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Statistical-learning methods have been developed for facilitating the prediction of pharmacokinetic and
toxicological properties of chemical agents. These methods employ a variety of molecular descriptors to
characterize structural and physicochemical properties of molecules. Some of these descriptors are specifically
designed for the study of a particular type of properties or agents, and their use for other properties or
agents might generate noise and affect the prediction accuracy of a statistical learning system. This work
examines to what extent the reduction of this noise can improve the prediction accuracy of a statistical
learning system. A feature selection method, recursive feature elimination (RFE), is used to automatically
select molecular descriptors for support vector machines (SVM) prediction of P-glycoprotein substrates
(P-gp), human intestinal absorption of molecules (HIA), and agents that cause torsades de pointes (TdP), a
rare but serious side effect. RFE significantly reduces the number of descriptors for each of these properties
thereby increasing the computational speed for their classification. The SVM prediction accuracies of P-gp
and HIA are substantially increased and that of TdP remains unchanged by RFE. These prediction accuracies
are comparable to those of earlier studies derived from a selective set of descriptors. Our study suggests
that molecular feature selection is useful for improving the speed and, in some cases, the accuracy of statistical
learning methods for the prediction of pharmacokinetic and toxicological properties of chemical agents.

INTRODUCTION

In the study of pharmacodynamic, pharmacokinetic, and
toxicological properties of drugs and other chemical agents,
a variety of molecular descriptors has been developed and
routinely used for describing physicochemical and structural
properties of chemical agents.1-7 These descriptors were
initially developed for the construction of quantitative
structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR) of structurally related
compounds.8 They have been extensively used for the
statistical-learning-based prediction of pharmacodynamic,
pharmacokinetic, and toxicological properties of chemical
agents including drug-likeness,9-11 blood-brain barrier pen-
etration,12,13 human intestinal absorption,4 drug-receptor
binding,14-16 drug metabolism,17 cellular membrane partition-
ing,18 chemical space navigation,19 and antibacterial activ-
ity.20,21

Some of these molecular descriptors are developed for the
study of a particular type of properties of a group of
structurally related chemical agents. Thus these descriptors
may not be universally applicable for other agents or for the
prediction of other properties. For instance, descriptors for
the QSAR of relatively small sets of related agents are not
applicable for the analysis of chemical diversity.22 The use
of descriptors unrelated to a particular type of properties or

biological activity likely generates noise in a statistical
learning system, which may affect the prediction accuracy
of that system.22 In some cases, it is difficult to manually
select descriptors useful for a particular property. Thus
methods capable of automatic selection of molecular descrip-
tors are desirable. The redundancy in molecular descriptors
can be partially reduced by means of feature selection
methods.23-27 Feature selection methods have been found to
increase the prediction accuracy of statistical learning clas-
sification of some systems. Examples include the prediction
of drug activities,23 cancer tissue sample classification using
microarray data,24 gene selection for cancer classification,25

and splice site prediction.26,27It is thus of interest to examine
whether feature selection methods can be explored for
automatic selection of molecular descriptors and for im-
provement of the prediction accuracy of pharmacodynamic,
pharmacokinetic, and toxicological properties of chemical
agents by statistical learning methods.

In this work, a widely used feature selection method is
used to automatically select the molecular descriptors for
the prediction of three different pharmacokinetic and toxi-
cological properties of chemical agents. One is the prediction
of P-glycoprotein (P-gp) substrates, which facilitates early
identification and elimination of drug candidates of low
efficacy or high potential of multidrug resistance.28-31 This
is a process that only involves active transport via binding
to P-gp. The second is the prediction of human intestinal
absorption (HIA) of chemical agents, an important indicator
for drug absorption.32-35 HIA primarily involves passive
transport with a small portion of compounds being absorbed
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by active transport through various transporters. The third
is the prediction of compounds that induce torsades de
pointes (TdP), an uncommon adverse drug reaction respon-
sible for the withdrawal of some marketed drugs.36-38 A
substantial portion of TdP is due to channel blocking, but
other unknown mechanisms are also involved. The different
mechanisms of these three problems make them useful for
testing feature selection methods. The computed results are
further compared to those of earlier studies to examine
whether our selected descriptors are capable of giving similar
or better classification performance with respect to those
derived from a preselected set of descriptors.

