
© 2009 Royal Statistical Society 1369–7412/09/71000

J. R. Statist. Soc. B (2009)
71, Part 3, pp.

Covariance-regularized regression and
classification for high dimensional problems

Daniela M. Witten and Robert Tibshirani

Stanford University, USA

[Received March 2008. Revised September 2008]

Summary. We propose covariance-regularized regression, a family of methods for prediction
in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix
of the features to achieve superior prediction. An estimate of the inverse covariance matrix is
obtained by maximizing the log-likelihood of the data, under a multivariate normal model, sub-
ject to a penalty; it is then used to estimate coefficients for the regression of the response onto
the features. We show that ridge regression, the lasso and the elastic net are special cases
of covariance-regularized regression, and we demonstrate that certain previously unexplored
forms of covariance-regularized regression can outperform existing methods in a range of sit-
uations. The covariance-regularized regression framework is extended to generalized linear
models and linear discriminant analysis, and is used to analyse gene expression data sets with
multiple class and survival outcomes.
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1. Introduction

In high dimensional regression problems, where p, the number of features, is nearly as large as,
or larger than, n, the number of observations, ordinary least squares regression does not provide
a satisfactory solution. A remedy for the shortcomings of least squares is to modify the sum of
squared errors criterion that is used to estimate the regression coefficients, by using penalties
that are based on the magnitudes of the coefficients:

β̂ =arg min
β

.‖y −Xβ‖2 +λ1‖β‖p1 +λ2‖β‖p2/: .1/

(Here, the notation ‖β‖s is used to indicate Σp
i=1|βi|s.) Many popular regularization methods

fall into this framework. For instance, when λ2 = 0, p1 = 0 gives best subset selection, p1 = 2
gives ridge regression (Hoerl and Kennard, 1970) and p1 =1 gives the lasso (Tibshirani, 1996).
More generally, for λ2 = 0 and p1 � 0, equation (1) defines the bridge estimators (Frank and
Friedman, 1993). Equation (1) defines the naive elastic net in the case that p1 =1 and p2 =2 (Zou
and Hastie, 2005). In this paper, we present a new approach to regularizing linear regression that
involves applying a penalty, not to the sum of squared errors, but rather to the log-likelihood
of the data under a multivariate normal model.

The least squares solution is β̂ = .XTX/−1XTy. In multivariate normal theory, the entries of
.XTX/−1 that equal 0 correspond to pairs of variables that have no sample partial correlation; in
other words, pairs of variables that are conditionally independent, given all of the other features
in the data. Non-zero entries of .XTX/−1 correspond to non-zero partial correlations. One way
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to perform regularization of least squares regression is to shrink the matrix .XTX/−1; in fact, this
is done by ridge regression, since the ridge solution can be written as β̂ridge = .XTX+λI/−1XTy.
Here, we propose a more general approach to shrinkage of the inverse covariance matrix. Our
method involves estimating a regularized inverse covariance matrix by maximizing the log-like-
lihood of the data under a multivariate normal model, subject to a constraint on the elements
of the inverse covariance matrix. In doing this, we attempt to distinguish between variables that
truly are partially correlated with each other and variables that in fact have zero partial correl-
ation. We then use this regularized inverse covariance matrix to obtain regularized regression
coefficients. We call the class of regression methods that are defined by this procedure the scout.

In Section 2, we present the scout criteria and explain the method in greater detail. We also
discuss connections between the scout and pre-existing regression methods. In particular, we
show that ridge regression, the lasso and the elastic net are special cases of the scout. In addition,
we present some specific members of the scout class that perform well relatively to pre-existing
methods in a variety of situations. In Sections 3, 4 and 5, we demonstrate the use of these meth-
ods in regression, classification and generalized linear model settings on simulated data and on
some gene expression data sets.

2. The scout method

2.1. The general scout family
Let X = .x1, . . . , xp/ denote an n×p matrix of data, where n is the number of observations and
p the number of features. Let y denote a vector of length n, containing a response value for each
observation. Assume that the columns of X are standardized, and that y is centred. We can
create a matrix X̃ = .X y/, which has dimension n × .p + 1/. If we assume that X̃ ∼ N.0,Σ/,
then we can find the maximum likelihood estimator of the population inverse covariance matrix
Σ−1 by maximizing

log{det.Σ−1/}− tr.SΣ−1/ .2/

where

S=
(

Sxx Sxy
ST

xy Syy

)
is the empirical covariance matrix of X̃. Assume for a moment that S is invertible. Then, the
maximum likelihood estimator for Σ−1 is S−1 (we use the fact that dlog{det.W/}=dW =W−1

for a symmetric positive definite matrix W). Let

Θ=
(

Θxx Θxy

ΘT
xy Θyy

)
denote a symmetric estimate of Σ−1. The problem of regressing y onto X is closely related
to the problem of estimating Σ−1, since the least squares coefficients for the regression equal
−Θxy=Θyy for Θ=S−1 (this follows from the partitioned inverse formula; see for example Mar-
dia et al. (1979), page 459). If p > n, then some type of regularization is needed to estimate
the regression coefficients, since S is not invertible. Even if p < n, we may want to shrink the
least squares coefficients in some way to achieve superior prediction. The connection between
estimation of Θ and estimation of the least squares coefficients suggests the possibility that
rather than shrinking the coefficients β by applying a penalty to the sum of squared errors for
the regression of y onto X, as is done in for example ridge regression or the lasso, we can obtain
shrunken β-estimates through maximization of the penalized log-likelihood of the data.
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To do this, we could estimate Σ−1 as Θ that maximizes

log{det.Θ/}− tr.SΘ/−J.Θ/ .3/

where J.Θ/ is a penalty function. For example, J.Θ/=‖Θ‖p denotes the sum of absolute values
of the elements of Θ if p = 1, and it denotes the sum of squared elements of Θ if p = 2. Our
regression coefficients would then be given by the formula β =−Θxy=Θyy. However, recall that
the ij-element of Θ is 0 if and only if the partial correlation of x̃i with x̃j (conditional on all
the other variables in X̃) is 0. (This follows from the definition of the partial correlation, and
again from the partitioned inverse formula.) Note that y is included in X̃. So it does not make
sense to regularize the elements of Θ as presented above, because we really care about the partial
correlations of pairs of variables given the other variables, as opposed to the partial correlations
of pairs of variables given the other variables and the response.

For these reasons, rather than obtaining an estimate of Σ−1 by maximizing the penalized log-
likelihood in equation (3), we estimate it via a two-stage maximization, given in the following
algorithm for the scout procedure for general penalty functions.

Step 1: compute Θ̂xx, which maximizes

log{det.Θxx/}− tr.SxxΘxx/−J1.Θxx/: .4/

Step 2: compute Θ̂, which maximizes

log{det.Θ/}− tr.SΘ/−J2.Θ/, .5/

where the top left p×p submatrix of Θ̂ is constrained to equal Θ̂xx, the solution to step 1.
Step 3: compute β̂, defined by β̂ =−Θ̂xy=Θ̂yy.
Step 4: compute β̂

Å = cβ̂, where c is the coefficient for the regression of y onto Xβ̂.

