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Gene expression studies bridge the gap between DNA information and trait information by dissecting
biochemical pathways into intermediate components between genotype and phenotype. These studies open new
avenues for identifying complex disease genes and biomarkers for disease diagnosis and for assessing drug
efficacy and toxicity. However, the majority of analytical methods applied to gene expression data are not
efficient for biomarker identification and disease diagnosis. In this paper, we propose a general framework to
incorporate feature (gene) selection into pattern recognition in the process to identify biomarkers. Using this
framework, we develop three feature wrappers that search through the space of feature subsets using the
classification error as measure of goodness for a particular feature subset being “wrapped around”: linear
discriminant analysis, logistic regression, and support vector machines. To effectively carry out this
computationally intensive search process, we employ sequential forward search and sequential forward floating
search algorithms. To evaluate the performance of feature selection for biomarker identification we have applied
the proposed methods to three data sets. The preliminary results demonstrate that very high classification
accuracy can be attained by identified composite classifiers with several biomarkers.

Over the past few years, the genomes of more than 39 organ-
isms have been completely sequenced (Cummings and Rel-
man 2000), with another 100 in progress (Lockhart and Win-
zeler 2000). With the human genome draft sequence in hand,
the complete sequence of the entire genome will not be far
behind. Availability of genetic sequence information in both
public and private databases has gradually shifted genome-
based research away from pure sequencing towards functional
genomics and genotype–phenotype studies.

Among the most powerful and versatile tools for func-
tional genomic studies are high-density DNA microarrays
(Brown and Botstein 1999; Lipshulz et al. 1999). One of the
most important applications of microarrays is to simulta-
neously monitor the expression of thousands or even tens of
thousands of genes. A new discipline of gene expression pro-
filing, which will play a fundamental role in biological re-
search, pharmacology, and medicine, is emerging that allows
the language of biology to be spoken in mathematical terms
(Young 2000).

The practical applications of gene expression analyses are
numerous and only beginning to be realized. One particularly
powerful application of gene expression analyses is biomarker
identification, which can be used for disease risk assessment,
early detection, prognosis, prediction response to therapy,
and preventative measures (Allgayer et al. 1997; Brien et al.
1998). Currently, the main strategy for disease diagnosis de-
pends primarily on clinical evaluation and ultimately on
clinical judgment that generally includes a careful medical
history and physical examination (Growdon 1999). However,
macro- and microscopic histology and morphology as the ba-
sis for disease diagnoses have some limitations, in particular,
for early tumor detection (Mulshine 1999). Biomarkers can
also be used to measure specific toxicity and efficacy profiles
of a drug in preclinical trials or for assessing risk of environ-
mental exposure (Bennett and Waters 2000; Rothberg et al.
2000; Steiner and Witzmann 2000).

Currently, the major tools for mapping disease genes are
based on meiotic mapping within the paradigm of positional
cloning (Collins 1995). A road toward identification of disease
genes less traveled is functional analysis that studies mRNA
and protein variations. Complementary to positional cloning,
gene, including protein, expression analyses also may be em-
ployed to identify novel candidates for disease susceptibility
loci (Niculescu et al. 2000). Functional analysis attempts to
dissect disease processes and relevant biochemical pathways
into component parts, which serve as intermediaries between
genotypes and phenotype information and to bridge the gap
between DNA information and trait information (Horvath
and Baur 2000). We expected that the linkage studies and
functional analysis would cross-validate the findings of each
method, reducing the uncertainty inherent in the two ap-
proaches.

Biomarkers are expected to be highly accurate, efficient,
and reliable for assessing disease risk and biological effect,
simple to perform, and inexpensive. Microarrays provide
rapid, efficient, and systematic approaches to searching bio-
markers that are potential candidates with high accuracy for
disease diagnosis and prognosis, putative targets of therapeu-
tic agents, and understanding the basic biology of a disorder
(Chow et al. 2001; Welsh et al. 2001). Although microarrays
can generate a large amount of informative data, statistical
and computational methods are required to reliably and effi-
ciently discover biomarkers.

Most existing statistical and computational methods for
gene expression data analysis have focused on differential
gene expression, which is tested by simple calculation of fold
changes, by t-test, F test, scoring methods (Hedenfalk et al.
2001; Welsh et al. 2001), or cluster analysis (Eisen et al. 1998;
Tamayo et al. 1999; Tavazoie et al. 1999; Brazma and Vilo
2000; Butte et al. 2000; Getz et al. 2000). Although cluster
analysis will continue to be a popular method for gene ex-
pression data analysis, it is an unsupervised learning method
and cannot provide accurate prediction of diseases by itself.
Supervised classification methods are available and offer a
powerful alternative. The prediction strength (PS) method
(Golub et al. 1999), support vector machine (SVM) (Furey et
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al. 2000; Moler et al. 2000), a naive Bayes Method (Moler et al.
2000) and Fisher’s linear discriminant analysis (LDA) (Xiong
et al. 2000) have been used for tumor classification. Chow et
al. (2001) proposed to use some quantities that measure the
ability of distinguishing tissue samples of genes and select
subsets of genes with highest score as biomarkers.