The feature selection method used in this work is the
recursive feature elimination (RFE) method, which has
recently gained popularity due to its effectiveness for
discovering informative features or attributes in drug activity
analysis and cancer tissue sample classification.23,25Support
vector machine (SVM)39,40 is used in this work as the
statistical learning method for the prediction of the three
pharmacokinetic and toxicological properties of chemical
agents. SVM has been applied to a wide range of pharma-
cological and biomedical problems including drug-likeness,9-11

drug blood-brain barrier penetration prediction,41 drug-
receptor binding,14 and drug metabolism.17 In many cases
SVM has been found to be consistently superior to other
supervised learning methods10,12,42-44 and less sensitive to
overfitting.25 Thus SVM is an appropriate platform to
evaluate the effectiveness of feature selection methods in
improving the accuracy of statistical learning methods for
the prediction of pharmacodynamic, pharmacokinetic, and
toxicological properties of chemical agents.

METHODS

Selection of Data Sets.P-gp substrates are collected from
the literature28-33 that are either described as being trans-
ported by P-gp or reported to induce overexpression of P-gp
thereby directly contributing to MDR. Nonsubstrates of P-gp

are those specifically described as not transportable by P-gp.
A total of 116 substrates and 85 nonsubstrates of P-gp are
collected.

Chemical agents absorbable (HIA+) or nonabsorbable
(HIA-) by human intestine are from those described in the
literature, in which the “measured absorption rate” of 70%
is used as the criterion for dividing chemical agents into
HIA+ and HIA- classes.33,34 A total of 131 HIA+ and 65
HIA- agents are collected. In general, a relatively smaller
number of agents with low intestinal absorption is specifically
reported in the literature.35 Thus, the number of known HIA+
agents are expected to be significantly larger than those of
HIA- agents.

Eighty-five TdP inducing (TdP+) agents are collected
from ArizonaCERT,45 Micromedex,46 Drug Information
Handbook,47 and Meyler’s side effects of drugs.48 Those
involved in QT prolongation without information about their
effect on TdP are not included. Two hundred seventy-six
non-TdP causing (TDP-) agents are obtained from the
search of Micromedex, Drug Information Handbook, and
American Hospital Formulary Service (AHFS)49 for agents
with no reported case of TdP.

Molecular Descriptors. The molecular descriptors used
in this work are selected from those commonly used in the
literature.7 These descriptors are first screened manually to
remove those that are apparently redundant or irrelevant to
the pharmacokinetic and toxicological properties. A total of
159 descriptors are selected, as given in Table 1, which can
be divided into five classes based on their properties. There
are 18 descriptors in the class of simple molecular properties,
28 descriptors in the class of molecular connectivity and
shape, 84 descriptors in the class of electrotopological state,
13 descriptors in the class of quantum chemical properties,
and 16 descriptors in the class of geometrical properties.
These descriptors are computed from the 2D and 3D structure
of each agent using our own designed molecular descriptor
computing program.50 The 3D structure of each agent is

Table 1. Molecular Descriptors and Their Classes Used in This Worka

descriptor class

no. of
descriptors

in class descriptors

simple molecular properties 18 molecular weight, number of ring structures, number of rotatable bonds, number
of H-bond donors, number of H-bond acceptors, element counts

molecular connectivity and shape 28 molecular connectivity indices, valence molecular connectivity indices, molecular
shape kappa indices, kappa alpha indices, flexibility index

electrotopological state 84 electrotopological state indices and atom type electrotopological state indices
quantum chemical properties 13 atomic charge on the most positively charged H atom, largest negative charge on an

non-H atom, polarizability index, hydrogen bond acceptor basicity (covalent
HBAB), hydrogen bond donor acidity (covalent HBDA), molecular dipole moment,
absolute hardness, softness, ionization potential, electron affinity, chemical
potential, electronegativity index, electrophilicity index

geometrical properties 16 molecular size vectors (distance of the longest separated atom pairs, combined distance
of the longest separated three atoms, combined distance of the longest separated four
atoms), molecular van der Waals volume, solvent accessible surface area, molecular
surface area, van der Waals surface area, polar molecular surface area, sum of solvent
accessible surface areas of positively charged atoms, sum of solvent accessible surface
areas of negatively charged atoms, sum of charge weighted solvent accessible surface
areas of positively charged atoms, sum of charge weighted solvent accessible surface
areas of negatively charged atoms, sum of van der Waals surface areas of positively
charged atoms, sum of van der Waals surface areas of negatively charged atoms, sum
of charge weighted van der Waals surface areas of positively charged atoms, sum of
charge weighted van der Waals surface areas of negatively charged atoms

a The total number of descriptors is 159.
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generated from its 2D structure by using Concord v4.02
software.