β̂
Å

denotes the regularized coefficients that are obtained by using this new method. Step 1 of
the scout procedure involves obtaining shrunken estimates of .Σxx/−1 to smooth our estimates
of which variables are conditionally independent. Step 2 involves obtaining shrunken estimates of
Σ−1, conditional on .Σ−1/xx =Θ̂xx, the estimate that is obtained in step 1. Thus, we obtain regu-
larized estimates of which predictors are dependent on y, given all the other predictors. The scal-
ing in the last step is performed because it has been found, empirically, to improve performance.

By penalizing the entries of the inverse covariance matrix of the predictors in step 1 of the
scout procedure, we are attempting to distinguish between pairs of variables that truly are con-
ditionally dependent, and pairs of variables that appear to be conditionally dependent only
because of chance. We are searching, or scouting, for variables that truly are correlated with
each other, conditional on all the other variables. Our hope is that sets of variables that truly
are conditionally dependent will also be related to the response. In the context of a micro-
array experiment, where the variables are genes and the response is some clinical outcome, this
assumption is reasonable: we seek genes that are part of a pathway related to the response. We
expect that such genes will also be conditionally dependent. In step 2, we shrink our estimates
of the partial correlation between each predictor and the response, given the shrunken partial
correlations between the predictors that we estimated in step 1. In contrast with ordinary least
squares regression, which uses the inverse of the empirical covariance matrix to compute regres-
sion coefficients, we jointly model the relationship that the p predictors have with each other
and with the response to obtain shrunken regression coefficients.

We define the scout family of estimated coefficients for the regression of y onto X as the
solutions β̂

Å
that are obtained in step 4 of the scout procedure. We refer to the penalized log-

likelihoods in steps 1 and 2 of the scout procedure as the first and second scout criteria.
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Table 1. Special cases of the scout

J1(Θxx) J2(Θ) Method

0 0 Least squares
tr.Θxx/ 0 Ridge regression
tr.Θxx/ ‖Θ‖1 Elastic net
0 ‖Θ‖1 Lasso
0 ‖Θ‖2 Ridge regression

In the rest of the paper, when we discuss properties of the scout, for ease of notation we
shall ignore the scale factor in step 4 of the scout procedure. For instance, if we claim that two
procedures yield the same regression coefficients, we more specifically mean that the regression
coefficients are the same up to scaling by a constant factor.

Least squares, the elastic net, the lasso and ridge regression result from the scout procedure
with appropriate choices of J1 and J2 (up to a scaling by a constant). Details are in Table 1. The
first two results can be shown directly by differentiating the scout criteria, and the others follow
from equation (11) in Section 2.4.

2.2. Lp-penalties
Throughout the remainder of this paper, with the exception of Section 3.2, we shall exclusively be
interested in the case that J1.Θ/=λ1‖Θ‖p1 and J2.Θ/= .λ2=2/‖Θ‖p2 , where the norm is taken
elementwise over the entries of Θ, and where λ1, λ2 � 0. For ease of notation, Scout.p1, p2/

will refer to the solution to the scout criterion with J1 and J2 as just mentioned. If λ2 =0, then
this will be indicated by Scout.p1, ·/ and, if λ1 = 0, then this will be indicated by Scout.·, p2/.
Therefore, in the rest of this paper, the scout procedure with Lp-penalties will be as follows.

Step 1: compute Θ̂xx, which maximizes

log{det.Θxx/}− tr.SxxΘxx/−λ1‖Θxx‖p1 : .6/

Step 2: compute Θ̂, which maximizes

log{det.Θ/}− tr.SΘ/− λ2

2
‖Θ‖p2 , .7/

where the top left p×p submatrix of Θ̂ is constrained to equal Θ̂xx, the solution to step 1.
Because of this constraint, the penalty really is only being applied to the last row and column
of Θ̂.
Step 3: compute β̂, defined by β̂ =−Θ̂xy=Θ̂yy.
Step 4: compute β̂

Å = cβ̂, where c is the coefficient for the regression of y onto Xβ̂.

2.3. Simple example
Here, we present a toy example in which n=20 observations on p=19 variables are generated
under the model y=Xβ +", where βj =j for j �10 and βj =0 for j>10, and where "i ∼N.0, 25/

independent. In addition, the first 10 variables have correlation 0.5 with each other; the rest are
uncorrelated.

Fig. 1 shows the average over 500 simulations of the least squares regression coefficients and
the Scout.1, ·/ regression estimate. It is not surprising that the least squares method performs
poorly in this situation, since n is barely larger than p. Scout.1, ·/ performs quite well; though
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Fig. 1. Average coefficient estimates (over 500 repetitions) and 95% confidence intervals for data generated
under a simple model (- - - - - - -, y D0/: (a) .XTX/�1XTy; (b) Scout.1, �/

it results in coefficient estimates that are slightly biased, they have much lower variance. This
simple example demonstrates that benefits can result from the use of a shrunken estimate of the
inverse covariance matrix.

2.4. Maximization of the scout criteria with Lp-penalties
If λ1 =0, then the maximum of the first scout criterion is given by .Sxx/−1 (if Sxx is invertible).
In the case that λ1 > 0 and p1 = 1, maximization of the first Scout criterion has been studied
extensively; see for example Meinshausen and Bühlmann (2006). The solution can be found via
the ‘graphical lasso’, which is an efficient algorithm that was given by Banerjee et al. (2008) and
Friedman et al. (2007) that involves iteratively regressing one row of the estimated covariance
matrix onto the others, subject to an L1-constraint, to update the estimate for that row.

If λ1 > 0 and p1 =2, the solution to step 1 of the scout procedure is even easier. We want to
find Θxx that maximizes

log{det.Θxx/}− tr.SxxΘxx/−λ‖Θxx‖2: .8/

Differentiating with respect to Θxx, we see that the maximum solves

Θ−1
xx −2λΘxx =Sxx: .9/

This equation implies that Θxx and Sxx share the same eigenvectors. Letting θi denote the ith
eigenvalue of Θxx and letting si denote the ith eigenvalue of Sxx, it is clear that

1
θi

−2λθi = si: .10/

We can easily solve for θi and can therefore solve the first scout criterion exactly in the case
p1 =2, in essentially just the computational cost of obtaining the eigenvalues of Sxx.

It turns out that, if p2 = 1 or p2 = 2, then it is not necessary to maximize the second scout
criterion directly, as there is an easier alternative, as follows.

Assumption 1. For p2 ∈ {1, 2}, the solution to step 3 of the scout procedure is equal to the
solution to the following equation, up to scaling by a constant:

β̂ =arg min
β

.βTΣ̂xxβ −2ST
xyβ +λ2‖β‖p2/ .11/

where Σ̂xx is the inverse of the solution to step 1 of the scout procedure.

(The proof of assumption 1 is in Appendix A.1.1.) Therefore, we can replace steps 2 and 3
of the scout procedure with an Lp2 -regression. It is trivial to show that, if λ2 = 0 in the scout
procedure, then the scout solution is given by β̂ = .Σ̂xx/−1Sxy. It also follows that, if λ1 = 0,
then the cases λ2 =0, p2 =1 and p2 =2 correspond to ordinary least squares regression (if the
empirical covariance matrix is invertible), the lasso and ridge regression respectively.