However, the majority of current gene expression data
analysis methods are not effective for biomarker identifica-
tion and disease diagnosis for the following reasons. First,
although the calculation of fold changes or t-test and F test
can identify highly differentially expressed genes, the classi-
fication accuracy of identified biomarkers by these methods
is, in general, not very high. Second, most scoring methods do
not use classification accuracy to measure a gene’s ability to
discriminate tissue samples. Therefore, genes that are ranked
according to these scores may not achieve the highest classi-
fication accuracy among genes in the experiments. Even if
some scoring methods, which are based on classification
methods, are able to identify biomarkers with high classifica-
tion accuracy among all genes in the experiments, the classi-
fication accuracy of a single marker cannot achieve the re-
quired accuracy in clinical diagnosis. Third, to improve accu-
racy, several authors (Moler et al. 2000; Chow et al. 2001) used
a combination of genes in the top of the list of ranked genes
as a composite classifier. However, a simple combination of
highly ranked markers according to their scores or discrimi-
nation ability may not be efficient for classification. Although
two markers may carry good classification information when
treated separately, there is little gain if they are combined
together because of a high mutual correlation. Thus, com-

plexity increases without much gain. Furthermore, using large
number of biomarkers for diagnosis increases cost.

A fundamental problem in biomarker identification is
how to efficiently sift through thousands or even tens of
thousands of genes to select the ones related to disease patho-
physiology. The goal of this research was to use feature (gene)
selection incorporated into pattern recognition as a general
framework for biomarker identification and optimal classifier
generation. Using this framework, we attempted to systemati-
cally search optimal single biomarker classifier and composite
classifiers that consist of a combination of biomarkers accord-
ing to classification accuracy. To accomplish this goal, we
developed three feature wrappers that are being “wrapped
around” three learning algorithms: Fisher’s LDA, logistic re-
gression (LR), and SVMs. Because a learning algorithm is em-
ployed to evaluate each and every set of features considered,
wrappers are prohibitively expensive to run. The computa-
tional time of searching algorithms is important to the success
of feature selection. In this paper, we employ two search al-
gorithms: sequential forward search (SFS) and sequential for-
ward floating search (SFFS) algorithms. Therefore, feature se-
lection is transformed into an optimization problem. This
opens the way to use rich statistical and optimization meth-
ods and software for feature selection.

RESULTS
To evaluate the performance of feature wrappers for biomark-
er identification, we analyzed three data sets. One data set
consists of expression profiles for 2000 genes using an Af-
fymetrix oligonucleotide array in 22 normal and 40 cancer

colon tissues, which were originally
downloaded from the Web site at
http://www.molbio.princeton.edu/
colondata (Alon et al. 1999) and
can now be retrieved from the Web
site at http://www.sph.uth.tmc.
edu/hgc. The second data set is ex-
pression profiles for 3226 genes us-
ing a cDNA microarray in seven
BRCA1 mutation-positive, eight
BRCA2 mutation-positive, and
seven sporadic breast tumor
samples (Hedenfalk et al. 2001).
The third data set is expression pro-
files for 8102 genes in 40 tissue
samples from 20 patients, 20 of
which were obtained before treat-
ment and 20 of which were ob-
tained after an average of 16-week
treatment of doxorubicin (Perou et
al. 2000).

Before presenting the results,
we first describe two ways of mea-
suring classification accuracy.
When the collection of total
samples is used as both training and
test data sets, the classification ac-
curacy is referred to as the within-
sample prediction accuracy. When
the training and test samples are
separate data sets, the classification
accuracy is referred to as the out-of-
sample prediction accuracy because
test samples are used for the calcu-

Table1. Top Accuracy Genes Selected by LDA and Class Prediction Method for
Classifying BRCA1 Mutation Positive Tissue Samples

Colon Description Accuracy

LDA
212198 tumor protein p53-binding protein, 2 0.954545
897646 splicing factor, arginine/serine-rich 4 0.954545
344352 ESTs 0.954545
42888 interleukin enhancer binding factor 2, 45kD 0.954545
366647 butyrate response factor 1 (EGF-response factor 1) 0.954545
242037 Human putative cyclic G1 interacting protein mRNA, partial sequence 0.909091
248531 guanine-monophosphate synthetase 0.909091
46182 CTP synthase 0.909091
840702 selenophosphate synthase; Human selenium donor protein 0.909091
811930 KIAA0020 gene product 0.909091
687397 Ras suppressor protein 1 0.909091
566887 chromobox homolog 3 (Drosophila HP1 gamma) 0.909091
81331 fatty acid binding protein 5 (psoriasis-associated) 0.909091
202034 ESTs, highly similar to 45kDa splicing factor [Heme sapiens] 0.909091
307843 ESTs 0.909091
247818 ESTs 0.909091
46019 minichromosome maintenance deficient (S. cerevisiae) 7 0.909091
32790 mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1) 0.909091

Class Prediction Method (Hedenfalk et al. 2001)
212198 tumor protein p53-binding protein, 2 0.954545
366647 butyrate response factor 1 (EGF-response factor 1) 0.954545
840702 selenophosphate synthetase; Human selenium donor protein 0.909091
566887 chromobox homolog 3 (Drosophila HP1 gamma) 0.909091
307843 ESTs 0.909091
247818 ESTs 0.909091
46019 minichromosome maintenance deficient (S. cerevisiae) 7 0.909091
26082 very low density lipoprotein receptor 0.863636
897781 keratin 8 0.818182
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lation of accuracy. Tables 1 and 2 compare the within-sample
prediction accuracy of the single markers selected by LDA and
the class-prediction method (Hedenfalk et al. 2001) for clas-
sifying BRCA1 mutation-positive and BRCA2 mutation-
positive tumors, respectively. We have ordered the genes in
the data set according to their classification accuracy or P
values. In Tables 1 and 2 we selected the genes at the top of
the list (those with higher accuracy or smaller P value).
Hedenfalk et al. (2001) used a total of 9 clones (� = 0.0001) in
Table 1 and 11 clones in Table 2 and a class-prediction
method to classify BRCA1 mutation-positive and BRCA2 mu-
tation-positive tumors. The achieved accuracy rates for clas-
sifying BRCA1 mutation-positive and BRCA2 mutation-
positive were 95.4% and 81.82%, respectively. The accuracy
for classifying BRCA2 mutation-positive tumors by the class-
prediction method is not very high, because the set of bio-
markers for class prediction includes the clones 784830 and
366824. Although these two clones are highly differentially
expressed (as measured by a t-test, � = 0.0001) between BRCA2
mutation-positive and BRCA2 mutation-negative tumors,
both of them have only 77.23% classification accuracy ac-
cording to LDA. Tables 1 and 2 clearly demonstrate that genes
at the top of the list (those with smaller P values) may not
have the highest classification accuracy. Hence, ranking genes
according to their t or F statistic values may not be the best
strategy to select biomarkers for classification.

