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Abstract
Background: DNA copy number variation (CNV) has been recognized as an important source of
genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV
detection, but the microarray platform has a number of inherent limitations.

Results: Here, we describe a method to detect copy number variation using shotgun sequencing,
CNV-seq. The method is based on a robust statistical model that describes the complete analysis
procedure and allows the computation of essential confidence values for detection of CNV. Our
results show that the number of reads, not the length of the reads is the key factor determining
the resolution of detection. This favors the next-generation sequencing methods that rapidly
produce large amount of short reads.

Conclusion: Simulation of various sequencing methods with coverage between 0.1× to 8× show
overall specificity between 91.7 – 99.9%, and sensitivity between 72.2 – 96.5%. We also show the
results for assessment of CNV between two individual human genomes.

Background
DNA copy number variation (CNV) has long been known
as a source of genetic variation, but its importance has
only been recognized recently [1,2]. In a landmark study
in 2006, Redon and colleagues found that 1,447 CNV
regions cover at least 12% of the human genome, with no
large stretches exempt from CNV [3]. The CNV regions
cover more nucleotide content per genome than single
nucleotide polymorphisms (SNPs), suggesting the impor-
tance of CNV in genetic diversity [3]. A common way to
detect CNV is to utilize microarray-based methods [4].
The most commonly used method, array comparative
genomic hybridization (aCGH) was first used to detect
CNV a decade ago [5,6].

Microarray-based methods have revolutionized the way of
how large-scale genome studies are carried out. Today, the
next-generation sequencing technologies are transform-
ing biology research [7]. The rapid development of new
sequencing technologies is continuously increasing the
speed of sequencing and decreasing the cost. The next-
generation sequencing, such as 454 [8], Solexa [9] and
SOLiD [10] have already showed advantages over micro-
arrays in several aspects. Apart from being rapid and
cheap, data produced by sequencing can be re-used for
varied purposes as opposed to data from microarray-
based methods that can usually solely be used by one spe-
cific study. In addition, reproducibility has been one of
the major challenges for microarray technology [11]. The
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once revolutionizing microarray-based ChIP-Chip tech-
nology is being replaced by ChIP-Seq, in which the DNA
fragments are sequenced instead of being hybridized to an
array [12]. Sequencing-based methods are also used to
produce genome-wide DNA methylation profiles, detect
SNP, study chromosome translocations and RNA tran-
scriptome profiling [13-20].

Variation in sequencing coverage in genome assemblies
has been used as an indicator for potential CNV between
an assembled genome and shotgun data from another
genome [21,22]. This is analogous to a comparison of
copy number between microarray probes and a single set
of DNA fragments. There are two major problems with
this kind of approach. Given a certain hybridization con-
dition, hybridization efficiency varies among microarray
probes. Likewise, given a certain alignment threshold,
sequencing errors in combination with differences
between genomes may result in erroneous distribution of
the reads.

Secondly, the number of probes on a microarray does not
represent the real copy number of probe sequences in a
genome. Likewise, the copy number of DNA segments in
an assembled genome may not represent the true one.
Notably, the regions containing multiple copies are the
most difficult to assemble correctly and is still the key
unsolved problem in shotgun assembly [23]. Assembly
errors like these cause false variation in the sequencing
coverage and thus yield erroneous indication of CNV.

In this paper we describe an efficient solution based on a
robust model that combines the advantages of aCGH and
high-throughput sequencing. We also assessed CNV
between two individuals (Dr. J. Craig Venter [24], Dr.
James Watson [21]). An implementation of our method is
freely available at http://tiger.dbs.nus.edu.sg/CNV-seq.

