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Liver cirrhosis is a worldwide health problem. Reliable, noninvasive methods for early detec-
tion of liver cirrhosis are not availabe. Using a three-step approach, we classified sera from
rats with liver cirrhosis following different treatment insults. The approach consisted of: (i) pro-
tein profiling using surface-enhanced laser desorption/ionization (SELDI) technology; (ii) selec-
tion of a statistically significant serum biomarker set using machine learning algorithms; and
(iii) identification of selected serum biomarkers by peptide sequencing. We generated serum
protein profiles from three groups of rats: (i) normal (n = 8), (ii) thioacetamide-induced liver
cirrhosis (n = 22), and (iii) bile duct ligation-induced liver fibrosis (n = 5) using a weak cation
exchanger surface. Profiling data were further analyzed by a recursive support vector machine
algorithm to select a panel of statistically significant biomarkers for class prediction. Sensitiv-
ity and specificity of classification using the selected protein marker set were higher than 92%.
A consistently down-regulated 3495 Da protein in cirrhosis samples was one of the selected
significant biomarkers. This 3495 Da protein was purified on-chip and trypsin digested. Fur-
ther structural characterization of this biomarkers candidate was done by using cross-plat-
form matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) peptide
mass fingerprinting (PMF) and matrix-assisted laser desorption/ionization time of flight/time
of flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS). Combined data from PMF
and MS/MS spectra of two tryptic peptides suggested that this 3495 Da protein shared
homology to a histidine-rich glycoprotein. These results demonstrated a novel approach to
discovery of new biomarkers for early detection of liver cirrhosis and classification of liver
diseases.
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1 Introduction

Liver cirrhosis is the most common complication of
chronic liver disease, secondary to chronic alcohol inges-
tion, or viral infection with hepatitis B or C virus. The gold
standard for diagnosing cirrhosis is by histological exam-

ination of the liver obtained by liver biopsy. However, this
is an invasive procedure associated with potential risk of
internal bleeding following biopsy. While gross cirrhosis
can be detected by computed tomography scanning, it
is not able to detect early cirrhosis accurately. At present,
there are no sensitive and specific serum or plasma mark-
ers available for the detection of cirrhosis. Recently,
genomic analyses using RT-PCR or cDNA microarray
were being used to classify diseased tissues from normal
tissues. Mechanism of toxicity of hepatotoxins was
revealed by using cDNA microarray [1]. Application of
these technologies in a clinical setting is limited by the
need to obtain liver tissue by an invasive procedure. Con-
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versely, the utility of serum instead of tissue to classify
diseased state would have great advantages in that
serum is easy to collect, the procedure is minimally inva-
sive and samples can be collected repeatedly with ease.

Proteomic approaches have been used to understand
the pathogenesis of liver disease and to identify new bio-
markers. Early proteomic approaches used 2-DE [2].
Differentially expressed proteins can then be identified
by downstream mass spectrometry analyses. Although
2-DE is unchallenged in its ability to separate thousands
of proteins, it resolves hydrophobic proteins poorly, low-
abundant proteins are often not detected, and low molec-
ular weight proteins are not resolved. It is not suitable for
large-scale screening or clinical testing because it is labo-
rious, and consumes large quantities of proteins.

Recent advances in mass spectrometry have led to it
emerging as a powerful technology for proteomic profil-
ing and characterization. SELDI-TOF-MS, an exension of
MALDI-MS, offers a sensitive and high-throughput tech-
nology for protein profiling and subsequent biomarker
discovery. This technology uses different surface chemis-
tries for affinity capture of proteins from complex biologi-
cal samples and is followed by mass spectrometric anal-
ysis. The SELDI approach has been successfully used to
identify serum biomarkers in bladder carcinoma [3, 4],
lung cancer [5], and ovarian cancer [6]. In the ovarian can-
cer serum biomarker discovery study, a bioinformatics
algorithm was the key element that led to a high level of
sensitivity and specificity (.95%) [6].