Among the 18 genes with the highest accuracy for clas-
sifying BRCA1 mutation-positive tumors in Table 1 are the
p53-binding protein (212198), Ras suppressor protein
(687397), psoriasis-associated protein (81331), and DNA re-

pair gene MSH2 (32790), which are related to the develop-
ment of tumors. Among the 17 genes with the highest accu-
racy for classifying BRCA2 mutation-positive tumors in Table
2 are MAPK1 (23014), MAPK7 (175123), suppression of
tumorogenicity (210887), and semia sarcoma viral oncogene
homolog (345645), which are all involved in tumurogenesis.

Tables 1 and 2 show that the use of even a single marker
can achieve very high accuracy. This may be due to small
sample size in the experiment. In general, using a single
marker for classification cannot achieve high accuracy, which
is demonstrated in Table 3. Table 3 shows that the highest
accuracy for classifying breast tumor tissue samples before
and after treatment using a single marker as a classifier se-
lected by LDA is 77.5%. To improve the accuracy, we com-
bined several markers together to generate a composite clas-
sifier and used the SFFS algorithm to search subsets of optimal
composite classifiers with the highest accuracy among all pos-
sible composite classifiers with the same number of genes in
the composite classifier. As shown in Table 3, the accuracy of
the selected optimal composite classifier with three genes can
reach 100%.

Several authors (Chow et al. 2001; Hedenfalk et al. 2001)
proposed to use a combination of genes in the top of the list
in which genes were ranked according to some discrimination
quantity. To examine whether this is a good strategy for pro-
ducing a composite classifier we provide Table 4, which shows
combination of two genes with within-sample prediction ac-
curacy >92%. Two remarkable features from Table 4 are evi-
dent. First, at least one gene in the composite classifier has
low classification accuracy. Second, although the accuracies

of both genes in the composite clas-
sifier are low, their combination
may have high accuracy.

To further demonstrate the po-
tential power of a combination of
several genes for distinguishing dif-
ferent types of tissues and to com-
pare the performance of SFS and
SFFS search algorithms, we calcu-
lated the maximum accuracy for
classifying 22 normal and 40 tumor
colon tissue samples as a function
of number of genes used for classi-
fication. The results are shown in
Figure 1, which includes the classi-
fication accuracy for the total col-
lection of tissue samples. SFFS
(combination) and SFFS (forward)
denote the SFFS algorithms, which
started with two genes obtained by
searching all possible combinations
of two genes and by an SFS algo-
rithm, respectively. Several interest-
ing features emerge from Figure 1.
First, the classification accuracy of
the optimal subsets of genes
searched by SFFS algorithm is
greater than or equal to that ob-
tained by SFS algorithm. Second,
the accuracy increased when sizes
of subsets of selected genes in-
creased and quickly reached 100%
accuracy for the SFFS algorithm, but
suddenly dropped to 50% when the

Table 2. Top Accuracy Genes Selected by LDA and Class Prediction Method for
Classifying BRCA2 Mutation Positive Tissue Samples

Colon Description Accuracy

LDA
175123 mitogen-activated protein kinase 7 1.000000
714106 plasminogen activator, urokinase 0.954545
210887 suppression of tumorigenicity 13 (colon carcinoma) 0.954545
29054 ARP1 (actin-related protein 1, yeast) homolog A 0.954545
36775 hydroxyacyl-Coenzyme A dehydrogenase 0.954545
21652 catenin (cadherin-associated protein), alpha 1 (102kD) 0.909091
233721 insulin-like growth factor binding protein 2 (36kD) 0.909091
666377 zinc finger protein 161 0.909091
50413 armadillo repeat gene deletes in velocardiofacial syndrome 0.909091
179804 PWP2 (periodic tryptophan protein, yeast) homolog 0.909091
563444 forkhead (Drosophila)-like 5 0.909091
345423 DKFZP564M112 protein 0.909091
246194 ESTs 0.909091
23014 mitogen-activated protein kinase 1 0.909091
51209 protein phosphatase 1, catalytic subunit, beta isoform 0.909091
341130 retinoblastoma-like 2 (p130) 0.909091
345645 plate-derived growth factor beta polypeptide 0.909091

