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P-glycoproteins (P-gp) actively transport a wide variety of chemicals out of cells and function as drug
efflux pumps that mediate multidrug resistance and limit the efficacy of many drugs. Methods for facilitating
early elimination of potential P-gp substrates are useful for facilitating new drug discovery. A computational
ensemble pharmacophore model has recently been used for the prediction of P-gp substrates with a promising
accuracy of 63%. It is desirable to extend the prediction range beyond compounds covered by the known
pharmacophore models. For such a purpose, a machine learning method, support vector machine (SVM),
was explored for the prediction of P-gp substrates. A set of 201 chemical compounds, including 116 substrates
and 85 nonsubstrates of P-gp, was used to train and test a SVM classification system. This SVM system
gave a prediction accuracy of at least 81.2% for P-gp substrates based on two different evaluation methods,
which is substantially improved against that obtained from the multiple-pharmacophore model. The prediction
accuracy for nonsubstrates of P-gp is 79.2% using 5-fold cross-validation. These accuracies are slightly
better than those obtained from other statistical classification methods, includingk-nearest neighbor
(k-NN), probabilistic neural networks (PNN), and C4.5 decision tree, that use the same sets of data and
molecular descriptors. Our study indicates the potential of SVM in facilitating the prediction of P-gp substrates.

INTRODUCTION

P-glycoprotein (P-gp), encoded by the highly conserved
multidrug (MDR) resistant genes, is an ATP-dependent drug
efflux pump which can transport a diverse range of structur-
ally and functionally unrelated substrates across the plasma
membrane.1,2 Overexpression of this protein may result in
multidrug resistance and is a major cause of the failure of
cancer chemotherapy3,4 and diminished efficacy of antibiotics
and antiviral agents.5,6 Two approaches have been explored
to circumvent MDR. One is the design of P-gp inhibitors7,8

and another is to identify and eliminate drug candidates that
are substrates of P-gp in the early stage of drug discovery.9-12

Methods that facilitate the identification of P-gp substrates
and inhibitors in a cost efficient and fast-speed manner are
therefore useful for facilitating drug discovery.

Efforts have been directed at the development of compu-
tational methods for P-gp substrate prediction.9-12 Molecular
mechanism of P-gp mediated transport is not well understood,
and the high-resolution structure of P-gp is unavailable.1,2

Thus prediction methods are primarily based on statistical
models derived from identification of structure-activity
relationships,9,10 structural recognition elements,11 and mul-
tiple pharmacophores.12 In particular, the multiple-pharma-
cophore model showed promising capability of P-gp substrate
prediction for a large variety of compounds that conform to
the known pharmacophores,12 achieving a prediction ac-
curacy of 63% for a set of 195 compounds.

Not all of the pharmaceutically interested substrates,
agonists, and antagonists have available pharmacophore
models. Therefore methods that extend the prediction range
beyond those agents covered by known pharmacophore
models are desired. One interesting method is the statistical
learning method, support vector machine (SVM), which is
useful for classification of systems with multiple mechanisms
without requiring either the knowledge about their mecha-
nisms or the intrinsic relationships between activities and
molecular properties.13-20 SVM was originally developed by
Vapnik and co-workers14,15 and have shown promising
capability for solving a number of biological classification
problems including prediction of blood-brain barrier penetra-
tion,13 prediction of torsade-causing potential of drugs,20

microarray gene expression data analysis,16 protein fold
recognition,17 prediction of protein-protein interaction,18 and
protein function.19 These studies have demonstrated that
SVM is consistently superior to other supervised classifica-
tion learning methods.13,16,20,21

This work explored the use of SVM as a potential tool
for the prediction of P-gp substrates. Known P-gp substrates
and nonsubstrates were used for training and testing a SVM
classification system for recognition of physicochemical
features of P-gp substrates. Through this learning-by-
examples process, the trained SVM system can then be used
for classifying a chemical compound as either a substrate or
a nonsubstrate of P-gp. The classification accuracy of this
system was evaluated by using two methods, evaluation by
using an independent set of compounds and 5-fold cross-
validation, and it is compared to the 5-fold cross-validation
prediction accuracies derived from three other statistical
classification methods using the same sets of data and
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molecular descriptors, so as to objectively examine whether
SVM is useful for P-gp substrate prediction.

