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New Insights and Faster Computations
for the Graphical Lasso

Daniela M. WITTEN, Jerome H. FRIEDMAN, and Noah SIMON

We consider the graphical lasso formulation for estimating a Gaussian graphical
model in the high-dimensional setting. This approach entails estimating the inverse co-
variance matrix under a multivariate normal model by maximizing the �1-penalized
log-likelihood. We present a very simple necessary and sufficient condition that can be
used to identify the connected components in the graphical lasso solution. The condi-
tion can be employed to determine whether the estimated inverse covariance matrix will
be block diagonal, and if so, then to identify the blocks. This in turn can lead to drastic
speed improvements, since one can simply apply a standard graphical lasso algorithm
to each block separately. Moreover, the necessary and sufficient condition provides in-
sight into the graphical lasso solution: the set of connected nodes at any given tuning
parameter value is a superset of the set of connected nodes at any larger tuning param-
eter value. This article has supplementary material online.

Key Words: Convex optimization; Gene expression; Inverse covariance estimation; �1
penalty; Networks; Sparsity.

1. INTRODUCTION

In recent years, there has been a great deal of interest in inverse covariance estimation
in the high-dimensional setting, in which the number of features p greatly exceeds the
number of observations n. Particular interest has focused upon estimating a sparse inverse
covariance matrix—that is, obtaining an estimate of the inverse covariance matrix in which
some elements are exactly equal to zero. This is of interest because under the simple setting
where the rows of an n × p data matrix X are independent and distributed N(0,�), a zero
in an off-diagonal element of �−1 corresponds to a pair of variables that are conditionally
independent. Thus, under the multivariate Gaussian assumption, estimation of a sparse
inverse covariance matrix can be thought of as a way to estimate a graphical model for the
data. In the graphical model interpretation, each feature is represented by a node, and each
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nonzero off-diagonal element in the inverse covariance matrix is represented by an edge
between the corresponding pair of nodes.

A natural way to estimate �−1 is by maximizing the log-likelihood of the data. Under
the Gaussian model, the log-likelihood takes the form

log det�−1 − tr(S�−1), (1.1)

where S = XT X/n is an estimate of the covariance matrix of the data. Define � = �−1.
Then maximizing (1.1) with respect to � leads to the maximum likelihood estimate �̂ =
S−1, which will in general contain no elements exactly equal to zero. Moreover, when
p > n, S will be singular and so the maximum likelihood estimate cannot be computed.

Yuan and Lin (2007) proposed that rather than maximizing the log-likelihood (1.1), one
should instead maximize the penalized log-likelihood

log det� − tr(S�) − λ‖�‖1 (1.2)

over nonnegative definite matrices �. Here, λ is a nonnegative tuning parameter. We will
refer to the problem (1.2) as the graphical lasso (Friedman, Hastie, and Tibshirani 2007).
Using (1.2) has two major advantages over (1.1): the solution is positive definite for all
λ > 0 even if S is singular, and also when λ is sufficiently large, the estimate �̂ will
be sparse due to the lasso-type penalty on the elements of � (Tibshirani 1996). A great
number of algorithms have been proposed for solving the graphical lasso problem (1.2)
(among others, Friedman, Hastie, and Tibshirani 2007; Yuan and Lin 2007; Banerjee, El
Ghaoui, and D’Aspremont 2008; D’Aspremont, Banerjee, and El Ghaoui 2008; Rothman,
Levina, and Zhu 2008; Yuan 2008; Lu 2009; Scheinberg, Ma, and Goldfarb 2010). We note
that some authors have considered a slight variant of (1.2) in which the diagonal elements
of � are not penalized.

Here, we present a necessary and sufficient condition for a set of nodes to form a con-
nected component in the graphical model—that is, for the solution to the graphical lasso
problem to be block diagonal, subject to some rearrangement of the features. To our sur-
prise, this condition appears to have been overlooked in the extensive literature on solving
problem (1.2). However, it was independently discovered by Mazumder and Hastie (2011).
The condition directly results in a very simple check that can be employed before solving
(1.2), in order to achieve massive computational gains. We derive the necessary and suffi-
cient condition in Section 2. Two algorithms based on this condition are given in Section 3,
and we present timing results in Section 4. The discussion is in Section 5.

2. A NECESSARY AND SUFFICIENT CONDITION

By the Karush–Kuhn–Tucker conditions (KKT conditions; see, e.g., Boyd and Van-
denberghe 2004), a necessary and sufficient condition for � to maximize (1.2) is that it
satisfies

�−1 − S − λ�(�) = 0, (2.1)
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where �(x) is the subgradient of |x|, applied componentwise to the elements of a matrix.
That is, �(�) is a p × p matrix whose (i, j) element is �(�ij ), the subgradient of |�ij |:
�(�ij ) = 1 if �ij > 0, �(�ij ) = −1 if �ij < 0, and �(�ij ) takes on a value between −1
and 1 if �ij = 0.