Class Prediction Method (Hedenfalk et al. 2001)
36775 hydroxyacyl-Coenzyme A dehydrogenase 0.954545
29054 ARP1 (actin-related protein 1, yeast) homolog A (centractin alpha) 0.954545
666377 Zinc finger protein 161 0.909091
50413 armadillo repeat gene deletes in velocardiofacial syndrome 0.909091
31842 UDP-galactose transporter related 0.863636
51209 protein phosphatase 1, catalytic subunit, beta isoform 0.909091
345645 plate-derived growth factor beta polypeptide 0.909091
340644 integrin, beta 8 0.863636
344109 proliferating cell nuclear antigen 0.863636
784830 D123 gene product 0.772727
366824 cyclin-dependent kinase 4 0.727273
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size of selected subsets of genes was >60 (which is close to
total sample size of 62). It is well known that when the num-
ber of features used for classification is greater than the num-
ber of samples to be classified, the sample covariance matrix
will become singular, and Fisher’s LDA cannot be applied to
such case. Third, it is interesting to note that the classification
accuracy of optimal subsets of genes with size 4 searched by
SFFS algorithm is 100%. This example demonstrates that us-
ing a small number of genes can achieve a high accuracy of
classification. To visualize such a possibility, we plot Figure 2,
using expression levels of three genes (accession numbers
H22579, Z50753, and R67343; http://www.molbio.
princeton.edu/colondata). From Figure 2 we can see that most
normal and tumor tissue samples were separated. To compare
maximum classification accuracy, which can be achieved by
the three learning algorithms, we plot Figure 3. In Figure 3,
SVMs used two kernel functions: linear and polynomial of
degree P = 3, and � is set to � = 10. Figure 3 demonstrates that
the LR performs better than LDA and SVMs, but the difference
in accuracy between LDA and LR is very small.

Because it is not reliable to use the total sample for evalu-
ating the accuracy of classification methods, to get a realistic

estimate of classification accuracy
one procedure is to split the total
sample into a training sample and a
validation sample. The training
sample is used to construct the clas-
sification function and the valida-
tion sample is used to evaluate it.
We used leave-one-out cross-
validation procedure (i.e., each
time hold out one sample as a vali-
dation set and develop a classifica-
tion function based on the remain-
ing samples and then classify the
“held-out” sample using the func-
tion constructed from the training
data) to calculate the average classi-
fication accuracy. The procedure
was repeated for each training
sample in turn. Figure 4 plots maxi-
mum average classification accu-
racy over the cross-validation trials,

which can be achieved by using SFFS searching algorithms
and the three learning methods LDA, LR, and SVM with a
linear and a polynominal kernel function of degree of p = 3. It
is clear from Figure 4 that when the number of genes is 3 and
4, SVM with the polynomial kernel function has the highest
classification accuracy 93.5%, but in other cases LR has higher
accuracy than that of LDA and SVM methods. It was reported
that Furey et al. (2000) used SVM and all 2000 or top 1000
genes achieved only 90% accuracy. Figure 4 demonstrates the
important point that using a much smaller number of genes
can achieve higher accuracy than that of using thousands of
genes.

Table 5 lists the 15 genes with the highest within-sample
and out-of-sample prediction accuracies for classifying colon
tumors that were estimated by LR from the total collection of
samples and leave-one-out cross-validation data set. Table 5
shows that the top 15 genes that were inferred from the total
collection of samples and leave-one-out validation data set are
the same, but their rank in the list differs somewhat. Table 5
demonstrates that to search a list of genes with high accuracy,
we can use the total collection of sample, which will save a lot
of computational time.

To examine how the selected
optimal subsets of genes depend on
the learning algorithms, we provide
Table 6. It summarizes the results of
10 selected genes with the highest
classification accuracy, which is
evaluated using total collection of
62 colon tissue samples, by three
learning algorithms. Table 6 dem-
onstrates that 7 out of 10 genes are
common to three learning algo-
rithms although their orders in the
table for the three learning algo-
rithms have some differences. How-
ever, the classification accuracies of
the gene DARS evaluated by the
three learning algorithms are quite
different. Table 6 shows that the
majority of the selected genes by
feature selection are less dependent
on the learning algorithms.

Table 4. Top 15 Combinations of Two Genes for Classifying Colon Tumor Samples

Access
number

Gene
name

Accuracy
single marker

Access
number

Gene
name

Accuracy
single marker

Accuracy
combination

Z50753 GUCA2B 0.75806 H22579 0.59677 0.93548
Z50753 GUCA2B 0.75806 X67155 KNSL5 0.56452 0.93548
Z50753 GUCA2B 0.75806 H22579 0.53226 0.93548
R87126 0.82258 U31215 GRM1 0.64516 0.91935
H20709 MYL6 0.66129 T63484 0.53226 0.91935
H20709 MYL6 0.66129 L39874 DCTD 0.51613 0.91935
R88740 ATP5J 0.51613 T90350 SFPQ 0.6129 0.91935
Z50753 GUCA2B 0.75806 X70326 MACMARCKS 0.69355 0.91935
H08393 0.70968 M84490 MAPK3 0.6129 0.91935
D26018 POLD3 0.46774 R44301 NR3C2 0.72581 0.91935
Z50753 GUCA2B 0.75806 H06061 PRO0082 0.54839 0.91935
Z50753 GUCA2B 0.75806 R72374 ACTN4 0.54839 0.91935
M36634 VIP 0.77419 J05032 DARS 0.62903 0.91935
R87126 0.82258 Z15009 LAMC2 0.6129 0.91935
R87126 0.82258 T65938 TPT1 0.6129 0.91935

Table 3. Accuracy of Single Classifier and Composite Classifier for Classifying Breast
Tumor Tissue Sample Before and After Treatment