METHODS

Selection of Substrates and Nonsubstrates of P-gp.P-gp
substrates were collected from the literature such that each
compound has been either described as being transported
by P-gp or reported to induce overexpression of P-gp which
directly contributes to MDR. Nonsubstrates of P-gp are those
specifically described as not transportable by P-gp. A total
of 116 substrates and 85 nonsubstrates of P-gp were
collected. These compounds were further separated into
training and testing sets by two different methods. The first
method is an independent evaluation set to evaluate the
classification accuracy. The second method is a 5-fold cross-
validation.

In the first method, these compounds were further sepa-
rated into three sets: training, testing, and independent
validation set. The training set is used by SVM to develop
a statistical model. The testing set is used by SVM to
optimize the parameters of SVM classification algorithm,
and the independent validation set is used for assessing the
classification accuracy of the model. These compounds were
divided into the three sets according to their distribution in
the chemical space. Here, chemical space is defined by the
commonly used structural and chemical descriptors.22 Com-
pounds of similar structural and chemical features are evenly
assigned into separate sets. For those compounds without
enough structurally and chemically similar counterparts, they
were assigned, in order of priority, to the training and then
the testing set, respectively. The training, testing, and
independent validation sets are listed in Tables 1-3,
respectively.

In the second method, the data set of 201 compounds was
divided into five subsets of approximately equal size. After
training the SVM with a collection of four subsets, the
performance of the SVMs was tested against the fifth subset.
This process is repeated five times so that every subset is
once used as the test data.

Molecular Descriptors. Molecular descriptors have been
routinely used for quantitative description of structural and
physicochemical properties of molecules in statistical study
of drugs and small molecules.22-26 In this study, a set of
159 molecular descriptors was selected from the more than
1000 descriptors described in the literature by eliminating
those descriptors that are obviously redundant or unrelated
to the problem studied here. These descriptors, given in Table
4, include 18 descriptors in the class of simple molecular
properties, 28 descriptors in the class of molecular con-
nectivity and shape, 84 descriptors in the class of electro-
topological state, 13 descriptors in the class of quantum
chemical properties, and 16 descriptors in the class of
geometrical properties. They were computed from the 3D
structure of each compound using our own designed mo-
lecular descriptor computing program.27 The remaining
redundant and unrelated descriptors are further reduced by
using feature selection methods.28,29

Examples of topological descriptors include number of
rings and rotatable bonds, number of hydrogen bond accep-
tors and donors, molecular length vectors, molecular con-
nectivity chi indices, molecular shape Kappa indices, elec-

trotopological state indices, and atom type electrotopological
state indices. Molecular connectivity chi indices and shape
Kappa indices provide information about molecular size,
shape, branching, unsaturation, heteroatom content, and
cyclicity.30,31Electrotopological state indices encode informa-
tion about both the topological environment of a particular
atom and the electronic interactions from all the other atoms
in the molecule.32,33

Quantum chemical descriptors are used for describing
electrostatic and electronic properties of a molecule. These
descriptors were computed by using molecular orbital
energies and wave functions of electronic motion in a
molecule, which were derived from the approximate solutions
of the Schro¨dinger equation of electronic motion.34 The
computed quantum chemical descriptors include partial
atomic charges, the highest occupied and lowest unoccupied
molecular orbital energies, dipole moment, polarizability, and
other descriptors derived from them.35

Geometric descriptors represent 3D-structural features of
molecules. These include the van der Waals volume, solvent
accessible surface area, molecular surface area, van der Waals
surface area, and the related properties from combining them
with partial atomic charges.36,37

Feature Selection Method.Feature selection methods
have been introduced for the improvement of classification
performance of statistical learning methods and for the
selection of features meaningful for discriminating two data
sets.28,29,38-41 One approach, recursive feature elimination
(RFE) method, has gained popularity due to its effectiveness
for discovering informative features or attributes in cancer
classification and drug activity analysis.28,40 Thus, the RFE
method was used in this work for selecting features relevant
to P-gp substrate classification.