Simple descriptors are counts of special atoms and
chemical bonds in the molecules. Examples of these descrip-
tors include the number of ring structures, number of
rotatable bonds, number of hydrogen bond donors and
acceptors, molecular weight, and element counts. Molecular
connectivity chi indices and shape Kappa indices encode
information about molecular size, shape, branching, unsat-
uration, heteroatom content, and cyclicity.51,52 The electro-
topological state indices are numerical values computed for
each atom in a molecule, which encode information about
both the topological environment of that atom and the
electronic interactions due to all other atoms in the mol-
ecule.53,54Quantum chemical descriptors are used to describe
electrostatic and electronic properties of a molecule. These
descriptors are calculated using molecular orbital energies
and wave functions of electronic motion in a molecule, which
can be obtained by solving the Schro¨dinger equation of
electronic motion.55 The computed quantum chemical de-
scriptors include partial atomic charges, the highest occupied
and lowest unoccupied molecular orbital energies, dipole
moment, polarizability, and other descriptors derived from
them.6,56 Geometric descriptors encode the 3D-structural
features of a molecule. These include van der Waals volume,
solvent accessible surface area, molecular surface area, van
der Waals surface area, and the corresponding quantities
associated with partial charges and polarity etc.57,58

All the P-gp substrates and nonsubstrates, HIA+ and
HIA- agents, and TdP+ and TdP- agents used in this study
are available as Supporting Information. The 159 descriptors
for each compound are also provided as Supporting Informa-
tion.

SVM Algorithm. The theory of SVM has been exten-
sively described in the literature.39,40 Thus only a brief
description is given here. SVM is based on the structural
risk minimization (SRM) principle from statistical learning
theory.39 In linearly separable cases, SVM constructs a
hyperplane which separates two different classes of vectors
with a maximum margin. In this case, a vector corresponds
to a chemical agent, and this vector is represented byxi,
with structural and physicochemical descriptors of the
chemical agent as its components. This is done by finding
another vectorw and a parameterb that minimizes|w|2 and
satisfies the following conditions

where yi is the class index,w is a vector normal to the
hyperplane,|b|/|w| is the perpendicular distance from the
hyperplane to the origin, and|w|2 is the Euclidean norm of
w. After the determination ofw andb, a given vectorxi can
be classified by

In nonlinearly separable cases, SVM maps the input
variable into a high-dimensional feature space using a kernel
function K(xi, xj). An example of a kernel function is the

Gaussian kernel which has been extensively used in different
studies with good results.41,43,59

Linear support vector machine is applied to this feature
space and then the decision function is given by

where the coefficientsRi
0 and b are determined by maxi-

mizing the following Lagrangian expression

under the following conditions:

A positive or negative value from eq 3 or eq 5 indicates that
the vector x belongs to the positive or negative class,
respectively.

As in the case of all discriminative methods,60,61 the
performance of SVM classification can be measured by the
quantity of true positivesTP, true negativesTN, false
positives FP, false negativesFN, sensitivity SE ) TP/
(TP+FN) which is the prediction accuracy for positive
examples in this work, and specificitySP) TN/(TN+FP)
which is the prediction accuracy for negative examples in
this work. The overall prediction accuracy (Q) and Matthews
correlation coefficient (C)62 are also used to measure the
prediction accuracies and can be given by

Feature Selection Method.Features refer to descriptors
used by statistical learning methods for classification of
specific problems. Feature selection methods have been
introduced for the improvement of classification performance
of statistical learning methods and for the selection of features
meaningful in discriminating two data sets.22-27 One ap-
proach, the recursive feature elimination (RFE) method, has
gained popularity due to its effectiveness for discovering
informative features or attributes in cancer classification and
drug activity analysis.23,25Thus in this work, the RFE method
is used.