In order to identify the most relevant proteins from large
numbers of proteins being monitored in experiments,
and build a model using these identified markers to pre-
dict sample status, a cohort of machine learning algo-
rithms could be used. These algorithms include genetic
algorithms (GA), nearest-neighbor, decision trees, neural
networks, and support vector machines (SVM). SVM is a
new machine learning method developed by Vapnik and
his colleagues in the mid-1990s [7, 8]. The key idea of
SVM is generalization: a classifier needs not only to work
well on training samples, but also to work equally well
on previously unseen samples or test samples. Although
this philosophy had long been recognized before the
appearance of SVM, it is SVM that gives it a good imple-
mentation. SVM is built upon a theory about learning with
limited samples, called statistical learning theory [7, 9].
The standard theory and algorithm of SVM has been
described many times in the literature [7–10], and SVM
codes are publicly available such as SVMTorch [11]. Con-
sidering the intrinsic complexity of biological objects, and
their high-dimensionality in contrast to small sample sets
for high-throughput biological techniques, SVM becomes
an ideal selection of data analysis tool in these studies.

We report here classification of liver cirrhosis/fibrosis in
rat models by using serum protein profiling together with
identification of significant serum biomarkers. This pio-
neering study demonstrates that an algorithm model
could be developed to identify a cluster pattern that seg-
regates chemicaly-induced cirrhosis and bile duct ligation
liver fibrosis from normal controls. We further analyzed
the primary structure of a statistically significant protein
peak by on-chip purification and peptide sequencing.
Our results show that this approach may lead to identifi-
cation of new markers for diagnosis and prognosis pur-
poses for patients with liver cirrhosis.

2 Materials and methods

2.1 Induction of cirrhosis

Nine week old, male Wistar-Furth rats were obtained
from Sembawang Animal Centre, Singapore. Following
one week of acclimatization, the animals were treated as
follows: rats (n = 22) received intraperitoneal thioacet-
amide injections thrice weekly at a dose of 300 mg/kg
body weight for 10 weeks to induce cirrhosis. At the end
of 10 weeks, these animals were rested for one week
without injections prior to being sacrificed. Bile doct liga-
tion rats (n = 5) underwent laparotomy under inhalational
ether anaesthesia and their bile ducts were doubly ligated
with silk suture. The animals were recovered, kept for
10 weeks and then sacrificed. Control animals (n = 8)
were not treated and kept for 10 weeks prior to sacrifice.
All animals were kept according to the institutional guide-
lines on animal experimentation. All animals were anaes-
thetized with ether. Through a laparotomy wound, blood
was taken from the inferior vena cava (IV) prior to exsan-
guinations by transection of IVC just beneath the dia-
phragm. Livers were rapidly removed. Blood samples
were spun; serum removed and snap frozen in liquid nitro-
gen for analysis at a later date. The left lobe of the liver
was placed in 10% w/v phosphate buffered formalin for
histological processing while the right lobe was snap
frozen in liquid nitrogen and stored.

2.2 Liver histology and estimation of cirrhosis

Following fixation, the left lobe of liver was embedded in
paraffin. Four micron sections were prepared, mounted
and stained with Masson Trichrome stain. Each section
was examined for the degree of fibrosis or cirrhosis. The
degree of hepatic fibrosis was scored with a modified
scoring system based on that described by Ruwart and
coworkers [12]. The amount of positively stained collagen
was graded as follows: 0, no collagen or fibrosis; 1, slightly
increased collagen; 2, definite increase, without septa,
generally seen as small stellate expansions of collagen
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from the central zones or pericentrally in the lobules
(septa were identified as linear collagenous extensions
from microscopic landmarks, usually terminal hepatic
venules); 3, definite increase with incomplete septa (those
septa which did not interconnect with each other so as to
divide the parenchyma into separate fragments); 4, defi-
nite increase with complete septa but thin septa (those
septa which interconnected with each other so as to
divide the parenchyma into separate fragments). Estab-
lished cirrhosis scored 4 based on this scoring system.

