ variations in all but the two selected

Lagrange multipliers, permitting much of the computation to be circum-

vented by use of analytical reductions. By using the constraint agyg ¼ 0 to

eliminate references to a1, and performing the variation on a2, @L(a)/@a2 ¼
0 leads to the following update rule: a2

new ¼ a2
old � y2((f1�y1) � (f2�y2))/

h. Once a2
new is obtained, the constraint a2

new # C must be reverified in

conjunction with the agyg ¼ 0 constraint. If the L(a) maximization leads to

a a2
new that grows too large, the new a2 must be ‘‘clipped’’ to the maximum

value satisfying the constraints. For example, if y1 6¼ y2, then increases in a2

are matched by increases in a1. So, depending on whether a2 or a1 is nearer

its maximum of C, we have max(a2) ¼ argminfC; a2 þ (C � a1)g. See

(Platt 1998) for other boundary conditions and details on the b-value update.

A Chunking (Osuna et al., 1997; Joachims, 1998) variant of SMO was

employed to manage the large training task at each SVM node. The

multiclass SVM training was based on over 10,000 blockade signatures for

each DNA hairpin species. The data cleaning needed on the training data

was accomplished by an extra SVM training round. The initial SVM training

that resulted was interpreted in terms of the data polarization around its

discriminating hyperplane, with stronger data calls defined as those further

away from the hyperplane. The polarized data was separated, using a tuned

cutoff, into strong positives, strong negatives, and weak signals. The SVMs

were then retrained with strong positives as the new positives and the

remainder (including weak positives) as new negatives. This served to shift

weak positive (and negative) nondiagnostic noise to the negatives. The

retrained SVMs were then biased toward use for high-confidence calling on

the positives.

Testing protocol

The test data consisted of over 2000 blockade signals for each DNA hairpin

species and was drawn from experiments that were run on days (and

nanopores) different from those used to acquire the training data. Testing on

single-species mixture calling was done directly, with classification on

observations from single-species solutions in the cis chamber. One goal of

the study was to find how many classification attempts were required to

classify the single-species solutions with very high confidence. Scoring was

possible by tracking the known labels on the test data. Scoring was similarly

possible in the context of in silico five-way mixtures (where an equal mix of

the five species was considered). Scoring with comparable permutations of

the train/test day separations (;80% of the days on training, 20% of the days

on testing) established roughly the same performance. (Assessing the

performance when training and testing are done on different days is

important. When train/test data was split by random selection without regard

to day of operation scoring improved greatly, but this protocol does not

reflect a realistic usage scenario.) Sequential group calling was also

performed, where groups (sequential packets) of blockade signals were

classified as a group. The sequential group caller was based on majority-vote

(with rejection on tie), and used a 10-call group size.

For true mixture test data, tens of thousands of blockade signatures were

acquired, also from different days. For true mixture tests some of the train

data was used for an added calibration. An extra calibration was required

because true mixtures of hairpins are sensitive to the different (entropic)

acceptance rates and (discriminator) rejection rates by the nanopore

instrument for the different hairpin species.

Real-time operation

One of the computational goals was real-time signal calling, here taken to

mean signal calling in less time than the duration of the signal itself. This

goal has practical use in detector operation in that extensive data caching is

not needed (detector data outflow does not exceed the throughput of the

signal processing pipeline). Under the signal sampling used here (100-ms

blockades acquired, 400-ms effective duty cycle) it was possible to operate

signal calling ‘‘real-time’’ with an inexpensive PC (less than $1000) that had

an 800 MHz Pentium III motherboard, and 512M RAM. The computer ran

under Linux (a free Unix-type operating system), and used the C and Perl

software packages. (The computer was part of a five-element computer

network, comprised of computers with similar computational power, which

was used to manage the off-line SVM training. Job control was directly

managed using remote shell commands.)

RESULTS

Using the testing protocol described above, we were able to

determine which of five species of DNA hairpin had been

added to the cis chamber of the nanopore device. This was

achieved in less than 6 s with 99.6% accuracy. The five

species of DNA hairpins consisted of a control hairpin and

four hairpins that differed only in their terminal basepairs

(Fig. 2). These results were for test data drawn from

nanopores established on days other than those used to

generate the training data. Fig. 4 shows the scoring for

multiple observation days, with the number of single

molecule sampling/classifications ranging from 1 to 30. At

75% weak signal rejection, ;15 classification attempts were

needed to classify the type of single-species solution being

sampled; final solution classification was obtained in 6 s on

average. If training and testing were done on data drawn

from the same set of days of nanopore operation, albeit

different samples, 99.9% calling was obtained with 15%

rejection, and throughput was about one call every half

second.

Identification of two hairpins in mixtures was also

attempted. Fig. 5 shows the percentage of 9TA classification

in a 3:1 mixture of 9TA to 9GC. (Although the mixture

preparations are estimated to be 610% of their stated

mixture ratios, calibration and testing of aliquots from the

FIGURE 4 Accuracy for classification of single-species solutions of 9TA,

9GC, 9CG, 9AT, and 8GC. By the 15th classification attempt single-species

solutions can be identified with high accuracy (inset).
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same mixture compensates for such common error.) The

assay on 9TA concentration asymptotes to 75% 6 1%, con-

sistent with the 3:1 ratio, and the assay error drops to 1%

after ;100 individual molecule classification attempts

(completed in 40 s).