6 D. M. Witten and R. Tibshirani

Table 2. Maximization of the scout criteria: special cases

λ2 =0 p2 =1 p2 =2

λ1 =0 Least squares L1-regression L2-regression
p1 =1 Graphical lasso Graphical lasso+ Graphical lasso+

L1-regression L2-regression
p1 =2 Eigenvalue problem Elastic net Eigenvalue problem+

L2-regression

Table 3. Timing comparisons for maximization of the scout
criteria†

p Results (central processor unit s) for the
following methods:

Scout(1, ·) Scout(1, 1) Scout(2, ·) Scout(2, 1)

500 1.685 1.700 0.034 0.072
1000 22.432 22.504 0.083 0.239
2000 241.289 241.483 0.260 0.466

†λ1 =λ2 =0:2, n=100, X dense and p the number of features.

In addition, we shall show in Section 2.5.1 that, if p1 = 2 and p2 = 1, then the scout can be
rewritten as an elastic net problem with slightly different data; therefore, fast algorithms for
solving the elastic net (Friedman et al., 2008) can be used to solve Scout.2, 1/. The methods for
maximizing the scout criteria are summarized in Table 2.

We compared computation times for Scout.2, ·/, Scout.1, ·/, Scout.2, 1/ and Scout.1, 1/ on an
example with n=100, λ1 =λ2 =0:2 and X dense. All timings were carried out on an Intel Xeon
2.80-GHz processor. Table 3 shows the number of central processor unit seconds required for
each of these methods for a range of values of p (the number of features). For all methods, after
the scout coefficients have been estimated for a given set of parameter values, estimation for
different parameter values is faster because an approximate estimate of the inverse covariance
matrix is available for use as an initial value (when p1 = 1) or because the eigendecomposition
has already been computed (when p1 =2).

Scout.p1, p2/ involves the use of two tuning parameters, λ1 and λ2; in practice, these are
chosen by cross-validating over a grid of .λ1, λ2/ values. In Section 2.7, we present a Bayesian
connection to the first scout criterion. The Joint Editor suggested that, as an alternative to
cross-validating over λ1, one could instead draw from the posterior distribution of Θxx.

2.5. Properties of the scout
In this section, for ease of notation, we shall consider an equivalent form of the scout procedure
that is obtained by replacing Sxx with XTX and Sxy with XTy.

2.5.1. Similarities between scout, ridge regression and the elastic net
Let Un×pDp×pVT

p×p denote the singular value decomposition of X with di the ith diagonal
element of D and d1 � d2 � . . . � dr > dr+1 = . . . = dp = 0, where r = rank.X/ � min.n, p/.
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Consider Scout.2, p2/. As previously discussed, the first step in the scout procedure corresponds
to finding Θ that solves

Θ−1 −2λ1Θ=XTX: .12/

Since Θ and XTX therefore share the same eigenvectors, it follows that Θ−1 = V.D2 + D̃2/VT

where D̃2 is a p×p diagonal matrix with ith diagonal entry equal to 1
2{−di

2 +√
.d4

i +8λ1/}. It
is not difficult to see that ridge regression, Scout.2, ·/ and Scout(2, 2) result in similar regression
coefficients:

β̂rr = .V.D2 + cI/VT/−1XTy;

β̂Scout.2,·/ = .V.D2 + D̃
2
/VT/−1XTy;

β̂Scout.2,2/ = .V.D2 + D̃
2 +λ2I/VT/−1XTy: .13/

Therefore, whereas ridge regression simply adds a constant to the diagonal elements of D in
the least squares solution, Scout.2, ·/ instead adds a function that is monotone decreasing in
the value of the diagonal element. (The consequences of this alternative shrinkage are explored
under a latent variable model in Section 2.6.) Scout.2, 2/ is a compromise between Scout.2, ·/
and ridge regression.

In addition, we note that the solutions to the naive elastic net and Scout.2, 1/ are quite similar
to each other:

β̂enet =arg min
β

{βTV.D2 + cI/VTβ −2βTXTy +λ2‖β‖1}

=arg min
β

.βTXTXβ −2βTXTy +λ2‖β‖1 + c‖β‖2/

=arg min
β

.‖y −Xβ‖2 +λ2‖β‖1 + c‖β‖2/,

β̂Scout.2,1/ =arg min
β

{βTV.D2 + D̃
2
/VTβ −2βTXTy +λ2‖β‖1}

=arg min
β

{βTV. 1
2 D2 + 1

2 D̄
2
/VTβ −2βTXTy +λ2‖β‖1 +√

.2λ1/‖β‖2}

=arg min
β

{‖yÅ −XÅβ‖2 +λ2‖β‖1 +√
.2λ1/‖β‖2} .14/

where D̄2 is the diagonal matrix with elements
√

.d4
i +8λ1/−√

.8λ1/, and where

XÅ = 1√
2

(
X

D̄VT

)
,

yÅ =
(√

2y
0

)
:

From equation (14), it is clear that Scout(2, 1) solutions can be obtained by using software for
the elastic net on data XÅ and yÅ. In addition, given the similarity between the elastic net and
Scout(2, 1) solutions, it is not surprising that Scout(2, 1) shares some of the elastic net’s desirable
properties, as is shown in Section 2.5.2.

2.5.2. Variable grouping effect
Zou and Hastie (2005) showed that, unlike the lasso, the elastic net and ridge regression have
a variable grouping effect: correlated variables result in similar coefficients. The same is true of
Scout(2, 1).
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Assumption 2. Assume that the predictors are standardized and that y is centred. Let ρ denote
the correlation between xi and xj, and let β̂ denote the solution to Scout(2, 1). If β̂iβ̂j �=0, then
the following inequality holds:

|β̂i − β̂j|�
√{

2.1−ρ/

λ1

}
‖y‖: .15/

The proof of assumption 2 is in Appendix A.1.2. Similar results hold for Scout.2, ·/ and Scout(2,
2), without the requirement that β̂iβ̂j �=0.

2.5.3. Connections to regression with orthogonal features
Assume that the features are standardized, and consider the scout criterion with p1 =1. For λ1
sufficiently large, the solution Θ̂xx to the first scout criterion (equation (6)) is a diagonal matrix
with diagonal elements 1=.λ1 +xT

i xi/. (More specifically, if λ1 � |xT
i xj| for all i �= j, then the

scout criterion with p1 = 1 results in a diagonal matrix; see Banerjee et al. (2008), theorem 4.)
Thus, if β̂i is the ith component of the Scout.1, ·/ solution, then β̂i = xT

i y=.λ1 + 1/. If λ2 > 0,
then the resulting scout solutions with p2 = 1 are given by a variation of the univariate soft
thresholding formula for L1-regression:

β̂i =
1

λ1 +1
sgn.xT

i y/ max
(

0, |xT
i y|− λ2

2

)
: .16/

Similarly, if p2 =2, the resulting scout solutions are given by the formula

β̂ = .1+λ1 +λ2/−1XTy: .17/

Therefore, as the parameter λ1 is increased, the solutions that are obtained range (up to a
scaling) from the ordinary Lp2 multivariate regression solution to the regularized regression
solution for orthonormal features.