2.3 SELDI analyses of serum samples

Four types of chip (Ciphergen Biosystems, Fremont, CA)
with surface chemistry of hydrophobic, ionic, cationic,
and metal binding were initially evaluated to determine
which affinity chemistry provied the best serum profiles.
The weak cation exchanger (WCX) type chip was used
throughout this study because of the presence of differ-
ential peaks. Serum samples were diluted 1:5 in WCX
chip binding buffer containing 0.1 M sodium acetate,
0.02% w/v Triton X-100, and pH 5.5. An aliquot, 2 mL, of
diluted sample was applied to each spot on an eight-
spot WCX chip. Sample preparation and SELDI analysis
were performed according to the recommendations of
the manufacturer. Mass accuracy was calibrated daily
through the use of standard human insulin (5733 Da)
before chip processing. CHA saturated in 50% acetoni-
trile, 0.1% v/v TFA, was added, 0.5 mL, twice before ana-
lyses of low molecular weight proteins. Samples from
three groups were run concurrently, and repeated on
intra-chip spots and on inter-chip spots to test reproduc-
ibility. Captured proteins were detected using the PBS-II
mass reader. Data were collected using the automatic
chip protocol. For detection of low molecular mass pro-
teins, the protocol setting was: high mass 20 kDa, with
optimized mass from 1.0 kDa to 16 kDa; laser intensity,
180; detector sensitivity, 9; 61 shots on average per sam-
ple. Peak intensities were normalized according to total
ion current after background subtraction. Mass accuracy
was normalized to calibrated internal standard peaks. For
Biomarker Wizard setting, the signal-to-noise ratio was
set between 2 and 5. Peak clusters were generated by
allowing a mass difference of 0.02%.

2.4 Recursive support vector machine (RSVM)
analyses and feature selection

We used a simple recursive support vector machine
(RSVM) strategy to search for a suboptimal combination
of predictive biomarkers [13]. The basic procedure was:
step 0, predefine a decreasing series of feature numbers
d0 . d1 . d2 . . . . . dk to be selected in the recursive
procedure, where d0 = d is the number of all features avail-

able in the initial data, set i = 0; step 1; build the SVM
decision function with current di features; step 2, rank
the features according to their contribution in the decision
function and select top di11 feature (or remove the bot-
tom, d12di11 features as stated before [14]); step 3, i =
i11, repeat from step 1 until i = k.

In order to get an unbiased estimation of error rate, we
followed a corrected cross-validation scheme. This was
done by leaving samples out followed by recursively
selecting feature selection on the training subset. Differ-
ent lists of important features could be generated from
different training subsets. From another point of view,
these training subsets could be treated as resampled
subsets from a potential population. Due to the intrinsic
complexity of biological problems, we targeted for, not
only an optimal subset of features that could best classify
the samples, but also a stable list of features that were
consistent among different available sample sets. There-
fore, a frequency-based selection method was adopted
to generate the final feature list [15]. After applying the
recursive feature selection procedure to each of the train-
ing subsets, we counted the frequency of each feature
being slected in each of the di levels, and the top di high
frequency features were reported as the final di list.

2.5 SELDI-guided protein purification

Guided purification of the 3.5 kDa protein was performed as
follows: normal rat serum was diluted ten-fold in 0.2 M

ammonium acetate, pH 7. An aliquot, 2 mL, of diluted serum
was loaded onto eight spots of a WCX chip. Each spot was
preloaded with 4 mL of different binding buffers such as 0.2 M

ammonium acetate, pH 7; 0.2 M ethanolamine-HCl, pH 9;
0.2 M ethaloamine-HCl, pH 10; 0.2 M ethanolamine-HCl,
pH 10, with 0.1 M KCl; 0.2 M ethanolamine-HCl, pH 10, with
0.2 M KCl; 0.2 M ethanolamine-HCl, pH 10, with 0.5 M KCI;
and 0.2 M ethanolamine-HCI, pH 10, with 1 M KCl. Proteins
were allowed to bind at room remperature for 30 min in a
humid chamber. Non-bound proteins were soaked away
using Kimwipe paper. The reason to use Kimwipe paper
was to ensure a slow and constant solution removal speed
so that loosely bound peptides could still be retained on the
chips’s surface. An aliquot, 5 mL, of binding buffer was added
to each spot followed by 265 mL HPLC water wash. Satu-
rated CHCA was added, 0.5 mL, twice before mass reading.

2.6 On-chip protein purification and tryptic
digestion

Each WCX chip was prepared according to vendor’s
instructions except that the binding buffer used was 4 mL
0.2 M ammonium acetate, pH 7.0. Normal serum samples
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were diluted tenfold in 50 mM sodium acetate, pH 5.0.
Two mL diluted serum was spotted onto a WCX chip in
triplicate. Proteins were allowed to bind for 30 min in a
humid chamber at room temperature. Non-bound pro-
teins were gently soaked from chip onto Kimwipe papers
without touching the surface. Addition of 5 mL binding
buffer was used as a wash step. Again, solution on
spots was removed by Kimwipe paper and then two
rounds of 5 mL water were applied to samples as a final
wash. One spot was subjected to two rounds of loading
0.5 mL saturated CHCA solution. The other spots were
saved for later on-chip trypsin digestion and peptide
sequencing. The presence of a 3495 Da peptide peak
was checked in the spectrum generated by the PBS-II
mass reader.