It has been suggested that the ranking criterion for feature
selection can be formulated from the variation in an objective
function upon removing each feature.42 To improve the
efficiency of SVM training, this objective function is
represented by a cost functionJ for the ith feature, and it is
computed by using the training set only. When theith feature
is removed or its weightwi is reduced to zero, the variation
of the cost functionDJ(i) is given by

The case ofDwi ) wi - 0 corresponds to the removal of
featurei.

Guyon et al. have used RFE to reduce the descriptors of
a linear SVM classification system for cancer detection from
gene selection data.40 In the corresponding linear SVM
classifier, the cost function isJ ) (1/2)||w||2 - RΤ l, where
1 is anm dimensional identity vector (m is the number of
compounds in the training set). ThereforeDJ(i) ) (1/2) wi

2

andwi
2 can be used as a feature ranking criterion. Yu et al.

have used RFE to reduce the descriptors of a nonlinear SVM
classification system of polynomial kernels for prediction
of drug activity.28 However, because of the diversity and
complexity of the compounds to be classified, the use of
linear and polynomial kernels may not always be sufficient
for accurate prediction of various pharmaceutical and
biological properties. Thus, in this work, SVM classification

DJ(i) ) 1
2

∂
2J

∂wi
2
(Dwi)

2 (1)
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Table 1. Substrates (Class 1) and Nonsubstrates (Class-1) of P-Glycoprotein in the Training Set

no. compound actual class no. compound actual class

1 corticosterone 1 72 safingol 1
2 doxorubicin 1 73 phenoxazine 1
3 quinidine 1 74 vindoline 1
4 vinblastine 1 75 4 (adopted from ref 12) -1
5 acetamido-deoxypodophyllotoxin 1 76 NSC667558 -1
6 fluphenazine 1 77 NSC676602 -1
7 hydrocortisone 1 78 NSC667532 -1
8 digoxin 1 79 prednisolone -1
9 dexamethasone 1 80 aminodeoxy -1
10 daunomycin 1 81 cortexolone -1
11 HOE33342 1 82 methoxychlor -1
12 GF120918-1 1 83 chlorambucil -1
13 diltiazem 1 84 NSC674570 -1
14 colchicine 1 85 NSC49899 -1
15 cyclosporin-A 1 86 deoxypodophyllotoxin -1
16 dibucaine 1 87 PSC833 -1
17 phodamine123 1 88 NSC630148 -1
18 digitoxigenin 1 89 NSC630721 -1
19 staurosporine 1 90 3 (adopted from ref 12) -1
20 isosafrole 1 91 progesterone -1
21 lovastatin 1 92 aldoxycarb -1
22 fexofenadine 1 93 L767679 -1
23 nimodipine 1 94 BIBW22 -1
24 nelfinavir 1 95 NSC633528 -1
25 methadone 1 96 nigericin -1
26 trifluoperazine 1 97 NSC653278 -1
27 monensin 1 98 NSC623083 -1
28 ondansetron 1 99 NSC668354 -1
29 indinavir 1 100 reserpic_acid -1
30 dexniguldipine 1 101 fluazifop-butyl -1
31 saquinavir 1 102 NSC664565 -1
32 S-farnesylcysteine-methylester 1 103 tamoxifen -1
33 reserpine 1 104 NSC667560 -1
34 LY335979 1 105 cytarabine -1
35 mitoxantrone 1 106 NSC615985 -1
36 topotecan 1 107 NSC678047 -1
37 dipyridamole 1 108 NSC676610 -1
38 haloperidol 1 109 carbaryl -1
39 estradiol 1 110 aldicarb -1
40 azidopine 1 111 carmustine -1
41 toremifene 1 112 cyclophosphamide -1
42 paclitaxel 1 113 epinephrine -1
43 thioridazine 1 114 fluorouracil -1
44 morphine-6-glucuronide 1 115 lindane -1
45 nifedipine 1 116 NSC314622 -1
46 actinomycin_d 1 117 midazolam -1
47 cefoperazone 1 118 NSC268251 -1
48 triflupromazine 1 119 NSC606532 -1
49 amiodarone 1 120 NSC617286 -1
50 cefazolin 1 121 NSC639677 -1
51 cefotetan 1 122 NSC648403 -1
52 clotrimazole 1 123 NSC666331 -1
53 erythromycin 1 124 NSC671400 -1
54 flunitrazepam 1 125 NSC686028 -1
55 loperamide 1 126 S_farnesyl_cysteine -1
56 methotrexate 1 127 aminocarb -1
57 phenobarbital 1 128 atrazine -1
58 phenytoin 1 129 chaps -1
59 prazosin 1 130 dialifos -1
60 promazine 1 131 dieldrin -1
61 ritonavir 1 132 leptophos -1
62 tetraphenylphosphonium 1 133 mirex -1
63 bisantrene 1 134 phosmet -1
64 endosulfan 1 135 systeine_methylester -1
65 estriol 1 136 triforine -1
66 ivermectin 1 137 trypan_blue -1
67 leupeptin 1 138 vinclozolin -1
68 mithramycin 1 139 NSC667551 -1
69 pararosaniline 1 140 NSC676615 -1
70 rapamycin 1 141 epipodophyllotoxin -1
71 S9788 1 142 deoxycorticosterone -1
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systems of Gaussian kernels were used. In this case, the cost
function to be minimized, under the constraints 0e Rk e C
and∑kRkyk ) 0, is