Theorem 1 states that if it is known a priori that the solution to the graphical lasso
problem is block diagonal, then the solution can be obtained by solving a smaller graphical
lasso problem on each individual block. The proof follows by inspection of (1.2).

Theorem 1. If the solution to (1.2) takes the form � =
(

�1
�2

)
, then (1.2) can be

solved by separately maximizing

log det�1 − tr(S1�1) − λ‖�1‖1 (2.2)

with respect to �1, and

log det�2 − tr(S2�2) − λ‖�2‖1 (2.3)

with respect to �2, where S1 and S2 are the submatrices of S corresponding to �1 and
�2.

Clearly, one can extend Theorem 1 by induction to any number of blocks.
Now, let C1,C2, . . . ,CK denote a partition of the p features, i.e. Ck ∩ Ck′ = ∅ for all

k �= k′, and C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , p}. Without loss of generality, assume that the
features are ordered such that if i ∈ Ck, i

′ ∈ Ck′ , k < k′, then i < i′. Furthermore, we let
|Ck| denote the number of features in Ck . We now present our main theorem.

Theorem 2. A necessary and sufficient condition for the solution to the graphical
lasso problem to be block diagonal with blocks C1,C2, . . . ,CK is that |Sii′ | ≤ λ for all
i ∈ Ck, i

′ ∈ Ck′, k �= k′.

Proof: First, we will show that if the solution to the graphical lasso problem is block
diagonal with blocks C1,C2, . . . ,CK , then |Sii′ | ≤ λ for all i ∈ Ck, i

′ ∈ Ck′ , k �= k′. To see
this, note that if the solution is block diagonal and the ith and i′th features are in separate
blocks, then �ii′ = (�−1)ii′ = 0 since the inverse of a block diagonal matrix is also block
diagonal with the same block structure. By inspection of (2.1), this implies that |Sii′ | ≤ λ.

Now we must show that if |Sii′ | ≤ λ for all i ∈ Ck, i
′ ∈ Ck′ , k �= k′, then the solution to

the graphical lasso problem is block diagonal. Consider the matrix

�̃ =

⎛
⎜⎜⎜⎝

�1

�2
. . .

�K

⎞
⎟⎟⎟⎠ ; (2.4)

that is, �̃ is a block diagonal matrix with K blocks. We construct the kth block, �k , to
solve the graphical lasso problem (1.2) applied only to the |Ck|×|Ck| symmetric submatrix
of S consisting of the features in Ck . We claim that if |Sii′ | ≤ λ for all i ∈ Ck, i

′ ∈ Ck′ ,
k �= k′, then �̃ satisfies the KKT conditions (2.1). This can be seen by inspection: the
(i, i′) equation of (2.1) is satisfied by the (i, i′) element of �̃, for i ∈ Ck, i

′ ∈ Ck′ , k �= k′,
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since �̃ii′ = (�̃
−1

)ii′ = 0. Moreover, the kth block of �̃ satisfies the corresponding system
of equations within (2.1), by construction. Since the KKT conditions are necessary and
sufficient for a solution, it follows that �̃ does indeed solve the graphical lasso problem.

�

The following corollary is a direct consequence of Theorem 2, applied with C1 = {i}
and C2 = {1,2, . . . , i − 1, i + 1, . . . , p}.

Corollary 1. A necessary and sufficient condition for the ith node to be fully uncon-
nected from all other nodes in the solution to (1.2) is that |Sii′ | ≤ λ for all i′ �= i.

This corollary implies that one can simply screen the off-diagonal elements in a given
column of S in order to determine whether the corresponding node in the solution to the
graphical lasso problem is unconnected from all other nodes. The sufficiency of the condi-
tion in Corollary 1 was reported in theorem 4 of Banerjee, El Ghaoui, and D’Aspremont
(2008).

3. TWO NEW ALGORITHMS FOR THE GRAPHICAL LASSO

We can combine Corollary 1 with Theorem 1 in order to obtain Algorithm 1. Standard
algorithms for solving the graphical lasso problem require O(p3) operations (Friedman,
Hastie, and Tibshirani 2007). Note that Step 1 of Algorithm 1 can be performed in at most
O(p2) operations. Then Step 3 can be performed in O(p − q)3 operations. In other words,
by applying Algorithm 1, the total computational burden has been reduced from O(p3) to
at most O(p2 + (p − q)3). This is a great improvement if p − q is substantially smaller
than p, that is, if many of the nodes are fully unconnected from all other nodes in the
graphical lasso solution.