Unread spots on a chip containing a purfied 3495 Da pep-
tide peak were subjected to on-chip trypsin digestion. Se-
quencing grade modified trypsin (Roche; Indianapolis, IN,
USA) was resuspended in 25 mM ammonium bicarbonate
at final concentration of 20 ng/mL. 5 mL diluted trypsin
was loaded onto the unread spots. The chip was put into
a humidified 15 mL blue cap tube and incubated at 377C
for 3 h. The tryptic digest was removed with a Kimwipe.
Two rounds of 5 mL HPLC-water wash were performed
before addition of two rounds of 0.5 mL 20% w/v CHCA
solution. Digested peptides were resolved in PBS-II
mass reader by reading the second spot.

2.7 Peptide sequencing using MS/MS

Digested peptides on the third unread spot were extract-
ed with 5 mL 50% v/v acetonitrile, 0.1% v/v TFA. Extract-
ed peptides were loaded onto one spot of AnchorChip
(Bruker Daltonics, Billerica, MA, USA). The function of

AnchorChip was to condense each tryptic digest in a
very small area so that higher signal intensity could be
obtained even with low concentration of analytes on the
target plate. MS spectra of peptides were generated by
using an Ultraflex MALDI TOF/TOF mass spectrometer
(Bruker Daltonics). The most prominent tryptic peptides
were subject to MS/MS analysis.

3 Results

3.1 Gross liver appearance and liver histology

At the time of sacrifice, livers of control animals showed
normal gross morphology. On histological examination,
normal liver had no evidence of increased fibrosis
(Fig. 1a). All thioacetamide treated animals had livers
with gross nodules typical of liver cirrhosis. Livers of bile
duct ligated animals were grossly enlarged with multiple
cystic structures on the surface. Cysts contained bile
color fluid. While liver sections of both treatment groups
showed marked fibrous deposition, the patterns of de-
position were different between two treatment groups.
Thioacetamide treated liver sections showed a classical
appearance of established cirrhosis with typical cirrhotic
nodules (Fig. 1b). All twenty-two specimens scored 4,
based on the scoring system described above. Histologi-
cal sections of bile duct ligated liver showed marked duc-
tal proliferation and deposition of collagen (Fig. 1c). How-
ever the histological pattern of fibrosis was not typical of
that seen in cirrhosis. We used histological analyses as a
bench mark that these three groups of rats were showing
different liver histological characteristics. The next ques-
tion was whether serum protein profiles could distinguish
different groups of samples.

Figure 1. Liver sections stained with Masson Trichrome. (A) normal liver, (B) cirrhotic liver, and (C) liver after bile duct
ligation. The fold magnification in 1a) and 1b) was 620; while 1c) was640.
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3.2 Scanning of rat serum protein profiles

Each serum sample was processed at least in triplicate
to confirm reproducibility in resolving the proteins. The
averaged coefficient of variation in this study was 12%.
Figure 2a depicts a representative protein spectrum show-

Figure 2. Protein profiling on WCX chips. Representative
overview of protein profiling on WCX chips showing spec-
tral map (upper panel) and gel view (lower panel) of serum
from one sample (a). X-axis represents the molecular
mass calculation (m/z values), Y-axis represents relative
intensity. A boxed region of the spectrum is zoomed to
reveal the resolution of the spectrum. SELDI analysis of
rat serum for proteomic pattern in normal control, bile
duct ligation, and cirrhotic samples with mass spectra
(left) and gel view (right) (2b to 2e). Differential expressed
proteins in non-treated control, bile duct ligation, and
cirrhosis samples with m/z values of (B) 3495.38 Da,
(C) 4186.07 Da, (D) 4902.63 Da and (E) 8201.04 in each
panel were from different individuals.

ing the proteins in low molecular mass between 1500 Da
and 9000 Da of a single serum sample. Cirrhosis-related
down-regulated serum biomarkers were 3495.38 and
8201.04 Da peaks (Figs. 2b and e, respectively). Cirrho-
sis-related up-regulated serum biomarkers were 4186.07,
and 4902.63 Da peaks (Figs. 2c and d, respectively).