whereH is the matrix with elementsyiyj exp(-|xi - xj|2/
(2σ2)).

To compute the variation in the cost function upon removal
of the input componenti, the parametersR’s were kept
unchanged and the matrixH was recomputed. The resulting
ranking coefficient is

where H(-i) is the matrix computed by using the same

Table 2. Substrates (Class 1) and Nonsubstrates (Class-1) of P-Glycoprotein in the Testing Set

no. compound actual class predicted class no. compound actual class predicted class

1 epirubicin 1 1 18 docetaxel 1 1
2 quinine 1 1 19 mitomycin-C 1 1
3 vincristine 1 1 20 morphine 1 1
4 cis-flupenthixol 1 1 21 valinomycin 1 1
5 digitoxin 1 1 22 teniposide 1 1
6 methylprednisolone 1 1 23 epothilone_a 1 1
7 idarubicin 1 1 24 1 (adopted from ref 12) -1 -1
8 verapamil 1 1 25 2 (adopted from ref 12) -1 -1
9 pafenolol 1 1 26 farnesol -1 -1
10 digoxigenin 1 1 27 melphalan -1 -1
11 terfenadine 1 1 28 mevinphos -1 -1
12 spiperone 1 1 29 paraquat -1 -1
13 cinchonidine 1 1 30 propiconazole -1 -1
14 methylreserpate 1 1 31 NSC676593 -1 -1
15 celiprolol 1 1 32 NSC676618 -1 -1
16 cepharanthine 1 1 33 NSC674508 -1 -1
17 puromycin 1 1 34 NSC309132 -1 -1

Table 3. Substrates (Class 1) and Nonsubstrates (Class-1) of P-Glycoprotein in the Independent Validation Set

no. compound actual class predicted class no. compound actual class predicted class

1 acebutolol 1 1 14 k02 1 1
2 adriamycin 1 1 15 losartan 1 1
3 aldosterone 1 1 16 nicardipine 1 1
4 calphostin_c 1 1 17 perphenazine 1 1
5 catharantine 1 -1 18 rifampicin 1 1
6 chlorpromazine 1 1 19 yohimbine 1 -1
7 CP100356 1 1 20 NSC364080 -1 1
8 depredil 1 -1 21 NSC630357 -1 1
9 domperidone 1 1 22 NSC667533 -1 -1
10 emetine 1 1 23 NSC676617 -1 -1
11 etoposide 1 1 24 NSC676616 -1 -1
12 gallopamil 1 1 25 podophyllotoxin -1 -1
13 hydroxyrubicin 1 1