Results and discussion
The Model
We have developed a method to detect CNV by shotgun
sequencing, CNV-seq. The method is based on a robust
statistical model that allows confidence assessment of
observed copy number ratios and is conceptually derived
from aCGH (Figure 1). The microarray-based procedure,
aCGH involves a whole genome microarray where two
sets of labeled genomic fragments are hybridized. Instead
of a microarray, CNV-seq uses a sequence as a template
and two sets of shotgun reads, one set from each target
individual, X and Y (Figure 1). The two sets of shotgun
reads are mapped by sequence alignment on a template
genome. We use a sliding window approach to analyze
the mapped regions and CNVs are detected by computing
the number of reads for each individual in each of the
windows, yielding ratios. These observed ratios are

assessed by the computation of a probability of a random
occurrence, given no copy number variation.

The random sampling in shotgun sequencing results in
uneven coverage that may lead to observed coverage ratios
that falsely imply CNV. Therefore, a statistical model is
essential for the assessment of the probability of false pos-
itive ratios. The average number of reads in a region of a
genome is dependent on the total number of reads sam-
pled, the length of the genome and the length of the
region. We use this relationship to compute a minimum
sliding window size to achieve a desired minimum confi-
dence level of the observations.

The mean number of reads for X and Y genomes in a slid-
ing window determines the distribution of the ratios. The
number of reads in a window is approximately distributed
according to Poisson, Po( ), where the mean number of
reads per window is , given by

where N is the total number of sequenced reads, G is the
size of the genome and W is the size of the sliding win-
dow, and W < <G. We use the Gaussian distribution to
approximate the Poisson distribution with mean and var-
iance  =  = 2. This approximation is good when the mean
number of reads per window is greater than 10 with con-
tinuity correction.

The predicted copy number ratio, r in each sliding win-
dow can be computed by

where z is the ratio of read counts in the window and NX
and NY are the total number of reads in the genomes X and
Y respectively. Assuming an independent distribution of
the read counts, we can obtain a probability, p of a copy
number ratio being r or divergent from 1:1 ratio by a ran-
dom chance. For this purpose, we need the distribution of
the read count ratio z. This distribution is given by Gaus-
sian ratio distribution [25]. The computation of this dis-
tribution is cumbersome, but it can be transformed to
another variable, t, by Geary-Hinkley transformation [26]:

where X, , Y and  are the means and the variances

for X and Y respectively. The new variable t approximately
have a standard Gaussian distribution when the mean
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number of reads per window is greater than 6 in Y and less
than 40,000 in X. The p-value can be computed by

where Φ (t) is the cumulative standard Gaussian distribu-
tion function. The probability p decreases with increasing
sliding window size (Figure 2) and we would like p to be
as low as possible. Conversely, increased sliding window
size leads to a decreased resolution of CNV regions. There-

fore it is advantageous to compute a window size, which
yields the best possible resolution according to a preset
threshold of p for r. Based on the above equations, We can
calculate the best possible resolution, or the theoretical
minimum window size, W by

and
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A comparison of the conceptual steps in aCGH and CNV-seq methodsFigure 1
A comparison of the conceptual steps in aCGH and CNV-seq methods. 1. Starting material in both cases is genomic 
fragments from two genomes. 2. In CNV-seq the fragments are samples and sequenced. 3. Genomic fragments are directly 
hybridized on to an array. In CNV-seq the mapping is performed by sequence alignment. 4. In microarray the light intensities 
reflect the number of hybridized fragments. In CNV-seq the number of mapped reads are counted directly. 5. Data analysis, 
including estimation of copy number ratios, confidence values, etc. 6. Output of the results.
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where p' is the desired significance level, and r' is the CNV
detection threshold ratio. Φ-1 is the inverse function of Φ.
The number of reads sampled will affect the minimum
window size. For example, if one wants to detect CNV
with ratio ≥ 3 : 2 at significance level 0.002, a genome size
of 3 G bases and 10 M reads in both genomes will yield
the minimum window size of 37,243 bases, while 1 M
reads will yield the window size of 372,431 bases. The use
larger number of reads allows detection of ten times
shorter CNV.