Algorithm 1 A fast algorithm based on Corollary 1
1. Identify the fully unconnected nodes in the graphical lasso solution, that is, {i : |Sii′ | ≤

λ, i′ = 1, . . . , i − 1, i + 1, . . . , p}. Let q denote the number of fully unconnected nodes.

2. Without loss of generality, assume that the features are ordered such that the q fully
unconnected features precede the p − q other features.

3. The solution to the graphical lasso problem (1.2) takes the form

� =

⎛
⎜⎜⎜⎝

1
S11+λ

. . .
1

Sqq+λ

�q+1

⎞
⎟⎟⎟⎠ , (2.5)

where �q+1 solves the graphical lasso problem applied only to the square symmetric
(p−q)×(p−q) submatrix of S consisting of the features that are not fully unconnected
from all other features.
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Algorithm 2 A fast algorithm based on Theorem 2
1. Let A denote a p×p matrix whose off-diagonal elements are of the form Aii′ = 1|Sii′ |>λ

and whose diagonal elements equal one.

2. Identify the K ≥ 1 connected components of the graph for which A is the adjacency
matrix. For each k = 1, . . . ,K , let Ck denote the set of indices of the features in the kth
connected component.

3. Without loss of generality, assume that the features are ordered such that if i ∈ Ck ,
i′ ∈ Ck′ , and k < k′, then i < i′.

4. The solution to the graphical lasso problem (1.2) takes the form

� =

⎛
⎜⎜⎜⎝

�1

�2
. . .

�K

⎞
⎟⎟⎟⎠ , (3.1)

where �k solves the graphical lasso problem applied only to the square symmetric
submatrix of S consisting of the features whose indices are in Ck . Note that if Ck =
{i}—that is, the ith node is completely unconnected from all other nodes—then �k is
a scalar equal to 1/(Sii + λ).

An even faster algorithm can be obtained by combining Theorem 2 with Theorem 1,
and is given in Algorithm 2.

In Step 1 of Algorithm 2, the adjacency matrix A can be computed in O(p2) operations.
Then in Step 2, the connected components of the graph can be computed in at most O(p2)

operations. In Step 4, the graphical lasso problem must be solved K times, once on each of
the |Ck| × |Ck| submatrices of S corresponding to features whose indices are in Ck . This
will require O(

∑K
k=1 |Ck|3) operations. Therefore, applying Algorithm 2 leads to a reduc-

tion in computational complexity from O(p3) to O(p2 + ∑K
k=1 |Ck|3). This is potentially

a massive improvement if K is large, or if |C1|, . . . , |CK | are small relative to p.
In general, we expect Algorithm 2 to be faster than Algorithm 1, since the former ex-

ploits all block diagonal structure in the graphical lasso solution rather than only the fully
unconnected nodes. However, in certain cases, the solution to the graphical lasso may be
block diagonal with all but the largest block composed of individual fully unconnected
nodes. In this case, Algorithm 1 may be faster than Algorithm 2, since Step 1 of Algo-
rithm 1 is faster than Steps 1 and 2 of Algorithm 2, and the remaining steps are the same.

4. TIMING RESULTS

In a small simulation study, we explored the computational improvements that can result
from Algorithms 1 and 2. We generated data with n independent observations distributed
N(0,�), where � is a p × p matrix that takes one of three forms: (1) � = I, (2) � is a
block diagonal matrix, with a single (p/2) × (p/2) block with all off-diagonal elements
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equal to 0.5, and all diagonal elements of � equal 1, and (3) all off-diagonal elements of �

equal 0.5, and all diagonal elements equal 1. We used n = 20 and considered three values
of p: p = 500,1000,2000. We chose the tuning parameter in each simulation in order to
achieve a desired “sparsity level,” measured by the fraction of completely unconnected
nodes in the graphical lasso solution. The three sparsity levels considered were 0.2, 0.5,
and 0.9.

In order to solve (1.2), we used the glasso package in R (Friedman, Hastie, and Tib-
shirani 2011; R Development Core Team 2011), which is based upon the algorithm pro-
posed by Friedman, Hastie, and Tibshirani (2007). Three versions of the glasso package
were compared. Version 1.4 does not make use of the results in this article. Version 1.6
employs Algorithm 1, and version 1.7 employs Algorithm 2.