Gene access
number

Gene
name

Gene access
number

Gene
name

Gene access
number

Gene
name Accuracy

T62179 FOSB 0.775
AA598794 CTGF 0.775
W96134 JUN 0.775

R12840 AA005202 ESTs 0.925
R12840 AA027875 HBA2 0.925

AA343173 SPN AA040944 AA114864 ESTs 1.00
R12840 FOS AA027875 HBA2 AA045342 ESTs 1.00
R12841 FOS AA027875 HBA2 T95903 ESTs 1.00
AA700604 SORD R12841 FOS AA027875 HBA2 100
H62594 GW128 R12842 FOS AA027875 HBA2 1.00
AA402766 SMP1 R12843 FOS AA027875 HBA2 1.00
AA460599 COPS5 R12844 FOS AA027875 HBA2 1.00
H15707 TRAM R12845 FOS AA027875 HBA2 1.00
AA045587 TAF2J R12846 FOS AA027875 HBA2 1.00
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DISCUSSION
Emerging advances in microarray “chip” technology allow
the simultaneous analysis of expression patterns for thou-
sands of gene sequences (i.e., chip features) and will serve as
precursors to genome-wide functional analyses. These studies
open new avenues for identifying complex disease genes and
biomarkers for disease diagnosis and for assessing drug effi-
cacy and toxicity. To achieve this goal, it is fundamental to
develop a sound framework for biomarker discovery. In this
paper, we formulated the problem of biomarker identification
as feature selection incorporated into pattern recognition
(i.e., we formulated it into an optimization problem). This
general framework has two parts. One part comes from pat-
tern recognition theory that provides an objective function.
Classification accuracy, a quantity used to measure the dis-
criminating ability, was taken as the objective function in this
paper. The second part comes from search algorithms or op-
timization methods that provide algorithms to search global
optimal solutions. This general framework allows us to sys-
tematically and efficiently search biomarkers from large vol-

umes of expression data by using rich statistical and compu-
tational methods and software in pattern recognition and
data mining.

Feature selection serves two purposes: (1) to reduce di-
mensionality of the data and improve classification accuracy,
and (2) to identify genes that are relevant to the cause and
consequences of disease or can be used as biomarkers for di-
agnosis of disease, measuring drug toxicology and efficacy.
The first practical application area of gene expression data
analysis is disease diagnosis. Classification accuracy and cost
are two important indices for disease diagnosis. The great ad-
vantage of microarrays is that they are able to simultaneously
monitor the expression of thousands or even ten thousands of
genes, which provides extremely useful information. How-
ever, if whole-genome expression profiles are used for disease
diagnosis, the prediction accuracy will be low and the cost of

Figure 2 Expression levels of three genes with accession numbers
H22579, Z50573, and R67343 in 62 colon tissue samples.

Figure 4 Maximum average out-of-sample prediction accuracy
over the leave-one-out cross-validation set of colon tissue samples,
which was achieved by LDA, LR and SVM with two kernel functions:
linear and polynomial of degree P = 3 function learning methods us-
ing SFFS search algorithm.

Figure 1 Maximum within-sample prediction accuracy as a func-
tion of number of genes for classifying colon tumors that can be
achieved by LDA using SFS and SFFS search algorithms.

Figure 3 Maximum within-sample prediction accuracy which was
evaluated from the total collection of 62 colon tissue samples and by
LDA, LR, and SVM with two kernel functions: linear and polynomial of
degree P = 3 learning methods using SFFS search algorithm.
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diagnosis will be high. Theoretically, having more genes
should give more discriminating power. But, as shown in this
paper, using a large number of genes for classification can
dramatically reduce the classification accuracy.

It is well recognized that improved accuracy results from
reducing the dimensionality of the data. Now the question is
how many genes are required and which genes are selected to
ensure the required classification accuracy. To address these
problems, we have analyzed three available expression data
sets. In this paper, we showed that when the sample size is
small, using one selected biomarker reached very high accu-
racy and when the sample size is moderate (<100), a combi-
nation of three or four markers, which we called a composite
classifier, achieved >90% accuracy. Here we must point out
that the results from small sample sizes are not reliable. To
further investigate the feasibility of biomarkers for disease di-
agnosis, we probably need to have ∼1000 samples. In this
situation, more than five biomark-
ers are expected to be required. It
bodes well for the following sce-
nario. Initial basic research and
clinical trials will monitor the ex-
pressions of thousands or even tens
of thousands of genes in several
hundred or a thousand samples us-
ing microarrays to identify subsets
of genes providing optimal classifi-
cation accuracy. Clinical applica-
tions will then monitor only this
small subset of genes, avoiding the
cost and complexity of large-scale
gene expression array.

Recently, several authors
(Moler et al. 2000; Chow et al.
2001) have proposed to simply
combine genes that were highly
ranked according to some quantity
to measure discrimination ability as
a composite classifier. Intuitively,
this strategy to select a combina-
tion of biomarkers for improving

classification accuracy is appealing. However, our preliminary
results showed that not all genes in the composite classifier
have high classification accuracy and that in some cases al-
though the accuracy of each gene is quite low, their combi-
nation may lead to high accuracy. The optimal combination
of genes with high accuracy should be systematically searched
by a feature selection procedure.

Furthermore, we have demonstrated that feature selec-
tion is a powerful tool to determine the number of genes and
what genes should be used for classification. Both accuracy
and computational time depend on the learning and search
algorithms. Classification function is determined by learning
algorithms and has a large impact on the classification accu-
racy.

It has been argued that because feature selection is typi-
cally done in an off-line manner, the execution time of a
particular algorithm is not as critical as the optimality of the
feature subset it generates. Although this may be true for fea-
ture sets of moderate size, for sets involving thousands or
even ten thousands of features, the computational require-
ment of feature selection is extremely important. Because
SVMs involves quadratic programming that is computation-
ally expensive we used a least square version of SVMs, which
can reduce the computational time. Even if we used faster
versions of SVMs, LDA and LR run much faster than SVMs.