HMM/EM characterization on the five classes of hairpin

signatures revealed the existence of two major conductance

blockade levels, one minor level intermediate between them,

and one to three other statistically relevant levels depending

on the hairpin. By examining the transition probabilities

between the various levels it was found that blockades

typically began in the less common intermediate level and

from there almost always transitioned to the greater

conductance blockade level.

DISCUSSION

Calibration and feature extraction by HMM

The HMM-based profiling we used for feature extraction

provided better discrimination than wavelet-based profiling

(see Vercoutere et al., 2001). The improved signal resolution

on channel blockades with HMMs is not new (Chung and

Gage, 1998). (The wavelet-domain FSA that generates the

blockade-level profiling does have the advantage, however,

of being hundreds of times faster than the HMM processing

in this instance.) The better performance with HMM

processing indicated that signal analysis benefited from

parsing structural information in the stochastic sequence

of blockade-states. Parsing structures in stochastic data is

a familiar problem in gene prediction, where Hidden Markov

Models (HMMs) have been used to great advantage (Krogh

et al., 1994; Stormo, 2000). Typically with gene prediction,

however, HMMs are operated at a high level that parses

coding starts and stops, etc., with feature scoring on starts

and stops performed at a lower level by neural net or related

statistical methods. For channel current analysis, the HMM

extracts structural features without identifying them, effec-

tively operating at the lower level, and used with EM

(Durbin, 1998), accomplished denoising on the blockade-

state structure (Chung and Gage, 1998) before extracting

those features.

A single HMM/EM process was used to perform the

feature extraction in our experiments. If separate HMMs

were used to model each species, the HMM/EM processing

could also be operated in a discriminative mode. This

requires multiple HMM/EM evaluations (one for each

species) on each unknown signal as it is observed. Increased

computational burden would thus be added at the worst

place: the expensive feature extraction stage. For future

work, semiscalable, species-specific processing is being

considered for the HMM/EM in an indirect manner, by using

prior HMM/EM characterization of the species to identify

a reduced set of features relevant to each species. The

reduced feature set relates to physical characterizations of the

captured molecule, such as level states, their time constants,

and allowed level transitions.

Samples using blockade signatures of longer duration

(before truncation) require fewer rejections to achieve the

same signal classification accuracy. A situation that would

probably favor longer signal samples than the 100 ms used

here was seen in attempts to read more of the DNA hairpin

end-sequence than the terminal basepair. Preliminary in-

dications are that the penultimate basepairs can probably also

be identified using longer signal samples (17 species with

control). Scaling the classification task from 5 to 17 species

may also require refinements to the feature extraction, such

as the species-specific HMM feature extractions mentioned

above.

Tests with mixtures of hairpins required an added

calibration due to the nanopore’s different acceptance rates

for different hairpins (i.e., there are different free energy

barriers to capture). This finding was consistent with a model

for hairpin capture (see below) in which hairpins are

captured by an entropically accessible binding site. It is also

in agreement with the brief intermediate level state typically

observed at the start of the signal blockades.

Classification by SVM hierarchy

Novel SVM kernels were used to obtain the results described

here, which are based on a generalization from regularized

square-distances to regularized information divergences.

One of the kernels (the Entropic kernel at Classification

Stage IV in Fig. 3) used the Kullback-Leibler information

divergence (Cover and Thomas, 1991). (Entropic-type

kernels may offer advantages when all or part of the feature

vector can be interpreted as a probability vector.) However,

if the positive and negative feature vector clusters are badly

overlapped, binary SVM discrimination will be poor no

matter what kernel is used. In such a circumstance, if a better

choice of features cannot be obtained, rejection of low

confidence data by the SVM can still be done. The SVM

FIGURE 5 Classification on a 3:1 mixture of 9TA and 9GC hairpin

molecules as a function of single molecule acquisitions. The 3:1 mol ratio is

accurately identified within 1% error after 100 observations (;40 s).
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confidence is a function of the distance from the feature-

vector point-mapping to the separating (discriminatory)

hyperplane, where greater distance represents higher confi-

dence in discriminating between two signals.

Multiclass SVM discrimination can be obtained by

grouping binary SVMs into a decision-tree architecture

(Vapnik, 1999; Bredensteiner and Bennett, 1999) using

rejection of low confidence data at earlier stages to postpone

decisions to more appropriate later stages. All-in-one

multiclass SVM optimizations are also possible (Li et al.,

2001), but were not used here. Decision trees of SVMs offer

good multiclass scaling properties, good noise tolerance, and

low susceptibility to overtraining, but most importantly, once

trained they are highly accurate and perform discriminations

very quickly.