We also included in our comparisons the lasso-based neighborhood selection approach
of Meinshausen and Bühlmann (2006) for estimating a graphical model. This approach en-
tails estimating the nonzero edges of the ith variable by simply performing an �1-penalized
regression of the ith column of X onto all of the other columns. It was shown by Yuan and
Lin (2007), and discussed further by Friedman, Hastie, and Tibshirani (2007), that this can
be seen as an approximation to the problem (1.2). In the timing comparisons reported by
Friedman, Hastie, and Tibshirani (2007), the Meinshausen and Bühlmann (2006) approx-
imation is substantially faster than the exact solution to the graphical lasso problem (1.2);
however, those timing results were performed without the speed-ups to the graphical lasso
algorithm described here. We used the implementation of the Meinshausen and Bühlmann
(2006) algorithm contained in version 1.4 of the glasso package for our timing compar-
isons. Note that the same tuning parameter was used to perform the exact graphical lasso
algorithm and the approximate Meinshausen and Bühlmann (2006) algorithm.

Timing results for the three simulations are shown in Tables 1–3. All timings were
carried out on a AMD Opteron 848 2.20 GHz processor.

We first compare the speed of Algorithm 1 to the standard graphical lasso algorithm that
does not use the results in this article (version 1.6 versus version 1.4). Using Algorithm 1
resulted in massive reductions in computational time. In general, the speed-up factor due
to Algorithm 1 will increase as the tuning parameter is increased, and will also increase
as the number of nodes in the model (p) is increased for a given fraction of unconnected
nodes.

Algorithm 2 led to substantial speed increases over Algorithm 1 in Simulation 1 when
20% or 50% of nodes were unconnected, and slightly smaller speed increases over Algo-
rithm 1 in Simulation 2 when 20% or 50% of nodes were unconnected. It did not lead to an
improvement over Algorithm 1 in Simulation 3, since in that case the true � is dense and
so the connected nodes in the graphical lasso solution mostly belong to a single connected
component rather than multiple connected components. (Recall that Algorithm 2 provides
an improvement over Algorithm 1 only if the connected nodes in the graphical lasso solu-
tion belong to distinct connected components.) Regardless of the simulation set-up, when
90% of nodes were unconnected then Algorithm 1 tended to be a bit faster than Algo-
rithm 2. This is because computing the graphical lasso solution on the 10% of nodes that
are not unconnected is so fast that the time required to identify all connected components
in the graphical lasso solution, as in Algorithm 2, is not worthwhile.
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Table 1. Timing comparisons for computing the graphical lasso solution using three versions of the glasso
package: without the results in this article (version 1.4), using Algorithm 1 (version 1.6), and using
Algorithm 2 (version 1.7). The tuning parameter λ was chosen so that 20% of nodes in the graphical
lasso solution are unconnected. Means (and standard errors) were computed over 20 replicates, and are
reported in seconds. Timings for the Meinshausen and Bühlmann (2006) (MB) approximation are also
reported.

Simulation 1 Simulation 2 Simulation 3

p = 500 Version 1.4 5.601 (0.24) 11.254 (0.727) 10.229 (0.284)

Version 1.6 3.145 (0.133) 4.947 (0.241) 5.999 (0.243)

Version 1.7 1.198 (0.139) 4.728 (0.39) 6.714 (0.238)

MB approximation 1.498 (0.069) 1.234 (0.035) 1.217 (0.036)

p = 1000 Version 1.4 45.039 (1.905) 91.831 (5.286) 81.783 (2.843)

Version 1.6 25.311 (1.33) 44.638 (2.82) 58.465 (2.879)

Version 1.7 11.975 (0.901) 39.111 (2.337) 60.656 (2.602)

MB approximation 11.294 (0.36) 8.687 (0.085) 9.29 (0.282)

p = 2000 Version 1.4 338.926 (7.859) 787.872 (44.312) 676.375 (21.802)

Version 1.6 186.753 (7.366) 409.218 (22.067) 346.913 (9.922)

Version 1.7 85.123 (4.178) 343.652 (23.57) 404.491 (4.934)

MB approximation 70.177 (2.479) 71.561 (1.264) 73.773 (1.922)

Strikingly, when the graphical lasso is performed with a large tuning parameter value,
then the algorithms proposed in this article lead to such massive speed improvements
that computing the exact graphical lasso solution is much faster even than computing the
Meinshausen and Bühlmann (2006) approximate solution (Tables 2 and 3).

5. DISCUSSION

We have presented a necessary and sufficient condition for the solution to the graphical
lasso problem to be block diagonal. This condition leads to a simple check that can be

Table 2. As in Table 1, but with λ chosen so that 50% of nodes are unconnected.