We used the Biomarker Wizard function of the SELDI soft-
ware to identify clusters of peaks differentially expressed
in cirrhotic, bile duct ligation and control non-treated
samples (Fig. 3). Among 94 clusters, five peaks with mo-
lecular masses 1743.12, 3495.38, 4186.07, 4902.63, and
8201.04 Da displayed differences in distribution of inten-
sities of peaks in three groups. Three peaks with masses
1743.12, 3495.38 and 8201.04 Da were lower in bile duct
ligation samples and even lower in the cirrhotic rats. The
1743.12 Da peak was considered to be a doubly-charged
component of 3495.38 Da, as its molecular mass was al-
most exactly one-half of the latter protein. Sodium
adducts of 3495 Da peptide were also observed as 3515
and 3537 Da peaks with gradient decrease in intensity.
Two proteins with masses 4186.07 and 4902.63 Da were
detected highly expressed in cirrhotic samples when
compared with the normal controls, and interestingly,
these two proteins were also down-regulated in bile-duct
ligation samples (Fig. 2c, 2d, and Fig. 3).

3.3 Selection of significant biomarkers and
classification of proteomic pattern using the
RSVM algorithm

We used a machine learning algorithm to select a panel
of statistically significant biomarkers and to segregate
sample classes. There were in total 15422 data points in
the whole spectrum. Since there was hardly any signal in
the region above 10 kDa and too much noise below 1 kDa,
only the region between 1 and 10 kDa was used in the
following analysis, where there were 7457 data points.
As each spectrum had a slightly different mass axis, we
carried out an interpolation smoothing before performing
a point-wise comparison and obtained 4607 points for
each spectrum.

The biomarker detection function of Ciphergen software
V3.0 detected 78 biomarkers from the region between
1 and 10 kDa. From the comparison between cirrhosis
and normal samples, RSVM feature selection algorithm
identified 6 important markers: [1743.12, 3515.68,
3537.26, 4186.07, 4902.63, and 8201.04] (in Da).

As a comparison, we also tried two other methods to find
important markers. The first one was to use all points,
instead of only biomarkers detected, in RSVM feature
selection. While using this method, we looked at the
“important regions” (the region where important data
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Figure 3. Distribution of signal
intensity of four selected bio-
markers generated by SELDI
Biomarker Wizard software.
Four boxed clusters with molec-
ular masses of 3495.38, 4186.07,
4902.63, and 8201.04 Da are
illustrated among normal (cir-
cle), bile duct ligation (cross)
and cirrhotic rats (square). Thick
bars represent averaged value
and thin bar represents stand-
ard deviation.

points were highly condensed) instead of individual
points, otherwise some data points that reside at the
shoulder or valley of peaks along the spectrum were
hard to explain and validate biologically (see [10] and
following discussion). The “important regions” included
exactly the same 6 markers as selected by RSVM (1743.12,
3515.68, 3537.26, 4186.07, 4902.63, 8201.04 Da), but the
final 7 top points selected from all 4607 points were not
exactly these 6 points. Instead, there were some points
beside them (1744.56, 3513.31, 3515.07, 3518.60,
3520.36, 4187.13, and 8209.99 Da).

The second method used to find important markers was
scanning spectra by using a sliding window with a width
of 41, and then calculating the ratio of mean intra-class

distance over mean inter-class distance within the sliding
window. The regions with a ratio of mean distance below
a threshold (0.75 here) were important regions. Twenty-
one markers were detected in these important regions,
and the RSVM further selected 6 markers from these
21 markers (1743.12, 1787.89, 3515.68, 3537.26, 6207.55,
and 8201.04 Da).

The CV2 error rate (external CV; leave – one – out first and
select feature from training set left), and CV1 error rate
(internal CV; feature selection from whole data set and
then calculating CV, the error rate was underestimated)
of these 3 groups of biomarkers selected were listed in
Table 1. The type specific CV2 error rates were about
7.7% for negative group (normal rat), 2.9% for positive

Table 1. Overall error rates of different statistical biomarkers selection approaches