The a-hemolysin channel in the nanopore detector must

be reestablished on a day-to-day basis. As a result, the class

training data that would normally map to a single cluster is

shattered into a cluster of clusters, with greater dispersion

and class overlap in the SVM feature vector space. SVM

classification in such circumstances faces weaker training

convergence and poorer signal calling. For the five classes

considered here, a passive stabilization approach was used

that optimized the kernels for high rejection. More active

(computational) stabilization methods are being studied for

larger multiclass problems and improved accuracy overall.

The active stabilization methods being studied include use of

reference signals (reference molecules mixed in solution)

to actively track the state of the instrumentation. One

stabilization approach being considered involves associative

memory extensions to the feature vectors, with discrimina-

tion then operating in a higher order SVM space. Sta-

bilization and alternative discrimination methods, such as

boosting (Freund et al., 1999), could also be considered.

Blockade mechanism

Two forthcoming manuscripts (DeGuzman et al., in

preparation, and Winters-Hilt et al., in preparation) will

focus on details of the current blockade mechanism, so only

a preliminary description is given here (Fig. 6). The

intermediate level (IL) conductance state initiates most

FIGURE 6 Molecular mechanisms underlying the observed current transitions. a) When a 9bp DNA hairpin initially enters the pore, the loop is perched in

the vestibule mouth and the stem terminus binds to amino acid residues near the limiting aperture. This results in the IL conductance level. b) When the

terminal basepair desorbs from the pore wall, the stem and loop may realign, resulting in a substantial current increase to UL. Interconversion between the IL

and UL states may occur numerous times, or UL may convert to the LL state, c). This LL state corresponds to binding of the stem terminus to amino acids near

the limiting aperture but in a different manner from IL. d) From the LL bound state, the duplex terminus may fray, resulting in extension and capture of one

strand in the pore constriction.
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blockades and always transitions to the upper level

conductance state (UL). This is explained by binding of

the hairpin terminus to the vestibule interior (IL) followed by

desorption of the DNA from the protein wall and orientation

of the stem along the axis of the electric field (UL).

Transitions from the UL state were either back to the IL state

or to the lower level conductance state (LL). From the LL
state there were brief transitions to nearly full blockade,

denoted by S for spike conductance state. The LL and S
states are both thought to involve binding between the

hairpin’s terminal 59 base and the pore’s limiting aperture.

The brief S state behavior is explained by a terminus-fraying

event that is accompanied by extension by the terminal 39

base into the limiting aperture. Part of the evidence for this is

a strong spike (fraying) frequency correlation with the

different terminus binding energies. Asymmetric base

addition or phosphorylation (at the terminal 39 and 59

positions) is part of the evidence for the asymmetric roles for

59 binding (LL and S) and 39 fraying/extension (S).

Applications of nanopore classification

One of the key strengths of nanopore detectors is that they

analyze populations of single molecules. With signal

processing and pattern recognition, this information enables

a new type of cheminformatics based on channel current

measurements. Single molecule observations are also of

interest in biophysics; binding/conformational changes on

captured dsDNA end regions, for example, might be tracked

and understood using the nanopore blockade signal. DNA

regions away from the ends may eventually be studied in

a similar manner, using pore-translocation confinement to

reveal distinctive conductance/binding properties on those

bases threading the pore’s limiting aperture constriction.

Single molecule classifications permit a number of technical

innovations. For sequencing, the single molecule basis of

measurement may permit Sanger-type sequencing on DNA

molecules separated by capillary electrophoresis. If DNA

can be translocated slowly enough, through a limiting

aperture with dominant contributions to resistance spanning

only two or three nucleotides length (;20 Ångstroms for

ssDNA, 10 Ångstroms for dsDNA), then DNA sequencing

of a single molecule may eventually be possible. For single

nucleotide polymorphism (SNP) identification, small sample

volumes can be used, such that PCR amplification may not

be needed. With SNP identification, expression analysis and

disease identification (for individualized therapeutics) are

just a few of the possibilities. Non-PCR expression analysis

may even offer a new level of experimentation on live cells

using patch-clamp methods.

CONCLUSION

Five species of DNA hairpin were examined, four of which

differed only in their terminal basepairs. Classification of

a single 100-ms hairpin event, with no rejection, was 77%

accurate on average. Accuracy was boosted above 99% if

longer event durations were used or if multiple short events

were used with nonzero rejection. For purposes of rapid

mixture analysis, the latter approach was adopted, with

single species identification with 99.6% accuracy in 6 s and

two species mixture identification in 40 s with less than 1%

error in the majority species percentage. The signal

processing architecture that accomplished this used HMMs

for feature extraction and SVMs for classification. The

HMMs were implemented with Expectation/Maximization

and the SVMs were implemented with novel kernels. The

on-line signal processing was designed to be scalable to

hundreds of species, or more, while at the same time

performing the classification in less time than the duration of

the signal acquisition itself (100 ms). This was accomplished

on an inexpensive PC. An unconstrained training process, as

used here, has scalability complications due to rapid growth

in multiclass combinatorics, but for five species was easily

automated (on a network of five PCs). If scalability

requirements are relaxed, allowing species-specific HMM

processing for example, discrimination accuracy (or speed)

can be boosted even further. The processing architecture is

directly applicable to other channel current analysis

situations by simply retraining the machine learning

components.
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