2.6. An underlying latent variable model
Let X be an n × p matrix of n observations on p variables, and y an n × 1 vector of response
values. Suppose that X and y are generated under the following latent variable model:

X =d1u1vT
1 +d2u2vT

2 ,

d1, d2 > 0,

y =u1 + ",

var."/=σ2I,

E."/=0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.18/

where ui and vi are the singular vectors of X, and " is an n×1 vector of noise.

Assumption 3. Under this model, if d1 > d2 and the tuning parameters for ridge regression
and Scout.2, ·/ are chosen so that the resulting estimators have the same amount of bias, then
the estimator that is given by Scout.2, ·/ will have lower variance.

The proof of assumption 3 is given in Appendix A.1.3. Note that, if v1 and v2 are sparse with
non-overlapping regions of non-sparsity, then the model yields a block diagonal covariance
matrix with two blocks, where one of the blocks of correlated features is associated with the
outcome. In the case of gene expression data, these blocks could represent gene pathways, one
of which is responsible for, and has expression that is correlated with, the outcome. Assumption
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3 shows that, if the signal that is associated with the relevant gene pathway is sufficiently large,
then Scout.2, ·/ will provide a benefit over ridge regression.

2.7. Bayesian connection to the first scout criterion
Consider the model y =Xβ + " where "i are independent Gaussian random variables. It is well
known that ridge regression, the lasso and the elastic net can be viewed as the Bayes posterior
modes under various priors, since they involve solving for β that minimizes a criterion of the
form

.y −Xβ/T.y −Xβ/+λ1‖β‖p1 +λ2‖β‖p2 : .19/

Ridge regression corresponds to a normal prior on the elements of β, the lasso corresponds to
a double-exponential prior and the elastic net corresponds to a prior that is a combination of
the two.

Similarly, we can think of the solution to the first scout criterion as the Bayes mode of the
posterior distribution given by X ∼N.0,Σ/ and a prior on the elements of Σ−1, such that, for
i� j, .Σ−1/ij is independent and identically distributed with either a Gaussian distribution (if
p1 =2) or a double-exponential distribution (if p1 =1). Formally, this would have the potential
difficulty that draws from the prior distribution are not constrained to be positive semidefinite.

3. Numerical studies: regression via the scout

3.1. Simulated data
We compare the performance of ordinary least squares, the lasso, the elastic net, Scout(2,1) and
Scout(1,1) on a suite of six simulated examples. The first four simulations are based on those used
in Zou and Hastie (2005) and Tibshirani (1996). The fifth and sixth are of our own invention.
All simulations are based on the model y = Xβ + σ" where " ∼ N.0, I/. For each simulation,
each data set consists of a small training set, a small validation set (which is used to select
the values of the various parameters) and a large test set. We indicate the size of the training,
validation and test sets by using the notation ·= ·=·. The simulations are as follows.

(a) Simulation 1: each data set consists of 20=20=200 observations, eight predictors with
coefficients β = .3, 1:5, 0, 0, 2, 0, 0, 0/T and σ =3. X ∼N.0,Σ/, where Σij =0:5|i−j|.

(b) Simulation 2: this simulation is as in simulation 1, except that βi =0:85 for all i.
(c) Simulation 3: each data set consists of 100=100=400 observations and 40 predictors. βi =0

for i∈1, . . . , 10 and for i∈21, . . . , 30; for all other i, βi =2. We also set σ=15. X∼N.0,Σ/,
where Σij =0:5 for i �= j, and Σii =1.

(d) Simulation 4: each data set consists of 50=50=400 observations and 40 predictors. βi =3
for i∈1, . . . , 15 and βi =0 for i∈16, . . . , 40, and σ =15. The predictors are generated as
follows:

xi =
⎧⎨⎩

z1 + "x
i , z1 ∼N.0, I/, i=1, . . . , 5;

z2 + "x
i , z2 ∼N.0, I/, i=6, . . . , 10;

z3 + "x
i , z3 ∼N.0, I/, i=11, . . . , 15:

.20/

Also, xi ∼N.0, I/ are independent and identically distributed for i=16, . . . , 40, and "x
i ∼

N.0, 0:01I/ are independent and identically distributed for i=1, . . . , 15.
(e) Simulation 5: each data set consists of 50=50=400 observations and 50 predictors; βi =2

for i < 9 and βi = 0 for i � 9. σ = 6 and X ∼ N.0,Σ/, where Σij = 0:5Ii,j�9 for i �= j, and
Σii =1.

(f) Simulation 6: as in simulation 1, but β = .3, 1:5, 0, 0, 0, 0,−1,−1/T.
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Table 4. Mean-squared error averaged over 200 simulated data sets for each simulation†

Simulation Results for the following methods:

Least squares Lasso Elastic net Scout(1, 1) Scout(2, 1)

1 7.72 (0.46) 2.83 (0.16) 2.28 (0.13) 2.22 (0.13) 2.29 (0.13)
2 7.72 (0.46) 3.26 (0.13) 2.28 (0.11) 1.31 (0.09) 1.54 (0.09)
3 158.29 (3.66) 44.07 (0.80) 30.86 (0.47) 20.44 (0.25) 18.94 (0.28)
4 1094.84 (44.75) 54.79 (2.30) 25.06 (1.62) 30.21 (1.61) 28.37 (1.52)
5 — 10.91 (0.38) 2.46 (0.09) 1.62 (0.09) 2.18 (0.11)
6 7.72 (0.46) 2.95 (0.16) 2.34 (0.13) 2.12 (0.11) 2.15 (0.11)

†Standard errors are given in parentheses. For each simulation, the two methods with lowest
average mean-squared errors are shown in italics. Least squares analysis was not performed for
simulation 5, because p=n.

Table 5. Median L2-distance over 200 simulated data sets for each simulation†

Simulation Results for the following methods:

Least squares Lasso Elastic net Scout(1, 1) Scout(2, 1)

1 3.05 (0.10) 1.74 (0.05) 1.65 (0.08) 1.58 (0.05) 1.62 (0.06)
2 3.05 (0.10) 1.95 (0.02) 1.62 (0.03) 0.90 (0.03) 1.04 (0.04)
3 17.03 (0.22) 8.91 (0.09) 7.70 (0.06) 6.15 (0.01) 5.83 (0.03)
4 168.40 (5.13) 17.40 (0.16) 3.85 (0.13) 5.19 (2.3) 3.80 (0.14)
5 — 3.48 (0.06) 2.08 (0.06) 1.15 (0.03) 1.55 (0.05)
6 3.05 (0.10) 1.76 (0.06) 1.53 (0.05) 1.48 (0.04) 1.50 (0.03)

†The details are the same as in Table 4.