It has been suggested that the ranking criterion for feature
selection can be based on the change in the objective function
upon removing each feature.63 To improve the efficiency of
training, this objective function is represented by a cost
functionJ for the ith feature computed by using training set
only. When a given feature is removed or its weightwi is
reduced to zero, the change in the cost functionDJ(i) is given
by

w‚xi + b g + 1, for yi ) + 1 class 1 (positive samples)
(1)

w‚xi + b e - 1, for yi ) - 1 class 2 (negative samples)
(2)

sign[(w‚x) + b] (3)

K(xi,xj) ) e-|xj-xi|2/2σ2
(4)

f(x) ) sign(∑
i)1

l

Ri
0yiK(x,xi) + b) (5)

∑
i)1

l

Ri -
1

2
∑
i)1

l

∑
j)1

l

RiRjyiyjK(xi,xj) (6)

ai g 0 and∑
i)1

l

Riyi ) 0 (7)

Q ) TP + TN
TP + TN + FP + FN

(8)

C ) TP*TN - FN*FP

x(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(9)
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The case ofDwi ) wi - 0 corresponds to the removal of
featurei.

Guyon et al. have used RFE to reduce the number of
descriptors of a linear SVM classification system for cancer
detection from gene selection data.25 In the corresponding
linear SVM classifier, the cost function isJ ) (1/2)||w||2 -
RΤ l, where1 is anm dimensional identity vector (m is the
number of compounds in the training set). ThereforeDJ(i)
) (1/2)wi

2 andwi
2 can be used as a feature ranking criterion.

Yu et al. have used RFE to reduce the descriptors of a
nonlinear SVM classification system of polynomial kernels
for prediction of drug activity.23 However, because of the
diversity and complexity of chemical agents, the use of linear
and polynomial kernels may not always be sufficient for
accurate prediction of various pharmaceutical and biological
properties. Thus, in this work, SVM classification systems
of Gaussian kernels are used. In this case, the cost function
to be minimized (under the constraints 0e R k e C and∑k

Rkyk ) 0) is

whereH is the matrix with elementsyi yj exp(-||xi - xj||2/
(2σ2)), and1 is anm dimensional identity vector (m is the
number of compounds in training set).

To compute the change in cost function caused by
removing input componenti, the parametersR’s are kept
unchanged and the matrixH is recomputed. The resulting
ranking coefficient is

where H(-i) is the matrix computed by using the same
method as that of matrixH but with its ith component
removed. One or more of features with the smallestDJ(i)
can thus be eliminated.

Computation Procedure.The computation procedure in
this work is outlined as the following: The SVM classifica-
tion system for this study was trained by using a Gaussian
kernel function. The training was conducted by sequential
variation of the parameterσ in the special region against
the whole training data set. The prediction accuracy of this
SVM system during the training process was evaluated by
means of 5-fold cross-validation. In the first step, for a fixed
σ, the SVM classifier is trained by using the complete set of
features (molecular descriptors) described in the previous
section. The second step is to compute the ranking criterion
scoreDJ(i) for each feature in the current set by using eq
12. All of the computedDJ(i) is subsequently ranked in
descending order. The third step is to remove them features
with smallest criterion scores. In this work,m was chosen
to be 5 as that used in earlier studies.27 In the fourth step,
the SVM classification system is retrained by using the
remaining set of features, and the corresponding prediction
accuracy is computed by means of 5-fold cross-validation.
The first to fourth steps are then repeated for other values
of σ. After the completion of these procedures, the set of
features and parameterσ that give the best prediction
accuracy are selected.

RESULTS AND DISCUSSION

Effect of Feature Selection on Classification Accuracy.
The prediction accuracy of SVM classification systems using
the RFE method (termed as SVM+RFE) and those without
using RFE (termed as SVM) is evaluated by means of 5-fold
cross-validation method. The computed accuracies for each
fold and the average accuracies of P-gp substrates and
nonsubstrates are given in Table 2, those of HIA+ and HIA-
agents are given in Table 3, and those of TdP+ and TdP-
agents are given in Table 4, respectively. The corresponding
overall prediction accuracy (Q) and Matthews correlation
coefficient (C) are also given in Tables 2-4.