Table 4. Molecular Descriptors Used in This Work

descriptor class

number of
descriptors

in class descriptors

simple molecular properties 18 molecular weight, number of ring structures, number of rotatable bonds, number of
H-bond donors, number of H-bond acceptors, element counts

molecular connectivity and shape 28 molecular connectivity indices, valence molecular connectivity indices, molecular shape
Kappa indices, Kappa alpha indices, flexibility index

electro-topological state 84 electrotopological state indices and atom type electrotopological state indices
quantum chemical properties 13 atomic charge on the most positively charged H atom, largest negative charge on an

non-H atom, polarizability index, hydrogen bond acceptor basicity (covalent HBAB),
hydrogen bond donor acidity (covalent HBDA), molecular dipole moment, absolute
hardness, softness, ionization potential, electron affinity,
chemical potential, electronegativity index, electrophilicity index

geometrical properties 16 molecular size vectors (distance of the longest separated atom pairs, combined distance
of the longest separated three atoms, combined distance of the longest separated four
atoms), molecular van der Waals volume, solvent accessible surface area, molecular
surface area, van der Waals surface area, polar molecular surface area, sum of solvent
accessible surface areas of positively charged atoms, sum of solvent accessible surface
areas of negatively charged atoms, sum of charge weighted solvent accessible surface
areas of positively charged atoms, sum of charge weighted solvent accessible surface
areas of negatively charged atoms, sum of van der Waals surface areas of positively
charged atoms, sum of van der Waals surface areas of negatively charged atoms, sum
of charge weighted van der Waals surface areas of positively charged atoms, sum of
charge weighted van der Waals surface areas of negatively charged atoms

J ) (1/2)RTHR - RT1 (2)
DJ(i) ) (1/2)RTHR - (1/2)RTH( - i)R (3)
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method as that of matrixH but with its ith component
removed. One or more of the features with the smallestDJ(i)
can thus be eliminated.

The computation procedure in this work is outlined as the
follows: The SVM classification system for this study was
trained by using a Gaussian kernel function. The training
was conducted by sequential variation of the parameterσ in
the special region against the whole training data set. The
prediction accuracy of this SVM system during the training
process was evaluated by means of 5-fold cross-validation.
In the first step, for a fixedσ, the SVM classifier is trained
by using the complete set of features (molecular descriptors)
described in the previous section. The second step is to
compute the ranking criterion scoreDJ(i) for each feature
in the current set by using eq 3. All of the computedDJ(i)
is subsequently ranked in descending order. The third step
is to remove them features with the smallest criterion scores.
In this work, m was chosen to be 5 as that used in earlier
studies.28 In the fourth step, the SVM classification system
is retrained by using the remaining set of features, and the
corresponding prediction accuracy is computed by means of
5-fold cross-validation. The first to fourth steps are then
repeated for other values ofσ. After the completion of these
procedures, the set of features and parameterσ that give the
best prediction accuracy are selected.

SVM Algorithm. The theory of SVM has been exten-
sively described in the literature.14,15,23 Thus only a brief
description is given here. SVM is based on the structural
risk minimization (SRM) principle from statistical learning
theory.14 In linearly separable cases, SVM constructs a hyper-
plane which separates two different classes of vectors with
a maximum margin. A vector corresponds to the features of
a drug in this work, and this vector is represented byxi, with
structural and physicochemical descriptors of a molecule as
its components. This is done by finding another vectorw
and a parameterb that minimizes|w|2 and satisfies the
following conditions

where yi is the class index,w is a vector normal to the
hyperplane,|b|/|w| is the perpendicular distance from the
hyperplane to the origin, and|w|2 is the Euclidean norm of
w. After the determination ofw andb, a given vectorxi can
be classified by

In nonlinearly separable cases, SVM maps the input
variable into a higher dimensional feature space using a
kernel functionK(xi, xj). An example of a kernel function is
the Gaussian kernel which has been extensively used in
different studies with good results.13,43,44

A linear support vector machine is applied to this feature
space and then the decision function is given by

where the coefficientsRi
0 and b are determined by maxi-

mizing the following Langrangian expression

under the following conditions:

A positive or negative value from eq 6 or eq 8 indicates that
the vector x belongs to the positive or negative class,
respectively.