An alternative approach is to calculate the range of copy
number ratios that can be detected at a certain significance
level p', with a predefined window size W':

where

and

Validation
In order to assess the performance of CNV-seq, we used
simulated and real human data. For the simulation of
shotgun data, in total of 101 genomes were constructed,
containing varied number, sizes and locations of CNV
regions, SNP and short insertions/deletions (indels). We
simulated three sequencing methods, Solexa, 454 and
Sanger [27] for each constructed genome on 0.1× to 8×
coverage. This resulted in the total of 8,400 simulations.

The Figure 3 shows the results of the simulations on var-
ied coverage and varied p' for constant log2(r') = 0.6. Each
dot represents an average of 100 simulations and the sizes
of the dots reflect the sizes of the lengths of the sliding
windows that are the theoretical minimum lengths, given
by equation (5). The overall specificity for our method is
between 91.7 – 99.9%, the sensitivity between 72.2 –
96.5% with the median of 99.4% and 89.9% respectively.
The mean sequence length is dependent on the technol-
ogy simulated. Thus, in order to reach the same coverage,
a larger number of fragments need to be sequenced when
sequencing is performed with Solexa, which produces
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Dependencies of p in CNV-seqFigure 2
Dependencies of p in CNV-seq. The relation of p and 
sliding window size is shown on 0.1× to 8× sequence cover-
age for log2(r') = 0.6 and average read length 250 bases. The 
values are computed using equation (5). Increased window 
length results in decreased probability, p of observing ratio r' 
or higher by cheer chance. It is possible to compensate lack 
of coverage by increasing the window size, but this results in 
lowering the resolution.
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Performance of CNV-seqFigure 3
Performance of CNV-seq. The performance of CNV-seq 
on data simulating 454, Sanger and Solexa methods. Results 
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size, i.e. resolution used. The window sizes are calculated 
using equation (5).
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short reads compared to the Sanger and 454 methods.
According to our model, the largest number of sequenced
reads yields the shortest length of the sliding window and
thus the best resolution. The range of window sizes in our
simulations varies from 1,103 bases to 2,951,792 bases,
decreasing with increasing average sequencing coverage.
The results show that our model performs well in the pres-
ence of errors. Despite of increased resolution due to
shortening of the sliding window size, the sensitivity is
increased together with increased sequencing coverage.
Slight drop in specificity with increasing sequencing cov-
erage can be observed (Figure 3). This is likely to be due
to SNPs, short indels, and read mapping errors, that are
not considered in our statistical model and have a more
profound effect on small windows. The specificity does
not drop in error free data. The effect of errors may be
reduced by using a window size that is larger than the the-
oretical minimum. For example, the theoretical minimum
window for 8× Solexa sequencing at p = 0.001 is 1947
bases. This window size gives a specificity of 95.4%, while
a 2 times larger window yields specificity of 97.8% (Figure
4).

Analysis of human data
The genomes of two individuals, Dr. Craig J. Venter and
Dr. J. Watson were recently sequenced on 7.5× and 7.4×
coverage respectively [21,24]. The genome of Dr. Craig J.
Venter is sequenced using Sanger method and Dr. J.

Watson's genome using 454 technology. We compared
the two genomes using CNV-seq (Figure 5 and Additional
File 1). The thresholds p' = 10-5 and log2(r') = 0.6 yield
sliding window size of 26,481 bases for autosomal chro-
mosomes. The sex chromosomes have a lower sequencing
coverage than autosomal chromosomes, therefore larger
window sizes are used: 72,044 bases for chromosome X
and 269,032 bases for chromosome Y. We identified 174
contiguous regions covered by four or more consecutive
windows. The sizes of these regions range from 66,202
bases to 941,612 bases.