Although an exhaustive search is sufficient to guarantee
optimality of selected composite classifier, it is computation-
ally prohibitive as the number of feature subsets increases. To
solve this problem a number of suboptimal selection tech-
niques have been proposed, which essentially trade off the
optimality of the selected subset for computational efficiency.
It has been recognized that no unique optimal approach to
the feature selection exists (Pudil and Novovicova 1998). In
this paper, two heuristic algorithms, SFS and SFFS, were em-
ployed. The results showed that SFFS algorithm can search
composite classifiers with higher accuracy than SFS algo-
rithm. This may be due to the fact that for the SFS algorithm
the nesting of biomarker subsets might rapidly cause deterio-
rating performance. The computational time of SFFS algo-
rithm is only slightly more than that of SFS algorithm.

Table 6. Ten Selected Genes with Highest Classification Accuracy Using Linear
Discriminant Analysis (LDA), Logistic Egression (LR), and Support Vector Machine (SVM)
for Classifying Colon Tumor

LDR LR SVM

gene access
number accuracy

gene access
number accuracy

gene access
number accuracy

M63391(DES) 0.8548 M63391(DES) 0.8548 M6391(DES) 0.8387
M76378(EST,245) 0.8226 M76378(EST,245) 0.8387 M76378(EST,245) 0.8226
M76378(EST,267) 0.8226 M76378(EST,267) 0.8226 M76378(EST,267) 0.8387

J05032(DARS) 0.8387
R87126(EST) 0.8226 R87126(EST) 0.8226
M76378(EST,765) 0.8226 M76378(EST,765) 0.8226 M76378(EST,765) 0.8387
J02854(MYRL2) 0.7903 J02854(MYRL2) 0.8065 J02854(MYRL2) 0.8387
U25138(KCNMB1) 0.7742 U25138(KCNMB1) 0.7903 U25138(KCNMB1) 0.8065
T92451(TPM2) 0.7903 T92451(TPM2) 0.7903 T92451(TPM2) 0.7742

H08393(EST) 0.7903
X86693(SPACL1) 0.7742
M36634(VIP) 0.7742

M26383(IL8) 0.8065
T60155(ACTA2) 0.7903 T60155(ACTA2) 0.7742

T61629(LAMR1) 0.7742

Table 5. Top 15 Genes for Classifying Colon Tumor
Samples Searched from Total Collection of Samples and
Cross-Validation Set

Access
number

Gene
name

Accuracy

total sample cross-validation

M63391 DES 0.854839 0.854839
M76378 EST 0.83871 0.822581
J05032 DARS 0.83871 0.790323
M76378 EST 0.822581 0.822581
R87126 EST 0.822581 0.822581
M22382 HSPD1 0.822581 0.822581
M76378 EST 0.822581 0.822581
J02854 MYRL2 0.806452 0.806452
M26383 IL8 0.806452 0.790323
T60155 ACTA2 0.790323 0.774194
H40095 MIF 0.790323 0.758065
T92451 TPM2 0.790323 0.790323
R36977 GTF3A 0.790323 0.774194
R64115 EST 0.790323 0.758065
X63629 CDH3 0.790323 0.790323
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Genome-wide gene expression data analyses open a new
avenue for biomarker identification. Although the results pre-
sented here are encouraging, they are limited. Some impor-
tant factors such as sample size, which may have a large im-
pact on the biomarker identification, and whole-genome
functional analysis have not been discussed and should be
investigated in the future.

METHODS

Classification Task and Data Representation
In a typical tissue classification task, data is represented as a
table of examples. Each example is described by a fixed num-
ber of measurements, or features along with a label that de-
notes its class (type of tissues). Features are typically gene
expression levels, sex, age, and environmental variables such
as drug dosages. The label variable and the features are de-
noted by a vector.

Tissue classification begins with a set of training ex-
amples, denoted by

�x1,y1�, �x2,y2�,…,�xm,ym�.

Learning a classifier involves inducing a model from the train-
ing data set that can be used to classify a new feature vector
into one of the existing classes. This new data is often referred
to as the testing data set.

Problem Formulation of Feature Selection
Let X be the original set of features with size k, that is, the
number of features in the set. Let Z be the selected subset,
Z ⊆ X. To evaluate the worth of features for classification, we
introduce a feature selection criterion function for the set that
is denoted by C(X). In feature wrappers, we use classification
accuracy, which is defined as the percentage of the correctly
classified tissue samples and hence is directly related to the
performance of classification, as the criterion function. The
selected subset of features Z is used to construct the classifi-
cation model. Formally, the problem of feature selection is to
find a subset Z ⊆ X such that

C�Z� = max
w⊆X

C�w�.

There are two ways to estimate classification accuracy. One
procedure is to use the total collection of tissue samples to
estimate the parameters in the classification model and the
classification accuracy. Because of the possibility of over-
fitting the data that arises from using the same data to both
build and judge the classification model, the generalization
performance of the model induced from the total collection
of tissue samples may not be good for future samples. This will
affect the quality of the selected features for classifying new
tissue samples. To overcome this problem, we use a leave-one
cross-validation strategy to estimate the classification accu-
racy. A collection of n tissue samples is split into n � 1 train-
ing samples and 1 test sample. The n � 1 training samples are
used to construct the classification model. We use the con-
structed classification model to classify the test sample. The
label assigned by a trained classification model can be true or
false. This procedure is repeated n times to produce the train-
ing and test samples from the total collection of samples in
turn. The classification accuracy is estimated to be the ratio of
the total number of correctly classified samples by the trained
models in all generated test samples by the leave-one-out pro-
cedure divided by the total number of samples.