These simulations cover a variety of settings: simulations 1, 3, 4, 5 and 6 have sparse β, simu-
lations 1, 2, 4, 5 and 6 have a sparse inverse covariance matrix and simulation 4 is characterized
by groups of variables that contribute to the response. For each simulation, 200 data sets were
generated, and the average mean-squared errors (with standard errors given in parentheses) are
given in Table 4. The scout provides an improvement over the lasso in all simulations. Both
scout methods result in lower mean-squared error than the elastic net in simulations 2, 3, 5
and 6; in simulations 1 and 4, the scout methods are quite competitive. Table 5 shows median
L2-distances between the true and estimated coefficients for each of the models.

Though Scout(2,1) and Scout(1,1) perform well relative to the elastic net and lasso in all six
simulations, neither dominates the others in all cases. For a given application, we recommend
selecting a regression method based on cross-validation error (with the caveat that Scout(1,1)
is slow when the number of features is very large).

3.2. Scout using alternative covariance estimators
A referee asked whether a different estimator of the inverse covariance matrix of X could be
used in step 2 of the scout procedure, rather than the solution to the first scout criterion. A large
body of literature exists on estimation of covariance and inverse covariance matrices. Examples
include James and Stein (1961), Haff (1979), Dey and Srinivasan (1985), Bickel and Levina
(2008) and Rothman et al. (2008). Any covariance estimate can be plugged in for Σ̂ in the
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Table 6. On simulation 2, comparison of two new estimators obtained by plugging
in Σ̂JS and Σ̂BL to equation (21)†

Quantity Results for the following methods:

Scout(JS, 1) Scout(BL, 1) Scout(1, 1) Scout(2, 1)

Mean mean-squared 3.79 (0.15) 2.42 (0.12) 1.31 (0.09) 1.54 (0.09)
error

Median L2-distance 3.34 (0.14) 1.94 (0.10) 0.90 (0.03) 1.04 (0.04)

†Tuning parameter values were chosen by cross-validation, and standard errors are in
parentheses.

equation from assumption 1:

β̂ =arg min
β

.βTΣ̂β −2ST
xyβ +λ2‖β‖s/: .21/

We explore that possibility here with two covariance estimates: the estimator of James and
Stein (1961), and the hard thresholding estimator of Bickel and Levina (2008). The James–Stein
estimator takes the form Σ̂JS = TDTT where T is a lower triangular matrix with positive ele-
ments on the diagonal such that TTT =XTX, and D is a diagonal matrix with diagonal elements
di = 1=.n+p+1−2i/. It is the constant risk minimax estimator under Stein’s loss. Σ̂BL, the
estimator of Bickel and Levina (2008), is obtained by hard thresholding each element of the
empirical covariance matrix. With s=1 in equation (22), the resulting methods (which we call
Scout(JS, 1) and Scout(BL, 1)) are compared with Scout(2, 1) and Scout(1, 1) on simulation
2, described in Section 3.1. The results are shown in Table 6. In this example, Scout(JS, 1) and
Scout(BL, 1) do not perform as well as Scout(1, 1) and Scout(2, 1).

3.3. Making use of observations without response values
In step 1 of the scout procedure, we estimate the inverse covariance matrix based on the train-
ing set X-data and, in steps 2–4, we compute a penalized least squares solution based on that
estimated inverse covariance matrix and ĉov.X, y/. Step 1 of this procedure does not involve the
response y at all.

Now, consider a situation in which we have access to a large amount of X-data, but responses
are known for only some of the observations. (For instance, this could be the case for a medical
researcher who has clinical measurements on hundreds of cancer patients, but survival times
for only dozens of patients.) More specifically, let X1 denote the observations for which there
is an associated response y, and let X2 denote the observations for which no response data are
available. Then, we could estimate the inverse covariance matrix in step 1 of the scout procedure
by using both X1 and X2, and perform step 2 by using ĉov.X1, y/. By also using X2 in step 1, we
achieve a more accurate estimate of the inverse covariance matrix than would have been possible
by using only X1.

Such an approach will not provide an improvement in all cases. For instance, consider the triv-
ial case in which the response is a linear function of the predictors, p<n, and there is no noise:
y = X1β. Then, the least squares solution, using only X1 and not X2, is β̂ = .XT

1 X1/−1XT
1 y =

.XT
1 X1/−1XT

1 X1β = β. In this case, it clearly is best to use only X1 in estimating the inverse
covariance matrix. However, one can imagine situations in which we can use X2 to obtain a
more accurate estimate of the inverse covariance matrix.
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Table 7. Making use of observations without res-
ponse values: set-up

Sample Response
size description

Training set 12 Available
Test set 200 Unavailable—

must be predicted
Additional 36 Unavailable—

observations not of interest

Consider a model in which a latent variable has generated some of the features, as well as the
response. In particular, suppose that the data are generated as follows:

xij =2ui + "ij, j =1, . . . , 5, i=1, . . . , n;

xij = "ij, j =6, . . . , 10, i=1, . . . , n;

yi =8ui +4"′
i, i=1, . . . , n:

⎫⎪⎬⎪⎭ .22/

In addition, we let "ij, "′
i, ui ∼N.0, 1/ independent and identically distributed. The first five vari-

ables are ‘signal’ variables, and the rest are ‘noise’ variables. Suppose that we have three sets of
observations: a training set of size n = 12, for which the y-values are known, a test set of size
n = 200, for which we wish to predict the y-values, and an additional set of size n = 36 obser-
vations for which we do not know the y-values and do not wish to predict them. This layout is
shown in Table 7.

We compare the performances of the scout and other regression methods. The scout method
is applied in two ways: using only the training set X-values to estimate the inverse covariance
matrix, and using also the observations without response values. All tuning parameter values
are chosen by sixfold cross-validation. The results in Table 8 are the average mean-squared
prediction errors obtained over 500 simulations. From Table 8, it is clear that both versions of
the scout outperform all the other methods. In addition, using observations that do not have
response values does result in a significant improvement.

Table 8. Results by making use of observations
without response values†

Method Mean-squared
prediction error

Scout.1, ·/ with 25.65 (0.38)
additional observations

Scout.1, ·/ without 29.92 (0.62)
additional observations

Elastic net 32.38 (1.04)
Lasso 47.24 (3.58)
Least squares 1104.9 (428.84)
Null model 79.24 (0.3)

†Standard errors are shown in parentheses. The
‘null model’ predicts each test set outcome value
by using the mean of the training set outcomes.
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In this example, 12 labelled observations on 10 variables do not suffice to estimate the inverse
covariance matrix reliably. The scout can make use of the observations that lack response values
to improve the estimate of the inverse covariance matrix, thereby yielding superior predictions.

The use of unlabelled data for classification and regression is sometimes called semisuper-
vised learning. The use of unlabelled observations for linear discriminant analysis dates back
to O’Neill (1978); other classical work in this area can be found in McLachlan (1992). It is
currently an active area of research in the statistical and machine learning communities. Liang
et al. (2007) have presented an overview of the use of unlabelled data for prediction, as well as
the underlying theory.