Simulation 1 Simulation 2 Simulation 3

p = 500 Version 1.4 5.865 (0.129) 7.779 (0.389) 7.934 (0.32)

Version 1.6 0.553 (0.02) 0.762 (0.046) 0.64 (0.024)

Version 1.7 0.162 (0.005) 0.944 (0.107) 0.874 (0.025)

MB approximation 1.133 (0.029) 1.211 (0.041) 1.155 (0.031)

p = 1000 Version 1.4 46.614 (1.615) 73.371 (4.123) 77.58 (3.674)

Version 1.6 7.282 (0.17) 14.068 (0.708) 9.779 (0.42)

Version 1.7 0.615 (0.015) 14.829 (1.611) 11.149 (0.539)

MB approximation 8.679 (0.223) 9.458 (0.318) 8.982 (0.251)

p = 2000 Version 1.4 330.943 (7.859) 583.787 (37.084) 468.915 (17.78)

Version 1.6 58.494 (1.179) 99.675 (7.591) 76.579 (3.042)

Version 1.7 2.302 (0.032) 92.461 (12.207) 81.758 (2.363)

MB approximation 70.876 (1.691) 73.523 (1.799) 70.707 (1.431)
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Table 3. As in Table 1, but with λ chosen so that 90% of nodes are unconnected.

Simulation 1 Simulation 2 Simulation 3

p = 500 Version 1.4 5.503 (0.171) 6.594 (0.497) 4.262 (0.21)

Version 1.6 0.102 (0.002) 0.11 (0.002) 0.099 (0.002)

Version 1.7 0.104 (0.002) 0.112 (0.002) 0.131 (0.002)

MB approximation 1.498 (0.038) 1.701 (0.075) 1.839 (0.087)

p = 1000 Version 1.4 43.346 (2.205) 48.706 (2.96) 39.047 (1.245)

Version 1.6 0.398 (0.004) 0.433 (0.005) 0.403 (0.003)

Version 1.7 0.46 (0.006) 0.499 (0.01) 0.535 (0.007)

MB approximation 10.564 (0.272) 11.221 (0.573) 12.548 (0.675)

p = 2000 Version 1.4 215.078 (5.11) 351.06 (9.346) 301.123 (7.548)

Version 1.6 1.808 (0.012) 1.95 (0.02) 1.792 (0.013)

Version 1.7 1.888 (0.024) 2.251 (0.032) 2.342 (0.015)

MB approximation 73.3 (1.784) 75.687 (2.695) 70.516 (2.165)

applied to the empirical covariance matrix before a standard graphical lasso algorithm is
employed, in order to drastically reduce computations.

Using this quick check, one can estimate graphical models on datasets that were previ-
ously prohibitively large, such as large genomic datasets. For instance, it now takes only a
few minutes to estimate a graphical model from a gene expression dataset with p = 30,000
genes, provided that one is interested in a model in which most of the genes are not con-
nected (as one would likely want for the sake of interpretability). In this case, the main
computational burden simply involves scanning through the elements of the p × p em-
pirical covariance matrix in order to identify off-diagonal elements that are less than λ in
absolute value.

The necessary and sufficient condition presented here also leads to new insights into
the graphical lasso solution. Given two tuning parameters λ1 and λ2, λ1 < λ2, the set of
unconnected nodes (i.e., individual nodes that are connected to no other node) with tun-
ing parameter λ1 is a subset of the set of unconnected nodes with tuning parameter λ2.
(However, no such claim can be made about the set of nonzero edges—i.e., an edge that is
nonzero in the graphical model with tuning parameter λ1 may equal zero in the graphical
model with tuning parameter λ2, and vice-versa.) Furthermore, the nodes in a connected
component of the graphical lasso solution with tuning parameter λ1 will remain uncon-
nected from all nodes not in that connected component as the tuning parameter increases.

SUPPLEMENTARY MATERIALS

R package for graphical lasso without results in this paper: R package glasso1.4

is version 1.4 of the glasso package available on CRAN, which does not make use of
the results in this article. (glasso1.4_1.0.tar.gz)

R package for graphical lasso with Algorithm 1: R package glasso1.6 is version
1.6 of the glasso package available on CRAN, which makes use of Algorithm 1.
(glasso1.6_1.0.tar.gz)
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R package for graphical lasso with Algorithm 2: R-package glasso1.7 is version
1.7 of the glasso package available on CRAN, which makes use of Algorithm 2.
(glasso1.7_1.0.tar.gz)

R script to perform timing comparisons: R script to perform timing comparisons re-
ported in Tables 1–3. (TimingComparisons.R)
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