The average accuracy for the SVM prediction of P-gp
substrate and P-gp nonsubstrates is 68.9% and 68.2%, that

Table 2. SVM and SVM+RFE Prediction Accuracy of the
Substrates and Nonsubstrates of P-Glycoprotein by Using 5-Fold
Cross-Validation

substrates nonsubstrates

method
cross-

validation TP FN SE (%) TN FP SP (%) Q (%) C

SVM 1 14 10 58.3 9 7 56.3 57.5 0.14
2 15 2 88.2 11 5 68.8 78.8 0.58
3 24 14 63.2 10 4 71.4 65.4 0.31
4 14 5 73.7 14 4 77.8 75.7 0.51
5 11 7 61.1 14 7 66.7 64.1 0.28

average 68.9 68.2 68.3 0.37
SVM+RFE 1 17 7 70.8 12 4 75.0 72.5 0.45

2 15 2 88.2 11 5 68.8 78.8 0.58
3 30 8 78.9 13 1 92.9 82.7 0.65
4 15 4 78.9 15 3 83.3 81.1 0.62
5 16 2 88.9 16 5 76.2 82.1 0.65

average 81.2 79.2 79.4 0.59

Table 3. SVM and SVM+RFE Prediction Accuracy of the Human
Intestinal Absorption (HIA+) and Nonabsorption (HIA-) of
Chemical Agents by Using 5-Fold Cross-Validation

HIA+ HIA-
method

cross-
validation TP FN SE (%) TN FP SP (%) Q (%) C

SVM 1 22 5 81.5 7 5 58.3 74.4 0.40
2 18 3 85.7 8 3 72.7 81.3 0.58
3 37 3 92.5 7 5 58.3 84.6 0.54
4 16 4 80.0 7 8 46.7 65.7 0.28
5 18 5 78.3 12 3 80.0 79.0 0.57

average 83.4 63.2 77.0 0.48
SVM+RFE 1 22 5 81.5 10 2 83.3 82.1 0.61

2 20 1 95.2 11 0 100.0 96.9 0.93
3 35 5 87.5 8 4 66.7 82.7 0.53
4 18 2 90.0 10 5 66.7 80.0 0.59
5 22 1 95.7 13 2 86.7 92.1 0.83

average 90.0 80.7 86.7 0.70

Table 4. SVM and SVM+RFE Prediction Accuracy of TdP
Inducing (TdP+) Agents and Non-TdP Causing (TdP-) Agents
Using 5-Fold Cross-Validation

TdP+ TdP-
method

cross-
validation TP FN SE (%) TN FP SP (%) Q (%) C

SVM 1 6 11 35.3 45 4 91.8 77.3 0.33
2 10 6 62.5 42 6 87.5 81.3 0.50
3 12 7 63.2 63 4 94.0 87.2 0.61
4 8 5 61.5 46 3 93.9 87.1 0.59
5 10 10 50.0 54 9 85.7 77.1 0.36

average 54.5 90.6 82.0 0.48
SVM+RFE 1 8 9 47.1 45 4 91.8 80.3 0.44

2 13 3 81.3 41 7 85.4 84.4 0.62
3 15 4 78.9 59 8 88.1 86.1 0.63
4 10 3 76.9 46 3 93.9 90.3 0.71
5 10 10 50.0 55 8 87.3 78.3 0.39

average 66.8 89.3 83.9 0.56

DJ(i) ) 1
2

∂
2J

∂wi
2
(Dwi)

2 (10)

J ) (1/2)RTHR - RT1 (11)

DJ(i) ) (1/2)RTHR - (1/2)RTH(- i)R (12)
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for the prediction of HIA+ and HIA- agents is 83.4% and
63.2%, and that for the prediction of TdP+ and TdP- agents
is 54.5% and 90.6%, respectively. By using RFE, the total
number of descriptors is significantly reduced from 159 to
22 for P-gp, to 27 for HIA, and to 31 for TdP. The average
accuracies for the prediction of P-gp and HIA are substan-
tially improved by using each of these reduced set of
descriptors, respectively. These are 81.2% and 79.2% for
P-gp substrate and P-gp nonsubstrates and 90.0% and 80.7%
for HIA+ and HIA- agents, respectively. On the other hand,
the average accuracy for the prediction of TdP remains at
the same level as that without using RFE, which is 66.8%
for and 89.3% for the prediction of TdP+ and TdP- agents,
respectively. One possible reason for the insensitivity of the
prediction accuracy with respect to feature selection is that
TdP involves multiple mechanisms,37,38 which is likely a
more dominant factor for affecting prediction accuracy than
descriptor redundancy. Our study seems to suggest that RFE
is useful for removing redundant descriptors, which helps
to increase the computational efficiency of statistical learning
system. In some cases, the feature selection method RFE is
capable of improving the accuracy of SVM classification of
pharmacokinetic behavior of chemical agents.