Learning Algorithm
The use of classification accuracy as a criterion function
makes feature selection dependent on the learning algo-
rithms. Throughout this paper, three learning algorithms are
used as a basis for the development of feature wrappers for
biomarker identification: Fisher’s LDA, LR, SVMs.

Fisher’s LDA
Fisher’s LDA has been a widely used tool for classification in
machine learning. Because of its simplicity and high compu-
tational speed, LDA was our first choice for classification and
gene selection and was applied to gene expression-based tu-
mor classification. Fisher’s approach does not assume that the
observations are normally distributed. But, it does implicitly
assume that the population covariance matrices are equal
(Johnson and Wichern 1982). Tissues are classified on the
basis of k selected feature variables. Suppose that nN normal
and nT tumor tissue samples are examined. For tissue sample
i, we have the vector Yi� = (Yi1

, Yi2
, ..., Yik

). The Yi’s for normal
(N) and tumor (T) samples constitute the following data ma-
trix,

YN = �YN1,YN2,…,YNnN
��k×nN)

YT = �YT1,YT2,…,YTnT
��k×nT)

From these data matrices, the sample mean vectors and co-
variance matrices are determined by

YN =
1
nN

�
i=1

nN

YNi, SN =
1

nN − 1 �
i=1

nN

�YNi − YN� �YNi − YN��

YT =
1
nT

�
i=1

nT

YTi, ST =
1

nT − 1 �
i=1

nT

�YTi − YT� �YTi − YT��

S =
�nN − 1�SN + �nT − 1�ST

nN + nT − 2

Fisher’s idea was to transform the multivariate observations
YNi

and YTi
into univariate observations ZNi

and ZTi
such that

Z’s were separated as much as possible. Fisher suggested tak-
ing linear combinations of the Y’s to generate Z’s, which can
be easily maipulated mathematically. The midpoint, m̂, be-
tween the two univariate sample means, ZN = (YN � YT)�
S�1YN and ZT = (YN � YT)' S�1YT, is given by

m̂ =
1
2

�YN − YT�' S−1�YN + YT�

The classification rule based on Fisher’s linear discrimination
function for an unknown sample, Y0, is as follows

Assign Y0 to N, if �YN − YT�' S−1Y0 � m̂, and

Assign Y0 to T, if �YN − YT�' S−1Y0 < m̂.

LR Model
Some environments, such as smoking, with exposure to car-
cinogens will cause changes in patterns of gene expression.
Suppose that we collect tissue samples from patients who are
divided into two groups: smoking and nonsmoking. The pat-
tern of gene expression profiles for tumor and normal lung
tissue samples collected from smokers may be different from
that of nonsmokers. Sex, ethnicity, genotypes at oncogenes,
tumor suppressor genes, and drug metabolism enzymes may
also affect the pattern of gene expression. These variables are
qualitative. The LDA is a linear statistical method for classifi-
cation. Although it can still simultaneously deal with both
quantitative and qualitative variables, in this case, its dis-
criminatory power will be reduced. A practical alternative
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method that includes both continuous and discrete variables
is Cox’s LR method (1970). The LR model is also a simple
nonlinear method for classification.

Suppose that there are n tissue samples. For each of the n
tissue samples, there are k independent variables xji, j = 1, ...,
k. These variables can be either qualitative variables, such as
sex, age, and race, or quantitative variables, such as gene ex-
pression levels.

In the LR model, the dependence of the probability of
being disease on independent variables including gene ex-
pression levels and other discrete variables is assumed to be

pi =

exp��
j=0

k

bjxji�
1 + exp��

j=0

k

bjxji�
1 − pi =

1

1 + exp��
j=0

k

bjxji�
where pi = P(yi = 1|x1i,…,xki), x0i = 1 and bj are unknown co-
efficients, and yi = 1, abnormal tissue; yi = 0, normal. The
logarithm of the ratio of pi and 1 � pi is a simple linear func-
tion of the xji. We define log odds as

�i = log
pi

1 − pi
= �

j=0

k

bjxji.

The maximum likelihood method can be used to estimate
the coefficients bj’s. Let y1,y2,…,yn be the observed class label
on the n individuals. Thus, the likelihood for n tissue samples

L�b0,b1,…,bk� =

exp��
j=0

k

bjtJ�
�
i=1

n �1 + exp��
j=0

k

bjxji��,

where tj = �n
i=1 xjiyi. The log-likelihood function is

LL�b0,b1,…,bk� = �
j=0

k

bjtj − �
i=1

n

log�1 + exp��
j=0

k

bjxji��.

By maximizing the log-likelihood function we can obtain the
maximum likelihood estimates of bj’s. Then, for a given new
sample x1,x2,…,xk, we determine its identity by p = P(y =
1|x1,…,xk).

SVMs
The past few years have seen the rise of SVMs as powerful
tools for solving classification problems (Burges 1998; Chris-
tianini and Shawe-Taylor 2000). The basic idea that drove the
initial development of SVMs is that for a given learning task,
with a given finite amount of training data, the best gener-
alization performance will be achieved by the balance be-
tween the accuracy attained on that particular training set
and the ability of the machine to learn any training set with-
out error. The SVM classifier typically follows from the solu-
tion to a quadratic programming (QP) problem. However, the
QP requires expensive computation. This will create serious
problems for the selection of thousands of features. To avoid
heavy computation, in this paper, we use least square SVM
(Suykens and Vandewalle 1999).