The comparison of the 174 CNV calls with those in the
Database of Genomic Variants (DGV) [2] revealed 142 of
the CNV calls to overlap more than 50% with previously
reported CNV regions. In order to asses the significance of
CNV calls, we performed 5,000 permutation tests, using
174 randomly distributed CNV regions of the same sizes
as in the original experiment. In average, only 56 and
maximum 78 of 174 regions overlap more than 50% with
CNV in DGV (Figure 6) 5,000 random sets. The real CNV
calls have significantly larger overlap with DGV (p = 0).

We also intersected the CNV calls with the CNVs identi-
fied by aCGH in the two genomes. There are 23 and 45
CNV regions reported in Watson's and Venter's genome
respectively [21,24]. We found 15 of our CNV calls over-
lap with 10 of previously reported Watson's CNV regions,
and only 11 of our CNV calls overlap with 5 of Venter's.
The low overlap with Venter's CNV calls made by aCGH is
not surprising, for the reason that the majority of the CNV
regions were detected by only one of three microarray
platforms [24]. There are 121 CNV calls that made by
CNV-seq but not aCGH and overlap with DGV data, sug-
gesting that CNV-seq can detect CNV regions that were
missed by aCGH. One of these regions is shown in Figure
5 (bottom panel), a 238 kb region (copy number ratio
6:1, p = 0) containing two genes (FAM23B, MRC1L1) and
one miRNA (hsa-mir-511-2). We have used stringent
thresholds in our analysis, thus by lowering thresholds,
such as p-value and the number of consecutive windows,
will increase the number of reported CNV calls.

A major assumption in CNV-seq is that shotgun sampling
of DNA fragments is random, and therefore the CNV calls
made by CNV-seq are not due to different sequencing bias
between the two sets of data compared. When the two sets
of data are prepared in the same way, this assumption is
valid. However, when the shotgun sequences are gener-
ated using two different sequencing methods, the assump-
tion may not hold any more. Solexa sequencing reads are
recently reported to be GC-biased dependent on a library
preparation procedure [28]. Venter's genome was
sequenced using 454 and Watson's genome was
sequenced using the Sanger method. We compared the

Specificity vs window sizeFigure 4
Specificity vs window size. In order to increase specificity, 
a larger than the theoretical minimum window size can be 
used by sacrificing resolution. The specificities using 1×, 1.5×, 
2×, 3×, 4×, and 5× of the theoretical minimum window size 
are shown, for simulated Solexa sequencing data at 8× cover-
age.
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distribution of GC frequencies in the shotgun reads in
both genomes. There are no significant differences
between the two distributions (p = 0.2106, Kolmogorov-
Smimrov test).

Conclusion
We have developed a method to detect CNV using shot-
gun data. Our approach not only combines the advan-
tages of microarray methods and high-throughput
sequencing, but is also based on a robust statistical model
allowing confidence assessment. We tested the approach
on both simulated and real data and the results show that
the method can be applied to relatively low sequencing
coverage with good specificity and sensitivity. We have
also developed a model to compute the theoretical limit
of resolution for given data at a desired confidence level.

We expect the continued rapid development of sequenc-
ing technologies to further lower the cost and increase the

speed of sequencing. Thus, sequencing-based approaches
are likely to gain increased advantage over microarrays.
Next-generation sequencing methods mostly produce a
large number of short reads and our results show that the
number of reads sequenced – not the length of the reads,
is the most important factor that determines the resolu-
tion, i.e. larger number of sequenced fragments results in
increased resolution. Alternatively, given a constant reso-
lution an increase in the number of sequenced reads will
result in increased sensitivity and specificity. Therefore, a
large number of short reads is an advantage as opposed to
a small number of long reads.