As in the case of all discriminative methods,45,46 the
performance of SVM classification can be measured by the
quantity of true positives TP, true negatives TN, false
positives FP, false negatives FN, sensitivity SE) TP/
(TP+FN) which is the prediction accuracy for the substrates
of P-gp in this work, and specificity SP) TN/(TN+FP)
which is the prediction accuracy for the nonsubstrates of P-gp
in this work. The overall prediction accuracy (Q) is also used
to measure the prediction accuracies and can be given by

Other Statistical Classification Systems.To objectively
examine whether SVM is useful for P-gp substrate prediction,
prediction accuracies of the trained SVM system were
compared with those derived from three other classification
methods by using 5-fold cross-validation. These methods are
k-nearest neighbor (KNN),47,48 probabilistic neural network
(PNN),49 and C4.5 decision tree.50 In KNN, the Euclidean
distance between an unclassified vectorx and each individual
vector xi in the training set is measured.47,48 A total of k
number of vectors nearest to the unclassified vectorx are
used to determine the class of that unclassified vector. The
class of the majority of thek-nearest neighbors is chosen as
the predicted class of the unclassified vectorx.

PNN is a form of neural network that uses Bayes optimal
decision rule for classification.49 Traditional neural networks
such as feed-forward back-propagation neural network rely
on multiple parameters and network architectures to be
optimized. In contrast, PNN only has a single adjustable
parameter, a smoothing factorσ for the radial basis function
in the Parzen’s nonparameteric estimator. Thus the training
process of PNN is usually orders of magnitude faster than
those of the traditional neural networks.

C4.5 decision tree is a branch-test-based classifier.50 A
branch in a decision tree corresponds to a group of classes
and a leaf represents a specific class. A decision node
specifies a test to be conducted on a single attribute value,
with one branch and its subsequent classes as possible
outcomes of the test. C4.5 decision tree uses recursive
partitioning to examine every attribute of the data and rank
them according to their ability to partition the remaining data,
thereby constructing a decision tree. A vectorx is classified

w‚xi + b g + 1, for yi ) + 1 class 1 (positive) (4)

w‚xi + b e - 1, for yi ) - 1 class 2 (negative) (5)

sign[(w‚x) + b] (6)

K(xi,xj) ) e-|xj-xi|2
/2σ2 (7)

f(x) ) sign(∑
i)1

l

Ri
0yiK(x,xi) + b) (8)

∑
i)1

l

Ri -
1

2
∑
i)1

l

∑
j)1

l

RiRjyiyjK(xi,xj) (9)

ai g 0 and∑
i)1

l

Riyi ) 0 (10)

Q ) TP + TN
TP + TN + FP+ FN

(11)
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by starting at the root of the tree and moving through the
tree until a leaf is encountered. At each nonleaf decision
node, a test is conducted, and the classification process
proceeds to the branch selected by the test. Upon reaching
the destination leaf, the class of the vectorx is predicted to
be that associated with the leaf.

RESULTS AND DISCUSSION

SVM prediction of both substrates and nonsubstrates of
P-gp was evaluated by means of both the use of independent
evaluation set and 5-fold cross-validation. The results of these
two methods are given in Tables 5 and 6, respectively. The
accuracy for the prediction of the P-gp substrate using 5-fold
cross-validation is 81.2% and that by using the independent
validation set is 84.2% respective. Thus both methods appear
to give consistent assessment about the prediction accuracy.

A direct comparison with results from a previous study is
inappropriate because of differences in the use of a data set,
molecular descriptors, and classification methods. Although
desirable, it is impossible to conduct a separate comparison
with results from other studies without full information about
the algorithms of molecular descriptors and classification
methods used in each study. Nonetheless, a tentative
comparison may provide some crude estimate regarding the

approximate level of accuracy of our method with respect
to those achieved by other studies. The prediction accuracy
for P-gp substrates is substantially improved with respect to
the value of 63% derived from the ensemble pharmacophore
model.12

The prediction accuracy for nonsubstrates of P-gp is 79.2%
using 5-fold cross-validation and 66.7% using independent
evaluation set. The substantially lower accuracy derived from
the independent evaluation set likely arises because of the
small number of P-gp nonsubstrates in the set. Another factor

Table 5. SVM Prediction Accuracy for the Substrates and
Nonsubstrates of P-gp by Using Independent Evaluation Setsa

independent validation settesting set
substrates nonsubstrates

substrates nonsubstrates
training

set TP FN TN FP TP FN
SE
(%) TN FP

SP
(%)

74 68 22 0 12 0 16 3 84.2 4 2 66.7

a Predicted results are given in TP (true positive), FN (false negative),
TN (true negative), FP (false positive), SE (sensitivity) which is the
prediction accuracy for substrates, and SP (specificity) which is the
prediction accuracy for nonsubstrates. Number of substrates or non-
substrates in testing and independent evaluation sets is TP+FN or
TN+FP, respectively.