4. Classification via the scout

In classification problems, linear discriminant analysis can be used if n > p. However, when
p > n, regularization of the within-class covariance matrix is necessary. Regularized linear dis-
criminant analysis is discussed in Friedman (1989) and Guo et al. (2007). In Guo et al. (2007),
the within-class covariance matrix is shrunken, as in ridge regression, by adding a multiple of
the identity matrix to the empirical covariance matrix. Here, we instead estimate a shrunken
within-class inverse covariance matrix by maximizing the log-likelihood of the data, under a
multivariate normal model, subject to an Lp-penalty on its elements.

4.1. Details of extension of scout to classification
Consider a classification problem with K classes; each observation belongs to some class k ∈
1, . . . , K. Let C.i/ denote the class of training set observation i, which is denoted Xi. Our goal
is to classify observations in an independent test set.

Let μ̂k denote the p×1 vector that contains the mean of observations in class k, and let

Swc = 1
n−K

K∑
k=1

∑
i:C.i/=k

.Xi − μ̂k/.Xi − μ̂k/T

denote the estimated within-class covariance matrix (based on the training set) that is used for
ordinary linear discriminant analysis. Then, the scout procedure for classification is as follows.

Step 1: compute the shrunken within-class inverse covariance matrix Σ̂
−1
wc,λ:

Σ̂
−1
wc,λ =arg max

Σ−1
[log{det.Σ−1/}− tr.SwcΣ−1/−λ‖Σ−1‖s] .23/

where λ is a shrinkage parameter.
Step 2: classify test set observation X to class k′ if k′ =arg maxk{δλ

k .X/}, where

δλ
k .X/=XTΣ̂

−1
wc,λμ̂k − 1

2 μ̂T
k Σ̂

−1
wc,λμ̂k + log.πk/ .24/

and πk is the frequency of class k in the training set.

This procedure is analogous to LDA, but we have replaced Swc with a shrunken estimate.
This classification rule performs quite well on real microarray data (as is shown below) but

has the drawback that it makes use of all the genes. We can remedy this in one of two ways.
We can apply the method described above to only the genes with highest univariate rankings
on the training data; this is done in the next section. Alternatively, we can apply an L1-penalty
in estimating the quantity Σ̂−1

wc,λμ̂k; note (from equation (24)) that sparsity in this quantity
will result in a classification rule that is sparse in the features. Details of this second method,
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which is not implemented here, are given in Appendix A.2. We shall refer to the method that
is detailed in equations (23) and (24) as Scout.s, ·/ because the penalized log-likelihood that is
maximized in equation (23) is analogous to the first scout criterion in the regression case. The
tuning parameter λ in equations (23) and (24) can be chosen via cross-validation.

4.2. Ramaswamy data
We assess the performance of this method on the Ramaswamy microarray data set, which was
discussed in detail in Ramaswamy et al. (2001) and explored further in Zhu and Hastie (2004) and
Guo et al. (2007). It consists of a training set of 144 samples and a test set of 54 samples, each
of which contains measurements on 16063 genes. The samples are classified into 14 distinct
cancer types. We compare the performance of Scout.2, ·/ with nearest shrunken centroids
(Tibshirani et al., 2002, 2003), L2-penalized multiclass logistic regression (Zhu and Hastie,
2004), the support vector machine with one-versus-all classification (Ramaswamy et al., 2001),
regularized discriminant analysis (Guo et al., 2007), random forests (Breiman, 2001) and k

Table 9. Comparison of methods on the Ramaswamy data†

Method Cross- Test Number
validation error of genes

error used

Nearest shrunken centroids 35 17 5217
L2-penalized multiclass 29 15 16063

logistic regression
Support vector machine 26 14 16063
Regularized discriminant 27 11 9141

analysis
k nearest neighbours 41 29 16063
Random forests 40 24 16063
Scout.2, ·/ 22 11 16063

†All methods were performed on the cube-rooted data, after centring
and scaling each patient.

Table 10. Comparison of methods on the Ramaswamy data†

Method Test Number
error of genes

used

Nearest shruken centroids 21 3999
L2-penalized multiclass 12 4000

logistic regression
Support vector machine 11 4000
Regularized discriminant 10 3356

analysis
k nearest neighbours 17 4000
Random forests 17 4000
Scout.2, ·/ 7 4000

†The methods were run on the cube-rooted data after centring and
scaling the patients, using only the 4000 genes with highest training
set F -statistics.
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nearest neighbours. For each method, tuning parameter values were chosen by cross-validation.
The results can be seen in Tables 9 and 10; Scout.2, ·/ performed quite well, especially when
only the 4000 genes with highest training set F -statistics were used (Tusher et al., 2001).

5. Extension to generalized linear models and the Cox model

We have discussed the application of the scout to classification and regression problems, and we
have shown examples in which these methods perform well. In fact, the scout can also be used in
fitting generalized linear models, by replacing the iteratively reweighted least squares step with
a covariance-regularized regression. In particular, we discuss the use of the scout in the context
of fitting a Cox proportional hazards model for survival data. We present an example involving
four lymphoma microarray data sets in which the scout results in improved performance relative
to other methods.

5.1. Details of extension of scout to the Cox model
Consider survival data of the form .yi, xi, δi/ for i ∈ 1, . . . , n, where δi is an indicator variable
that equals 1 if observation i is complete and 0 if censored, and xi is a vector of predictors
.xi

1, . . . , xi
p/ for individual i. Failure times are t1 <t2 < . . . <tk; there are di failures at time ti. We

wish to estimate the parameter β = .β1, . . . , βp/T in the proportional hazards model

λ.t|x/=λ0.t/exp
(∑

j

xjβj

)
:

We assume that censoring is non-informative. Letting η = Xβ, D the set of indices of the fail-
ures, Rr the set of indices of the individuals at risk at time tr and Dr the set of indices of the
failures at tr, the partial likelihood is given as follows (see for example Kalbfleisch and Prentice
(1980)):

L.β/= ∏
r∈D

exp
( ∑

j∈Dr

ηj

)
{ ∑

j∈Rr

exp.ηj/
}dr

: .25/

To fit the proportional hazards model, we must find the β that maximizes this partial likeli-
hood. Let l.β/ denote the log-partial-likelihood, u = @l=@η, and A =−@2l=@ηηT. The iteratively
reweighted least squares algorithm that implements the Newton–Raphson method, for β0 the
value of β from the previous step, involves finding β that solves

XTAX.β −β0/=XTu: .26/

This is equivalent to finding β that minimizes

‖yÅ −XÅβÅ‖2 .27/

where XÅ =A1=2X, yÅ =A−1=2u and βÅ =β −β0 (Green, 1984).
The traditional iterative reweighted least squares algorithm involves solving the above least

squares problem repeatedly, recomputing yÅ and XÅ at each step and setting β0 equal to the
solution β that is attained at the previous iteration. We propose to solve the above equa-
tion by using the scout, rather than by a simple linear regression. We have found empirically
that good results are obtained if we initially set β0 = 0, and then perform just one Newton–
Raphson step (using the scout). This is convenient since, for data sets with many features,
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solving a scout regression can be time consuming. Therefore, our implementation of the scout
method for survival data involves simply performing one Newton–Raphson step, beginning
with β0 =0.