Methods
Simulations
The human chromosome 1 (NCBI build 36) was used to
construct one diploid reference genome and 100 diploid
test genomes. The unmodified chromosome 1 sequence
was used as the template genome. The test individual

Copy number variation between two human individualsFigure 5
Copy number variation between two human individuals. Copy number variation detected by CNV-seq using shotgun 
sequence data from two individuals, Venter and Watson. The top panel shows a genome level log2 ratio plot. The middle panel 
shows the plot for chromosome 10. The bottom panel shows detailed view of a CNV region in chromosome 10. The red color 
gradient in the middle and bottom sections represents log10 p calculated on each of ratios.
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genomes are constructed by the introducing CNV, SNPs
and short indels. The CNV is introduced into each of the
test genomes by concatenating the two chromosomes and
by selecting nine source sequences at random positions to
replace 26 target sequences at random positions. Four of
the nine source sequences are used four times each to
replace four random target sequences and the remaining
five of the nine sequences are used to replace two random
target sequences each. The procedure results in the total of
35 segments in each of the 100 simulated test genomes
with the following copy number ratios: 26 with ratio 1:2,
five with ratio 4:2 and four with ratio 6:2. The length of
the source sequences is 10k, where k is a random number
between log10 500 and log10 2 M, yielding the median
length of 26,464 bases and the mean 234,065.7 bases. In
addition, each test genome is modified by randomly
introducing 5 SNPs/kb and short, 1–3 bp insertions/dele-
tions with the frequency of 0.5 indels/kb.

The reference genome is constructed the same way as the
individual test genomes, except no CNV was introduced.

We simulated the shotgun sequencing process for test and
reference genomes by using real sequence quality files,
specific for each sequencing method. The quality files
used for Sanger and 454 sequencing were downloaded
from the personal genome projects of Venter [24] and
Watson [21] in Trace Archive [29], respectively. For the

simulation of Solexa method we used quality files from
the project SRA000261 in Trace Archive. The lengths of
the quality files define the read lengths at a random start-
ing position. The errors were introduced according to
quality values given in the quality files. Both Sanger and
454 methods use Phred quality values [30], q and the
error probabilities, e are given by e = 10q/-10. The errors are
introduced by generating a random number R between 0
and 1. If R <e, then one of the following errors will be
introduced: Substitution to one of the three remaining
bases, an insertion or a deletion. The probability of an
indel is 10% of all introduced errors with the equal ratio
of indels. The base frequency in the source genome is used
to calculate the frequency of each base, which is in turn
used to give the insertion and substitution probability.
The Solexa quality values, qs can be converted to Phred
quality scores as follows

We simulated the shotgun process for 0.1×, 0.2×, 0.5×, 1×,
2×, 5× and 8× coverages.

The performance is measured by counting the number of
sliding windows giving a correct alternatively an incorrect
prediction. Our model describes the theoretical limit of
detection for given data with given r' and p'. The true copy
number ratio of each window is known in the simulated
data, i.e. the true r. All windows where true r ≥ r' or r ≤ 1/
r' should be classified as CNV in order to achieve 100%
sensitivity. Similarly, all windows where true r ≤ r' or r ≥
1/r' should not be classified as CNV in order to achieve
100% specificity.

CNV detection in human data
The shotgun sequencing data were downloaded from the
personal genome projects of Venter and Watson in Trace
Archive. The template genome was downloaded from
Ensembl [31], human genome assembly, NCBI Build 36.
The thresholds p' = 10-5 and log2(r') = 0.6 are used. Given
the data these thresholds yield the window size, W = 26,
481 bases for autosomal chromosomes, 72,044 bases for
chromosome X and 269,032 bases for chromosome Y.

CNV-seq
All calculations are performed using R [32] and sequences
aligned by BLAT [33]. The whole procedure is automated
by Perl http://www.perl.org scripts.

Authors' contributions
CX and MT contributed to all aspects of this research. Both
authors read and approved the final manuscript.

q

qs
= × +

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

10 1 1010
10log (10)

Permutation test of CNV callsFigure 6
Permutation test of CNV calls. A permutation test was 
performed in order to test the significance of our CNV calls. 
The histogram shows the number of CNV calls overlapping 
with CNV in DGV. The X-axis shows the number of calls 
overlapping with DGV. The Y-axis shows the frequency of 
the overlapping number in 5,000 sets of permuted CNV calls.