Statisical
Method

CV2 (external CV) errors CV1 (internal CV) errors

False positive
(Type 1) count

False negative
(Type 2) count

False positive
(Type 1) count

False negative
(Type 2) count

Point-to-point
RSVM

2 2 1 1

Sliding window
selection

2 0 2 0

Biomarker Wizard
RSVM

2 2 1 1

Type Specific
Error Rate

7.7% 0 to 2.9% 3.8 to 7.7% 0 to 1.4%

Overall Error Rate 2.1 to 4.2% 2.1%
Overall sensitivity 97.1 to 100%
Overall specificity 92.3%
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group (cirrhosis), and the CV1 error rates were about 3.8 to
7.7% for negative group and 0 to 1.4% for positive group.
The overall error rate for CV2 was about 2.1 to 4.2% and
that for CV1 is about 2.1%. This translated to sensitivity
and specificity of 97.1 to 100%, and 92.3%, respectively
(Table 1). These subsets of markers were able to segre-
gate 3 classes sufficiently well when subject to multi-
dimensional scaling analyses (Fig. 4). These six markers
also comprised the minimal panel of the most significantly
differential markers with higest specificity and sensitivity.
Accuracy of class prediction tended to decrease if less
than six markers were chosen (data not shown).

Figure 4. 3-D multidimensional scaling of three groups of
serum samples. The most important biomarkers identi-
fied by various feature selection methods were used in
this figure. Red circles (o): bile duct ligation samples;
blue cross (1): cirrhotic samples; black cross (x): normal
samples.

We also evaluated each marker separately by single
marker statistics including Student’s t-test and receiver
operating characteristic (ROC) analyses. Most of the
selected markers were significant by these tests, but not
necessarily the ones at the highest ranking. While com-
bining the 3515 Da peak with other selected markers
such as 1743, 3537, 4186, 4902, and 8201 Da peaks,
they can separate the classes better than other combi-
nations in SVM classifier. We also tried to build an SVM
model on those top scoring Student’s t-test or ROC mark-
ers, but accuracy of class prediction was not as good as
these six markers according to CV error (data not shown).
Therefore, multivariable methods were more suitable to

select important markers, not only based on performance
of single maker, but more importantly, based on perfor-
mance of combination of multiple markers.

3.4 SELDI-guided on-chip purification of the
3495 Da peptide

The 1743, 3515 and 3537 Da peaks were selected as
important markers by three statistical tests, and these
peptides were mostly dicharged peptide or sodium
adducts of the 3495 Da peak. As an attempt to purify
these protein peak series rapidly, we decided to purify
these peptides on-chip. Protein profiles were generated
after diluted normal serum was loaded onto spots with
binding and washing buffers from pH 7 to 10 with increas-
ing concentration of potassium chloride. In a preliminary
trial, 1743, 3495, 3515, and 3537 Da peaks condensed to
one single 3495 Da peak as the most prominent peak.
This 3495 Da peak could not be eluted completely even
in 0.2 M ethanolamine-HCl, pH 10, buffer with 0.5 M NaCl.
This implied that this protein was highly positively
charged. We then replaced NaCl with KCl, as shown in
Fig. 5a, the signal intensity of the peak at 3495 Da was
55.6 in pH 7 buffer. This was the most prominent peak in
the spectrum. In buffer of pH 9, a 53% decrease of signal
intensity was observed (signal intensity 26). In buffer of
pH 10 with increasing concentration of KCl (0.1 to 0.5 M),
the signal intensity dropped to 20 or 14% of that at pH 7.
The intensity decreased to an undetectable level in buffer
of pH 10 with 1.0 M KCl. As a conclusion, the 3495 Da
peptide was a highly positively charged peptide.

3.5 On-chip purification and identification of the
3495 Da peptide

We took advantage of the high binding affinity to the WCX
chip surface by the 3495 Da peptide. After binding and
washing with 0.2 M ammonium acetate buffer, pH 7.0,
the 3495 Da peptide became the most prominent peak
(Fig. 6a) in the PBS-II mass reader. The peak intensity
of the 3495 Da peak was reduced after three hours of
on-chip trypsin degistion (Fig. 6b) whilst the daughter
peaks intensities increased. The most prominent daugh-
ter peaks, in decreasing order of intensity, were 1000,
1228, 1509.9, 1790.5, and 881 Da peaks (Fig. 6b). These
daughter peaks were not observed in spectra with trypsin
alone (Fig. 6c). The PBS-II mass reader itself generated
average masses. However, the determination of the exact
monoisotopic mass of the most significant marker
(3495 Da) was an essential precondition for further MS/
MS analysis and subsequent sequencing on the basis
of MS/MS data. Since the PBS-II mass reader was not
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Figure 5. SELDI-guided purification of the 3495 Da protein on a WCX chip. Protein
profiles were generated after binding and washing with different binding buffers.
(A) 0.2 M ammonium acetate, pH 7; (B) 0.2 M ethanolamine-HCl, pH 9; (C) = 0.2 M