Using the notation

Θ=
(

Θxx Θxy

ΘT
xy Θyy

)
and

S=
(

XTAX XTu
uTX uTA−1u

)
,

the scout procedure for the Cox model for survival data is almost identical to the regression case,
as follows.

Step 1: let Θ̂xx maximize

log{det.Θxx/}− tr.SxxΘxx/−λ1‖Θxx‖p1 : .28/

Step 2: let Θ̂ maximize

log{det.Θ/}− tr.SΘ/−λ2‖Θ‖p2 , .29/

where the top p × p submatrix of Θ is constrained to equal Θ̂xx, obtained in the previous
step.
Step 3: compute β̂ =−Θ̂xy=Θ̂yy.
Step 4: let β̂

Å = cβ̂, where c is the coefficient of a Cox proportional hazards model fit to y
using Xβ as a predictor.

β̂
Å

obtained in step 4 is the vector of estimated coefficients for the Cox proportional hazards
model. In the procedure above, λ1, λ2 > 0 are tuning parameters. In keeping with the notation
of previous sections, we shall refer to the resulting coefficient estimates as Scout.p1, p2/.

5.2. Lymphoma data
We illustrate the effectiveness of the scout method on survival data by using four different data
sets, all involving survival times and gene expression measurements for patients with diffuse
large B-cell lymphoma. The four data sets are as follows: Rosenwald et al. (2002), which con-
sists of 240 patients, Shipp et al. (2002), which consists of 58 patients, Hummel et al. (2006),
which consists of 81 patients, and Monti et al. (2005), which consists of 129 patients. For con-
sistency and ease of comparison, we considered only a subset of around 1482 genes that were
present in all four data sets.

We randomly split each of the data sets into a training set, a validation set and a test set
of equal sizes. For each data set, we fit four models to the training set: the L1-penalized Cox
proportional hazards (‘L1-Cox’) method of Park and Hastie (2007), the supervised principal
components (‘SPC’) method of Bair and Tibshirani (2004), Scout.2, 1/ and Scout.1, 1/. For each
data set, we chose the tuning parameter values that resulted in the predictor that gave the highest
log-likelihood when used to fit a Cox proportional hazards model on the validation set (this pre-
dictor was Xvalβtrain for the L1-Cox and scout methods, and it was the first supervised principal
component for method SPC). We tested the resulting models on the test set. The mean value
of 2{log.L/− log.L0/} over 10 separate training–test–validation set splits is given in Table 11,
where L denotes the likelihood of the Cox proportional hazards model fit on the test set using
the predictor that was obtained from the training set (for the L1-Cox and scout methods, this
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Table 11. Mean of 2{log.L/� log.L0/} on the survival data†

Data set Results for the following methods:

L1-Cox SPC Scout(1, 1) Scout(2, 1)

Hummel et al. (2006) 2.640 (0.99) 3.823 (0.87) 4.245 (1.07) 3.293 (0.91)
Monti et al. (2005) 1.647 (0.36) 1.231 (0.38) 2.149 (0.46) 2.606 (0.47)
Rosenwald et al. (2002) 4.129 (0.94) 3.542 (1.17) 3.987 (0.94) 4.930 (1.47)
Shipp et al. (2002) 1.903 (0.48) 1.004 (0.39) 2.807 (0.73) 2.627 (0.60)

†For each data set, the two highest mean values of 2{log.L/− log.L0/} are shown in italics.

Table 12. Median number of genes used for the survival data.

Data set Results for the following methods:

L1-Cox SPC Scout(1, 1) Scout(2, 1)

Hummel et al. (2006) 14 33 78 13
Monti et al. (2005) 18.5 17 801.5 144.5
Rosenwald et al. (2002) 37.5 32 294 85
Shipp et al. (2002) 5.5 10 4.5 5

was Xtestβtrain and, for method SPC, this was the first supervised principal component), and L0
denotes the likelihood of the null model. From Tables 11 and 12, it is clear that the scout results
in predictors that are on par with, if not better than, the competing methods on all four data sets.

6. Discussion

We have presented covariance-regularized regression, a class of regression procedures (the
‘scout’ family) that is obtained by estimating the inverse covariance matrix of the data by
maximizing the log-likelihood of the data under a multivariate normal model, subject to a
penalty. We have shown that three well-known regression methods—ridge regression, the lasso
and the elastic net—fall into the covariance-regularized regression framework. In addition,
we have explored some new methods within this framework. We have extended the covariance-
regularized regression framework to classification and generalized linear model settings, and we
have demonstrated the performance of the resulting methods on some gene expression data sets.

A drawback of the scout method is that, when p1 = 1 and the number of features is large,
then maximizing the first scout criterion can be quite slow. When more than a few thousand
features are present, the scout with p1 =1 is not a viable option at present. However, the scout
with p1 =2 is very fast, and we are confident that computational and algorithmic improvements
will lead to increases in the number of features for which the scout criteria can be maximized
with p1 =1.

Roughly speaking, the method in this paper consists of two steps.

(a) The features X are used to obtain a regularized estimate of the inverse covariance matrix;
this can be thought of as ‘preprocessing’ the features.
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(b) The preprocessed features are combined with the outcome y to obtain estimated regres-
sion coefficients.

In step (a), the features are preprocessed without using the outcome y. Indeed, many methods
in the machine learning literature involve preprocessing the features without using the outcome.
Principal components regression is a classical example of this; a more recent example with much
more extensive preprocessing is in Hinton et al. (2006).

It has been shown that, for the lasso to exhibit model selection consistency, certain conditions
on the feature matrix X must be satisfied (see, for instance, the ‘irrepresentability condition’ of
Zhao and Yu (2006)). A reviewer asked whether the scout can offer a remedy in situations where
these conditions are not satisfied. This is an interesting question that seems quite difficult to
answer. We hope that it will be addressed in future work.

Covariance-regularized regression represents a new way to understand existing regulariza-
tion methods for regression, as well as an approach to develop new regularization methods that
appear to perform better in many examples.
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Appendix A

A.1. Proofs of assumptions
A.1.1. Proof of assumption 1
First, suppose that p2 =1. Consider the penalized log-likelihood

log{det.Θ/}− tr.SΘ/− λ2

2
‖Θ‖1 .30/

withΘxx the top left-hand p×p submatrix ofΘ, fixed to equal the matrix that maximizes the log-likelihood
in step 1 of the scout procedure. It is clear that, if Θ̂maximizes the log-likelihood, then .Θ̂−1/yy =Syy +λ2=2.
The subgradient equation for maximization of the remaining portion of the log-likelihood is

0= .Θ−1/xy −Sxy − λ2

2
Γ .31/

where Γi =1 if the ith element of Θxy is positive, Γi =−1 if the ith element of Θxy is negative and otherwise
Γi is between −1 and 1.