Comparison with Other Classification Studies. The
effect of feature selection on classification performance can
be further evaluated by comparison with other classification
studies of the same systems that use preselected descriptors.
Direct comparison between our results and those from other
studies may not be appropriate because of differences in the
use of data set, descriptors, evaluation, and classification
methods. For instance, our study of SVM classification of
P-gp substrates shows that evaluation based on 5-fold cross-
validation can be different from that based on the use of a
more evenly represented training set and an independent
evaluation set. Nonetheless, a tentative comparison may
provide some crude estimate regarding the approximate level
of accuracy of our method with respect to those obtained by
other studies that used more selective descriptors.

The P-gp substrate prediction accuracy of 81.2% by using
SVM+RFE is substantially improved with respect to the
value of 63% derived from the ensemble pharmacophore
model that uses a selective set of hydrophobe and hydrogen

bond descriptors.31 The reported accuracies of HIA+ predic-
tions are 77%-87% by using partitioned total surface
models,64 80% by using neural network method together with
2D topological descriptors,65 and 97% by using SAR models
together with physicochemical and structural descriptors.66

The reported accuracy for HIA- prediction is 85% by using
SAR models.66 Our prediction accuracy of 90.0% for HIA+
and 80.7% for HIA- by using SVM+RFE is thus compa-
rable to the results from these methods that use selective
sets of descriptors.

There has been no other reported study of direct compu-
tational prediction of TdP-causing risk. Thus our results are
tentatively compared to those of the prediction of QT
prolongation, which frequently but not necessarily lead to
TdP.67 Agents that induce QT prolongation usually cause
disruption of the outward potassium currents by blocking
potassium ion channels, particularly the HERG K+ channel,
which might then induce TdP.68 There is however no
definitive correlation between QT prolongation and TdP.67,69

For instance, verapamil causes QT prolongation but does not
induce TdP, whereas procainamide and disopyramide cause
TdP but are not potent inhibitors of the HERG K+ channel.69

Our prediction accuracies of 66.8% for TdP+ and 89.3%
for TdP- are comparable to the values of 71% for QT
prolongation and 93% for non-QT prolongation derived by
the use of Ghose and Crippen descriptors.70

RFE Selected Molecular Descriptors.Table 5 gives the
distribution of the RFE-method-selected descriptors for each
of the three classification problems along with their descriptor
classes. These descriptors are listed in Table 6. Descriptors
from all of the classes are selected by the RFE method. Those
from the class of electrotopological state constitute the largest
percentage of the descriptors selected, which is consistent
with a linear discriminant analysis of structure-based descrip-
tors for multidrug resistant (MDR) agents that showed that
60% of the molecular descriptors important for MDR are
topological in nature.71 A large variety of descriptors in this
class, such as those of different functional groups and
hydrophobic properties, are important for characterization
of pharmacodynamic, pharmacokinetic, and toxicological
properties.71,72 There are also a substantial number of
descriptors from the quantum chemical, connectivity, and

Table 5. Distribution of the Molecular Descriptors in the Reduced Set Selected by the RFE Methoda

system

total number
of descriptors

in the reduced set

number of
descriptors in

descriptor class
percentage in
each class (%) descriptor class

P-gp 11 50.0 electrotopological state
4 18.2 quantum chemical

22 3 13.6 connectivity and shape
2 9.1 geometric
2 9.1 simple molecular properties

HIA 13 48.1 electrotopological state
7 25.9 connectivity and shape

27 3 11.1 quantum chemical
3 11.1 geometric
1 3.7 simple molecular properties

TdP 17 54.8 electrotopological state
6 19.4 quantum chemical

31 5 16.1 connectivity and shape
3 9.7 geometric
0 0.0 simple molecular properties

a The total number of descriptors in the original data set is 159.
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geometric classes. These descriptors are important for
describing electrostatic, structural-framework, and geometric
properties of chemical compounds.72-74