  0

200

400

600

800

40 50 60 70 80

co
un

t

Number of overlapped random CNV calls
Page 7 of 9
(page number not for citation purposes)

http://www.perl.org


BMC Bioinformatics 2009, 10:80 http://www.biomedcentral.com/1471-2105/10/80
Additional material

Acknowledgements
This work was supported by National University of Singapore FRC grant 
number R154000265112. CX acknowledges support from the National 
University of Singapore Research Scholarship. The authors thank Dr. Yap 
Von Bing for providing valuable advice on statistics.

References
1. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S,

Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K,
Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M:
Large-scale copy number polymorphism in the human
genome.  Science 2004, 305(5683):525-528.

2. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y,
Scherer SW, Lee C: Detection of large-scale variation in the
human genome.  Nat Genet 2004, 36(9):949-951.

3. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fie-
gler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Free-
man JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura
D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K,
Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark
C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill
X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer
SW, Hurles ME: Global variation in copy number in the human
genome.  Nature 2006, 444(7118):444-454.

4. Carter NP: Methods and strategies for analyzing copy number
variation using DNA microarrays.  Nat Genet 2007, 39(7
Suppl):S16-S21.

5. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A,
Döhner H, Cremer T, Lichter P: Matrix-based comparative
genomic hybridization: biochips to screen for genomic
imbalances.  Genes Chromosomes Cancer 1997, 20(4):399-407.

6. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C,
Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson
DG: High resolution analysis of DNA copy number variation
using comparative genomic hybridization to microarrays.
Nat Genet 1998, 20(2):207-211.

7. Schuster SC: Next-generation sequencing transforms today's
biology.  Nat Methods 2008, 5:16-18.

8. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA,
Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM,
Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk
GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR,
Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H,
Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E,
Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF,
Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer
GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM:
Genome sequencing in microfabricated high-density picoli-
tre reactors.  Nature 2005, 437(7057):376-380.

9. Bentley DR: Whole-genome re-sequencing.  Curr Opin Genet Dev
2006, 16(6):545-552.

10. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng
K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM: A
high-resolution, nucleosome position map of C. elegans
reveals a lack of universal sequence-dictated positioning.
Genome Res 2008, 18(7):1051-1063.

11. Shendure J: The beginning of the end for microarrays?  Nat
Methods 2008, 5(7):585-587.

12. Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide map-
ping of in vivo protein-DNA interactions.  Science 2007,
316(5830):1497-1502.

13. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD,
Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE: Shotgun bisulphite
sequencing of the Arabidopsis genome reveals DNA methyl-
ation patterning.  Nature 2008, 452(7184):215-219.

14. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D,
Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ,
Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T,
Wilson RK, Mardis ER: Whole-genome sequencing and variant
discovery in C. elegans.  Nat Methods 2008, 5(2):183-188.

15. Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD,
Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard
TS: SNP discovery and allele frequency estimation by deep
sequencing of reduced representation libraries.  Nat Methods
2008, 5(3):247-252.

16. Chen W, Kalscheuer V, Tzschach A, Menzel C, Ullmann R, Schulz MH,
Erdogan F, Li N, Kijas Z, Arkesteijn G, Pajares IL, Goetz-Sothmann M,
Heinrich U, Rost I, Dufke A, Grasshoff U, Glaeser B, Vingron M, Rop-
ers HH: Mapping translocation breakpoints by next-genera-
tion sequencing.  Genome Res 2008, 18(7):1143-1149.

17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping
and quantifying mammalian transcriptomes by RNA-Seq.
Nat Methods 2008, 5(7):621-628.

18. Marioni J, Mason C, Mane S, Stephens M, Gilad Y: RNA-seq: An
assessment of technical reproducibility and comparison with
gene expression arrays.  Genome Res 2008.

19. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Sny-
der M: The transcriptional landscape of the yeast genome
defined by RNA sequencing.  Science 2008,
320(5881):1344-1349.

20. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I,
Penkett CJ, Rogers J, Bähler J: Dynamic repertoire of a eukaryo-
tic transcriptome surveyed at single-nucleotide resolution.
Nature 2008, 453(7199):1239-1243.

21. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A,
He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F,
Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song Xz, Liu Y, Yuan Y,
Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs
RA, Rothberg JM: The complete genome of an individual by
massively parallel DNA sequencing.  Nature 2008,
452(7189):872-876.

22. Sherwood E: Methods and applications in DNA sequence
alignments.  In PhD thesis Karolinska Institutet; 2007. 

23. Tammi MT, Arner E, Kindlund E, Andersson B: Correcting errors
in shotgun sequences.  Nucleic Acids Res 2003, 31(15):4663-4672.

24. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N,
Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC,
Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA,
Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J,
Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter
JC: The diploid genome sequence of an individual human.
PLoS Biol 2007, 5(10):e254.

25. Hinkley DV: On the ratio of two correlated normal random
variables.  Biometrika 1969, 56(3):635-639.

26. Hayya J, Armstrong D, Gressis N: A note on the ratio of two nor-
mally distributed variables.  Manage Sci 1975, 21(11):1338-1341.

27. Sanger F, Coulson AR: A rapid method for determining
sequences in DNA by primed synthesis with DNA polymer-
ase.  J Mol Biol 1975, 94(3):441-448.

28. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swer-
dlow H, Turner DJ: A large genome center's improvements to
the Illumina sequencing system.  Nat Methods 2008,
5(12):1005-1010.

29. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K,
Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo
M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D,
Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD,
Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov
A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E:
Database resources of the National Center for Biotechnol-
ogy Information.  Nucleic Acids Res 2008:D13-D21.

30. Ewing B, Green P: Base-calling of automated sequencer traces
using phred. II. Error probabilities.  Genome Res 1998,
8(3):186-194.

Additional File 1
CNV regions identified between Venter's and Watson's genomes. The 
174 identified CNV regions, including the length, location, log2 ratio, 
and p-value for each of the regions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-80-S1.txt]
Page 8 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-80-S1.txt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17597776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17597776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9771718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18165802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18165802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16056220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17055251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18587314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17540862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17540862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18278030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18278030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18278030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18204455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18204455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18297082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18297082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18326688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18326688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18516045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18516045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18451266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18451266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18488015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18488015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18421352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18421352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17803354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1100841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1100841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1100841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19034268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19034268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922


BMC Bioinformatics 2009, 10:80 http://www.biomedcentral.com/1471-2105/10/80
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

31. Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L,
Coates G, Cuff J, Curwen V, Cutts T, Down T, Eyras E, Fernandez-
Suarez XM, Gane P, Gibbins B, Gilbert J, Hammond M, Hotz HR, Iyer
V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Lehvaslaiho
H, McVicker G, Melsopp C, Meidl P, Mongin E, Pettett R, Potter S,
Proctor G, Rae M, Searle S, Slater G, Smedley D, Smith J, Spooner W,
Stabenau A, Stalker J, Storey R, Ureta-Vidal A, Woodwark KC, Cam-
eron G, Durbin R, Cox A, Hubbard T, Clamp M: An overview of
Ensembl.  Genome Res 2004, 14(5):925-928.

32. R Development Core Team: R: A Language and Environment for Statis-
tical Computing 2008 [http://www.R-project.org]. R Foundation for
Statistical Computing, Vienna, Austria

33. Kent WJ: BLAT-the BLAST-like alignment tool.  Genome Res
2002, 12(4):656-664.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078858
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	The Model
	Validation
	Analysis of human data

	Conclusion
	Methods
	Simulations
	CNV detection in human data
	CNV-seq

	Authors' contributions
	Additional material
	Acknowledgements
	References