Let β =Θxx.Θ−1/xy. Therefore, we equivalently wish to find β that solves

0=2.Θxx/−1β −2Sxy −λ2Γ: .32/

From the partitioned inverse formula, it is clear that sgn.β/=−sgn.Θxy/. Therefore, our task is equivalent
to finding β which minimizes

βT.Θxx/−1β −2ST
xyβ +λ2‖β‖1: .33/

Of course, this is equation (11). It is an L1-penalized regression of y onto X, using only the inner products,
with Sxx replaced with .Θxx/−1. In other words, β̂ that solves equation (11) is given by Θxx.Θ−1/xy, where
Θ solves step 2 of the scout procedure.
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Now, the solution to step 3 of the scout procedure is −Θxy=Θyy. By the partitioned inverse formula,
Θxx.Θ−1/xy +Θxy.Θ−1/yy =0, so

−Θxy

Θyy

= Θxx.Θ−1/xy

.Θ−1/yyΘyy

= β

.Θ−1/yyΘyy

:

In other words, the solution to step 3 of the scout procedure and the solution to equation (11) differ by
a factor of .Θ−1/yyΘyy. Since step 4 of the scout procedure involves scaling the solution to step 3 by a
constant, it is clear that we can replace step 3 of the scout procedure with the solution to equation (11).

Now, suppose that p2 =2. To find Θxy that maximizes this penalized log-likelihood, we take the gradient
and set it to 0:

0= .Θ−1/xy −Sxy − λ2

2
Θxy: .34/

Again, let β =Θxx.Θ−1/xy. Therefore, we equivalently wish to find β that solves

0=2.Θxx/−1β −2Sxy +2λ3β .35/

for some new constant λ3, using the fact, from the partitioned inverse formula, that −β=.Θ−1/yy =Θxy.
The solution β minimizes

βT.Θxx/−1β −2ST
xyβ +λ3β

Tβ:

Of course, this is again equation (11). Therefore, β̂ that solves equation (11) is given (up to scaling by
a constant) by Θxx.Θ−1/xy, where Θ solves step 2 of the scout procedure. As before, by the partitioned
inverse formula, and since step 4 of the scout procedure involves scaling the solution to step 3 by a constant,
it is clear that we can replace step 3 of the scout procedure with the solution to equation (11).

A.1.2. Proof of assumption 2
If β̂ minimizes equation (14), then, since β̂iβ̂j �=0, it follows that

λ2

2
{sgn.β̂i/− sgn.β̂j/}+√

.2λ1/.β̂i − β̂j/= .xÅ
i −xÅ

j /T.yÅ −XÅβ̂/, .36/

and hence that
√

.2λ1/|β̂i − β̂j|� |.xÅ
i −xÅ

j /T.yÅ −XÅβ̂/|: .37/

Note that

‖yÅ −XÅβ̂‖2 �‖yÅ −XÅβ̂‖2 +λ2‖β̂‖1 +√
.2λ1/‖β̂‖2 �‖yÅ‖2 =2‖y‖2: .38/

Therefore,

|β̂i − β̂j|�
√(

1
2λ1

)
‖xÅ

i −xÅ
j ‖‖y‖√2: .39/

Now,

‖xÅ
i −xÅ

j ‖2 = 1
2 ‖xi −xj‖2 + 1

2 ‖.D̄VT/i − .D̄VT/j‖2:

Since we assumed that the features are standardized, it follows that

‖xÅ
i −xÅ

j ‖2 =1−ρ+ 1
2 ‖.D̄VT/i − .D̄VT/j‖2

where ρ is the correlation between xi and xj . It also is easy to see that ‖.D̄VT/i − .D̄VT/j‖2 � 1 − ρ.
Therefore, it follows that

|β̂i − β̂j|�
√{

2.1−ρ/

λ1

}
‖y‖: .40/

A.1.3. Proof of assumption 3
Consider the latent variable model that is given in Section 2.6; note that, under this model,

y =Xβ + ", .41/

where β = .1=d1/v1. In addition,
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XTX =d2
1 v1vT

1 +d2
2 v2vT

2 =
p∑

j=1
d2

j vjvT
j .42/

where d3 = . . . =dp =0 and v1, v2, . . . , vp are orthonormal. We consider two options for the regression of y
onto X: ridge regression and Scout.2, ·/. Let β̂rr and β̂sc denote the resulting estimates, and let λrr and λsc

be the tuning parameters of the two methods respectively.

β̂rr = .XTX +λrrI/−1XTy

=
(

p∑
j=1

1
d2

j +λrr
vjvT

j

)
.d1v1uT

1 +d2v2uT
2 /.u1 + "/

= d1

d2
1 +λrr

v1 +
(

d1

d2
1 +λrr

v1uT
1 + d2

d2
2 +λrr

v2uT
2

)
": .43/

Similarly, the solution to Scout.2, ·/ is

β̂
sc =

{
p∑

j=1

2
d2

j +√
.d4

j +8λsc/
vjvT

j

}
.d1v1uT

1 +d2v2uT
2 /.u1 + "/

= 2d1

d2
1 +√

.d4
1 +8λsc/

v1 +
{

2d1

d2
1 +√

.d4
1 +8λsc/

v1uT
1 + 2d2

d2
2 +√

.d4
2 +8λsc/

v2uT
2

}
": .44/

The biases of β̂rr and β̂sc are

E.β̂
rr −β/=

(
d1

d2
1 +λrr

− 1
d1

)
v1,

E.β̂
sc −β/=

{
2d1

d2
1 +√

.d4
1 +8λsc/

− 1
d1

}
v1 .45/

and the variances are

var.β̂
rr

/=
(

d1

d2
1 +λrr

)2

v1vT
1 σ2 +

(
d2

d2
2 +λrr

)2

v2vT
2 σ2,

var.β̂
sc

/=
{

2d1

d2
1 +√

.d4
1 +8λsc/

}2

v1vT
1 σ2 +

{
2d2

d2
2 +√

.d4
2 +8λsc/

}2

v2vT
2 σ2: .46/

The following relationship between λrr and λsc results in equal biases:

λrr = −d2
1 +√

.d4
1 +8λsc/

2
: .47/

From now on, we assume that equation (47) holds. Then, if d1 > d2, it follows that var.β̂
sc

/ < var.β̂
rr

/. In
other words, if the portion of X that is correlated with y has a stronger signal than the portion that is
orthogonal to y, then (for a given amount of bias) Scout.2, ·/ will have lower variance than ridge regression.

A.2. Feature selection for scout linear discriminant analysis
The method that we propose in Section 4.1 can be easily modified to perform built-in feature selection.
Using the notation in Section 4.1, we observe that

μ̂k =arg min
μk

{ ∑
i:C.i/=k

.Xi −μk/
TΣ̂

−1
wc,λ.Xi −μk/

}
.48/

and so we replace μ̂k in equation (24) with

μ̂λ,ρ
k =arg min

μk

{ ∑
i:C.i/=k

.Xi −μk/
TΣ̂

−1
wc,λ.Xi −μk/+ρ‖Σ̂−1

wc,λμk‖1
}

: .49/

This can be solved via an L1-regression, and it gives the following classification rule for a test observation
X :

δλ,ρ
k .X/=XTΣ̂

−1
wc,λμ̂

λ,ρ
k − 1

2 .μ̂k
λ,ρ/TΣ̂

−1
wc,λμ̂

λ,ρ
k + log.πk/, .50/

and X is assigned to class k′ if k′ maximizes δλ,ρ
k .
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