A number of descriptors selected by the RFE method are
for more than one of the classification problems. Six of the
descriptors are selected in all of the three classification
systems. These describe molecular connectivity of ring
structures, topological property of hydrophobic groups, and
polarizability index. Thus these quantities appear to be
important for describing the pharmacokinetic and toxicologi-
cal properties of chemical agents studied in this work. Such

a conclusion is consistent with descriptors used in the earlier
studies of P-gp71 and HIA.72

There are 7 additional electrotopological and quantum
chemical descriptors jointly selected by the RFE method for
the P-gp and TdP systems. A substantial portion of the TdP
agents are channel blockers.68 Thus, the agents for both
systems are binders of membrane-bound transporter or
channel, and it is not surprising that they share several
additional descriptors known to be important for protein
binding. Only 3 additional descriptors are jointly selected
by the RFE method for the P-gp and HIA systems. These

Table 6. Molecular Descriptors Selected by the RFE Method for the Classification of Three Pharmacokinetic and Toxicological Properties:
P-Glycoprotein Substrates (P-gp), Human Intestine Absorption (HIA), and a Rare Side-Effect Torsades de Pointes (TdP)a

system (primary mechanism)

P-gp
(AT)

HIA
(PT)

TdP
(CB)

descriptors
selected description class

x x x 5øCH simple molecular connectivity chi indices for cycle of 5 atoms connectivity
x x x 5øV

CH valence molecular connectivity chi indices for cycle of 5 atoms connectivity
x x x S(13) atom-type H estate sum for CHn (unsaturated) electrotopological state
x x x S(16) atom-type estate sum for-CH3 electrotopological state
x x x S(25) atom-type estate sum fordC< electrotopological state
x x x πi polarizability index quantum chemical properties
x x Ndonr number of H-bond donors simple molecular properties
x x S(1) atom-type H Estate sum for-OH electrotopological state
x x S(20) atom-type Estate sum fordCH- electrotopological state
x x S(18) atom-type Estate sum for>CH2 electrotopological state
x x S(21) atom-type Estate sum for: CH: (aromatic) electrotopological state
x x S(36) atom-type Estate sum for>N- electrotopological state
x x q+ atomic charge on the most positively charged H atom quantum chemical properties
x x m molecular dipole moment quantum chemical properties
x x w electrophilicity index quantum chemical properties
x x dis2 length vector (longest third atom) geometrical properties

x x 3øV
C valence molecular connectivity chi indices for cluster connectivity

x x 6øCH simple molecular connectivity chi indices for cycle of 6 atoms connectivity
x x S(5) atom-type H Estate sum for> NH electrotopological state
x x S(10) atom-type H Estate sum for :CH: (sp2, aromatic) electrotopological state
x x S(26) atom-type Estate sum for: C:- electrotopological state
x x S(31) atom-type Estate sum for>NH electrotopological state
x x S(35) atom-type Estate sum for :N: electrotopological state
x x Sanc sum of solvent accessible surface areas of negatively

charged atoms
geometrical properties

x x Sancw sum of charge weighted solvent accessible surface
areas of negatively charged atoms

geometrical properties

x 3øV
P valence molecular connectivity chi indices for path order 3 connectivity

x ncocl count of Cl atoms simple molecular properties
x Scar sum of Estate indices of carbon atoms electrotopological state
x S(9) atom-type H Estate sum fordCH- (sp2) electrotopological state
x S(12) atom-type H Estate sum for CHn (saturated) electrotopological state
x Sapcw sum of charge weighted solvent accessible surface areas

of positively charged atoms
geometrical properties

x dis3 length vectors (longest distance of fourth atom) geometrical properties
x 2ø simple molecular connectivity chi index for path order 2 connectivity
x 3øC simple molecular connectivity chi indices for cluster connectivity
x 6øV