Given a training set �xi,yi�i=1
n indicating the class (type of

tissue), SVM formulations start from the assumption that all
the training data satisfy the following constraints:

�wT ��xi� + b � +1, if yi = +1,
wT ��xi� + b � −1, if yi = −1.

Here the nonlinear mapping �(·) maps the input data into
a higher dimensional space and w is a normal to the hyper-
plane. Note that the dimension of w is not specified (it can be
infinite dimensional). Suppose we have some hyperplane that
separates the positive from the negative examples (a “separat-
ing hyperplane”). Define the “margin” of a separating hyper-
plane to be the summation of shortest distance from the sepa-
rating hyperplane to the closest positive and negative ex-
amples. It can be shown that the margin is simply 2/√wTw.
Our goal is to find the pair of hyperplanes that gives the
maximum margin. This can be accomplished by minimizing
wTw, subject to the above constraints. In least squares SVMs,
the above optimization problem is formulated as

min
w,e

J�w,e� =
1
2

wTw +
�

2 �
i=1

n

ei
2

which is subject to the equality constraints

yi = wT��xi� + b + ei, i = 1,…,n.

where � is a penalty parameter. The Lagrangian multiplier
method can be used to solve this equality constrained opti-
mization problem. The Lagrangian is given by

L�w,b,e,�� = J�w,e� − �
i=1

n

�i�w
T��xi� + b + ei − yi�

with Lagrange multipliers �i. The conditions for optimality

�L
�w

= 0,
�L
�b

= 0, and
�L
��k

= 0

give

w = �
i=1

n

�i��xi�

�
i=1

n

�i = 0

�i = �ei

wT��x� + b + ei − yi = 0

Some algebra yields the following set of linear equations

�0 	T

	 
 + �−1 I
��b

�� = �0

y�,

where yT = [y1,…,yn], 	T = [1,…,1], �T = [�1,…,�n] and the
Mercer condition


ij = ��xi�
T��xj�

= ��xi, xj�

have been applied, where �(xi,xj) is a kernel function. Once
we have trained a SVM, we determine on which side of the
decision boundary given test pattern x lies and assign the
corresponding class label, i.e., we take the class of x to be
sgn(f (x)) where f (x) is given by

f �x� = �
i=1

n

�i��x,xi� + b.
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The following four functions: �(x,xi) = xT
i x (linear SVM),

�(x,xi) = (xT
i x + 1) p (polynomial SVM of degree p), �(x,xi) =

exp{�||x � xi||
2/�2} (Radial Basis Function SVM) and �(x,xi) =

tanh(xT
i x + �) (two-layer sigmoidal neural network) can be

used as kernel functions.

Search Algorithms
Because a learning algorithm is employed to evaluate each
and every set of features considered, feature wrappers are very
expensive to run. The search algorithms are fundamental to
the success of the biomarker identification. Although an ex-
haustive search can find optimal solutions, it requires an ex-
tremely large number of computations. To overcome this dif-
ficulty, we adopt two heuristic searching algorithms: SFS and
SFFS (Sahiner et al. 2000).

SFS
The procedures for sequential forward selection are as follows:

(1) Compute the criterion value (classification accuracy) for
each of the features. Select the feature with the best value.

(2) Form all possible two-dimensional vectors that contain
the winner from the previous step. Compute the criterion
value for each of them and select the best one.

(3) Form all three-dimensional vectors expanded from the
two-dimensional winners, and select the best one. Con-
tinue this process until reaching the prespecified dimen-
sion of the feature vector say, l.

SFFS
The SFS algorithm suffers from the so-called nesting effect.
That is, once a feature is chosen, there is no way for it to be
discarded later on. To overcome this problem, the sequential
floating algorithm was proposed (Pudil et al. 1994).

Suppose m variables have already been selected from
the complete set B = {xj, j = 1,…,k}, so that the selected vari-
ables form the set Am (and the criterion value C(Am) is
known). The values C(Ai),i = 1,2,…,m � 1 are also known and
stored for further usage.

Step 1 (inclusion)
Using SFS, select a variable xm+1 from the set of unselected
variables B � Am and form the set Am+1 so that the most
significant variable with respect to Am is added to Am, i.e.,
Am+1 = Am + xm+1.

Step 2 (conditional exclusion)
Find the least significant variable in the set Am+1. If xm+1 is the
least significant variable in the set Am+1, i.e.,

C�Am+1 − xm+1� � C�Am+1 − xj�, j = 1,2,…,m

then set m = m + 1 and return to step 1. If the least significant
variable in the set Am+1 is xr, r = 1,2,…,m, i.e., C(Am+1 � xr) >
C(Am) then exclude xr from the set Am+1, i.e., A'm = Am+1 � xr.
If m = 2, then set Am = A'm, C(Am) = C(A'm) and return to step
1, otherwise go to step 3.

Step 3 (continuation of conditional exclusion)
Find the least significant variable xs in the set A'm. If C(A'm �

xs) � C(Am�1), then set Am = A'm, C(Am) = C(A'm) and return to
step 1. If C(A'm � xs) > C(Am�1), then exclude xs from the set
A'm and form a new reduced set A'm�1, i.e., A'm�1 = Am � xs. Set
m = m � 1. If m = 2, then set Am = A'm, C(Am) = C(A'm) and
return to step 1, otherwise return to step 3.

Initialization
The algorithm is initialized by value m = 0. A set A0 is empty.
SFS algorithm or an exhaustive search of all possible combi-
nations of two features is used for finding an initial set with
two feature variables. Start with a step 1. The resulting set is
Am.
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