ethanolamine-HCl, pH 10; (D) 0.2 M ethanolamine-HCl, pH 10 with 0.1 M KCl;
(E) 0.2 M ethanolamine-HCl, pH 10, with 0.2 M KCl; (F) 0.2 M ethanolamine-HCl at
pH 10 with 0.5 M KCI; (G) 0.2 M ethanolamine-HCl, pH 10, with 1 M KCl.
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equipped with MS/MS capability, we transferred tryptic
digests from WCX chips to AnchorChips which is one
of the targets used by Ultraflex TOF/TOF mass spec-
trometer. After tranferring tryptic peptides from WCX
chip to AnchorChip, we observed 1001, 1228, and
1791 Da as the most prominent peaks (Fig. 6d) in MS
analysis by Ultraflex mass spectrometer. This peptide
mass pattern was consistent with the peptide mass
fingerprint on WCX chip read with the PBS-II mass
reader. Therefore, we chose the three most prominent
peptides (1001, 1228, and 1791 Da) for sequencing by
MALDI TOF/TOF MS/MS in the Ultraflex mass spec-
trometer.

Figure 6. On-chip digestion of the purified 3495 Da pro-
tein. (A) Mass spectrum before trypsin digestion on WCX
chip. (B) Mass spectrum after 3 h of on-chip trypsin diges-
tion at 377C. (C) Mass spectrum of trypsin alone after 3 h
of on-chip digestion on WCX chip. PMF of tryptic digest
after transferring to an AnchorChip and analyzed using an
Ultraflex MALDI TOF/TOF mass spectrometer.

As shown in Fig. 7, MALDI-TOF/TOF analysis of the 1001 Da
peak generated a short sequence tag GLFPFHQR. BLAST
search showed that the sequence was from histidine-
rich glycoprotein (accession no. NP_596919) as the top
hit in the search of rat proteins. A short sequence tag
from the 1791 Da peak also yielded histidine-rich glyco-
protein (data not shown). The region around the sequence
tag showed a high density of histidine. Furthermore, anal-
ysis of the region around the sequence tag under ExPASy-
PeptideMass analysis (http://us.expasy.org/tools/peptide-
mass.html) showed that the pI of this region was above 12.
This was consistent with the observation from on-chip pu-
rification that this peptide was highly positively charged.
However, sequencing of the 1229 Da peptide yielded a
sequence tag of QINSQDQLK, which shared homology
with glutaredoxin (accession no. XP_229437) with one
mismatch. When the region around this sequence tag
(total 30 amino acid residues) was analyzed under
ExPASy-PeptideMass analysis, the pI was only 9.78.
This could not account for the binding of the 3495 Da
peptide on the chip surface even at pH 10. Taken togeth-
er, sequencing of two out of the three most prominent
peptides showed that the protein was histidine-rich gly-
coprotein, and the high density of positive charge resi-
dues around the sequence tag region suggested that the
3495 Da peak was a fragment of histidine-rich glyco-
protein.

4 Discussion

We report here a three-step workflow from protein profil-
ing to significant biomarker selection using machine
learning algorithms followed by sequencing of a selected
biomarker. We used this workflow to test the hypothesis
that serum protein profiles can be utilized to segregate
samples from animals with livers which were normal,
cirrhotic and suffered prolonged biliary obstruction. Our
approach is not only able to classify serum samples with
different degrees of liver fibrosis/cirrhosis, but also to
identify selected discriminating protein markers. The
specificty and sensitivity are higher than 92%. The serum
profile segregated the three groups of animals with high
accuracy and this concurred with the underlying histolog-
ical appearance. Most studies on classification of various
human diseases [6, 16] use a combination of proteomics
and bioinformatics without knowing the identity of signifi-
cant biomarkers. We further extended the utility of the
workflow by identifying each statistically significant bio-
marker. Clustering of hepatotoxins based on readout in
gene expression profiles proved to be a successful tool
to reveal mechanism of toxicity [1]. Although this study
was conducted using sera from an homogenous group of
animals rather than heterogeneous human serum samples,
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Figure 7. Peptide sequencing
of the 1001 Da peak using Ultra-
flex MALDI TOF/TOF mass
spectrometer. X-axis is the m/z
value; the y-axis is the signal
intensity.

with the progress of proteomics and bioinformatics, it
may be possible to cluster human serum samples of
different pathogenesis and stages of liver cirrhosis/
fibrosis.