CH valence molecular connectivity chi indices for cycle of 6 atoms connectivity
x S(34) atom-type Estate sum fordN- electrotopological state
x S(39) atom-type Estate sum for-OH electrotopological state
x S(40) atom-type Estate sum fordO electrotopological state
x εa hydrogen bond donor acidity (covalent HBDA) quantum chemical properties
x A electron affinity quantum chemical properties

x 4øV
PC valence molecular connectivity chi indices for path/cluster connectivity

x Shal sum of Estate indices of halogen atoms electrotopological state
x S(2) atom-type H Estate sum fordNH electrotopological state
x S(4) atom-type H Estate sum for-NH2 electrotopological state
x S(29) atom-type Estate sum for-NH2 electrotopological state
x S(37) atom-type Estate sum for-N, (NO2) electrotopological state
x S(41) atom-type Estate sum for-O- electrotopological state
x q- largest negative charge on an non-H atom quantum chemical properties
x η absolute hardness quantum chemical properties

a The primary mechanism for each of these properties is given in terms of AT (active transport), PT (passive transport), and CB (channel
blocking).
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describe the broad features of hydrogen bond,-OH and
CH- groups. Unlike P-gp, which solely involves active
transport, only a very small portion of HIA agents are
actively transported. Thus the number of shared descriptors
is expected to be less than that of the P-gp and TdP systems
because of the limited diversity of actively transported HIA
agents.

Many of the HIA agents are passively transported,72 and
some of the TdP agents are not channel blockers.67,69 Thus
these systems are expected to be descried by descriptors not
selected for P-gp. One finds that there are 8 descriptors jointly
selected by the RFE method for the HIA and TdP systems.
In addition to connectivity properties of clusters, the majority
of these descriptors measure polar properties. This suggests
that certain electrotopological and polar features are shared
in the description of passive transport and the unknown
mechanisms of TdP.

There are also a number of descriptors exclusively selected
for each of the problems. For instance, 6 descriptors are
selected for P-gp, which describe carbon-based electrotopo-
logical properties, solvent accessible surface area for posi-
tively charged atoms, and the number of Cl atoms. These
descriptors are likely selected for describing certain special
P-gp substrates. There are 9 descriptors exclusively selected
for HIA. These describe polar properties, molecular size,
cluster connectivity, and various+N-, -OH, and dO
electrotopological properties, which are likely important for
describing passive transport across membranes. There are 9
descriptors exclusively selected for TdP, which describe
charge property, valence connectivity, and various O, N, NH,
NH2 electrotopological properties. These descriptors possibly
describe binding to certain types of proteins.

From Table 6, one finds that the descriptors selected by
the RFE method are primarily uncorrelated to each other.
The majority of the descriptors removed by the RFE method,
particularly those of electrotopological state, geometrical, and
quantum chemical properties, are found to have a certain
level of correlation to some of the descriptors selected. The
rest of the RFE removed descriptors are mostly simple
molecular properties (such as molecular weight, the number
of specific types of atoms, and the number of rings),
geometrical properties (such as molecular volume and surface
areas), and connectivity properties (such as index for clusters
and paths). These descriptors are not selected because they
are not useful for distinguishing molecules in the specific
data sets for the particular pharmacokinetic and toxicological
property studied in this work. For instance, an examination
of the molecules in all of the three pairs of data sets shows
that molecules in a positive data set and those in the
corresponding negative data sets are in the same range of
molecular weight, volume, and surface areas.

CONCLUSION

Feature selection methods are capable of automatic selec-
tion of molecular descriptors and reduction of the noise
generated by the use of overlapping and redundant molecular
descriptors. This reduction appears to be helpful in enhance-
ment of the performance of statistical learning method for
the prediction of pharmacokinetic and toxicological proper-
ties of chemical agents. Recent efforts are directed at the

improvement of the efficiency and speed of feature selection
methods,27 which can further help to optimally select
molecular descriptors and enable the development of more
accurate and efficient computational tools for the prediction
of pharmacodynamic, pharmacokinetic, and toxicological
properties of chemical agents.

In this work, a feature selection method is incorporated
into SVM classification systems for dividing molecules into
two classes according to specific pharmacokinetic or toxi-
cological property. This method can also be applied to the
prediction of pharmacokinetic and toxicological properties
in a continuous fashion, i.e., the prediction of structure-
property relationship. For instance, feature selection method
can be combined with regression SVM75 and regression
neural network methods65,76-78 for providing nonlinear QSPR
of specific pharmacokinetic or toxicological property.

Supporting Information Available: P-gp substrates and
nonsubstrates, HIA+ and HIA- agents, and TdP+ and TdP-
agents and the 159 descriptors for each compound. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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