The specificity and sensitivity in this study are 92%, and
97 to 100%, respectively. It did not reach 100% in each
parameter because of the intrinsic complexity of biologi-
cal objects and the different ways of modeling the data
by various machine learning algorithms. Although experi-
ments on rat benefit from a more homogenous genetic
background and well controlled experimental conditions,
in comparison with using human subjects, there are still
various sources of noise and variation. For example, the
individual variations, and noise coming from sample
preparation and instrument. The RSVM scheme distin-
guishes itself from another SVM based algorithm, the
SVM-RFE method [14], in three aspects: (i) difference in
the scheme of cross-validation, (ii) difference in criteria
for ranking contributions of a feature to the decision func-
tion, and (iii) difference in final important gene list is based
on frequency-based selection. These three features of
RSVM enhance the accuracy of final marker selection.
Other machine learning algorithms such as genetic
selection or boosted decision tree have been used in
analyses of SELDI data, however, no study has reported
100% in both sensitivity and specificity in spite of algo-
rithm being used [6, 16]. The reason may stem from:
(i) differences in protein composition of serum samples;
(ii) sensitivity of detection methodology; or (iii) the
machine learning algorithm. It will be interesting to see a
systematic test of different machine learning algorithms in
analyzing several sets of publically available SELDI data.

Thioacetamide is a soft nucleophile that induces up-
regulation of tumor necrosis factor-alpha (TNF-a), inter-
leukin 1 beta (IL-1b), superoxide dismutase, and glutathi-
one peroxidase [17]. However, we did not find differen-
tially expressed cytokines or panels of proteins related to
oxidative stress (except for glutaredoxin) in this study.
This can be accounted for by two reasons: (i) pI of these
cytokines are below 5.2 and these proteins carry negative
charge in pH 5.5 buffer. Binding of negatively charged
molecules to the negatively charged surface of chips is
inhibited in the assay condition. Secondly, these proteins
are all larger than 20 kDa in molecular mass. To resolve
these proteins in protein profiles, a strong anion exchange
surface and screening at a higher molecular mass range
(29 to 200 kDa) sould be used. cDNA microarray analyses
of thioacetamide treated HepG2 cell line showed that pro-
tein transport machinery and oxidative stress response
were down-regulated [19]. Effects of alteration of normal
liver secretory pathways induced by thioacetamide on
serum protein profiles remain to be studied systemati-
cally.

We tried to identify the 3495 Da peptide by using the mass
tag for simple database search. We used the TagIdent
tool from the ExPASy molecular biology (UTL: http://
us.expasy.org/tools/tagident.html). In searches on the
Swiss-Prot and TrEMBL protein databases, we found
that only glucagon precursor (Swiss-Prot accession
no. P06883) or glucagon-like peptide with a mass of
3482.79 Da that barely matched our query. However,
when we performed immunoassay with glucagon anti-
body, the result was negative (data not shown), suggest-
ing that this 3495.38 Da peptide could be a fragmental

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de



Proteomics 2004, 4, 3235–3245 Classification of rat liver cirrhosis by proteomics 3245

peptide from an unkown protein. This down-regulated
3495 Da biomarker in cirrhotic liver is identified by MS/
MA analysis of peptide sequence as a fragment of histi-
dine-rich glycoprotein. This finding is consistent with two
known facts of this protein: (i) histidine-rich glycoprotein is
a plasma protein; and (ii) mRNA of murine histidine-rich
glycoprotein is expressed in normal liver exclusively [18].
Thioacetamide has never been reported as a mutagenic
agent, so disappearance of histidine-rich glycoprotein in
cirrhotic samples should not relate to changes of DNA
sequence. Analyses of gene expression changes of
HepG2 cell line upon thioacetamide treatment showed
overall down-regulation of mitochondrial energy produc-
tion and other basic cellular functions [19]. Taking these
accounts together, we speculate that down-regulation of
histidine-rich glycoprotein in cirrhotic liver may be a
manifestation of loss of normal liver function, including
secretory pathways upon treatment with thioacetamide.
Although it was hypothesized that histidine-rich peptide
sequence may provide a highly charged area that inter-
acts with complement components in plasma [20], the
exact mechanism of origin and function of this 3495 Da
fragment of histidine-rich glycoprotein remains to be
explored.
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