Table 6. SVM Prediction Accuracy of the Substrates and
Nonsubstrates of P-Glycoprotein by Using 5-Fold Cross-Validation

substrates nonsubstrates
cross-

validation TP FN SE (%) TN FP SP(%) Q (%)

1 17 7 70.8 12 4 75.0 72.5
2 15 2 88.2 11 5 68.8 78.8
3 30 8 78.9 13 1 92.9 82.7
4 15 4 78.9 15 3 83.3 81.1
5 16 2 88.9 16 5 76.2 82.1
av 81.2 79.2 79.4
SE 7.5 9.2 4.2

Table 7. Comparison of the Prediction Accuracy of the Substrates
and Nonsubstrates of P-Glycoprotein from Different Classification
Methods by Using 5-Fold Cross-Validationa

method
substrates
SE (%)

nonsubstrates
SP (%) Q (%)

k-NN 79.2 61.6 70.8
PNN 77.3 71.4 74.4
C4.5 decision tree 74.6 69.9 71.5
SVM 81.2 79.2 79.4

a These methods includek-NN, PNN, and C4.5 decision tree as well
as SVM.

Figure 1. Unoptimized structures of misclassified compounds in
the independent validation set.
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is the inadequate sampling of the chemical space covered
by nonsubstrates of P-gp. It is likely that the 85 nonsubstrates
collected in this work only represent a portion of all possible
classes of nonsubstrates of P-gp. Protein nonsubstrates are
rarely described in the literature, thus additional efforts are
needed to enable the collection of this information.

SVM classification results were further compared to those
from other statistical classification methods includingk-
nearest neighbor (k-NN), probabilistic neural networks
(PNN), and C4.5 decision tree. The same sets of data and
descriptors are used in these computations. The results are
shown in Table 7, and it is found that the accuracy from
SVM classification is slightly better than those from other
classification methods. This suggests that SVM is capable
of prediction of P-gp substrates and P-gp nonsubstrates at a
comparable or perhaps better accuracy with respect to that
from other classification methods without requiring either
the knowledge of mechanism or the intrinsic structure-
activity relationships.

SVM typically uses a portion of the training set as support
vectors for classification. In contrast,k-NN and PNN use
the whole training set for classification. Our own studies
suggest that the number of support vectors of SVM is in the
range of 40-70% of the training set. Thus the classification
speed of SVM is usually 30-60% faster than that ofk-NN
and PNN. On the other hand, the classification speed of SVM
is slower than that of decision tree methods which conduct
tests on descriptors to reach a decision leaf.

In the independent evaluation set, there are 3 and 2
incorrectly classified substrates and nonsubstrates of P-gp,
respectively, which are shown in Figure 1. The three P-gp
substrates are catharantine, depredil, and yohimbine, and the
two nonsubstrates of P-gp are NSC364080 and NSC630357.
Each of the three misclassified P-gp substrates is composed
of an inflexible multiring structure and a short flexible
hydrophilic tail. The inflexible region of catharantine is
composed of 6 tightly connected stereo-rings. Yohimbine
contains a rigid 21-membered ring fraction. Depredil has
three separate rings triangularly connected to each other by
a few rotatable bonds. The two misclassified nonsubstrates

of P-gp, NSC364080 and NSC630357, both contain the three
ring structure, similar to depredil, but without a short flexible
hydrophilic chain. This flexible hydrophilic chain appears
to be a factor that distinguishes between a substrate and a
nonsubstrate of P-gp.

While encoding molecular shape and flexibility features,
topological descriptors may not adequately describe the
detailed configuration of a large rigid structure combined
with a short flexible hydrophilic tail in the molecule.
Therefore our analysis seems to suggest that the incorrect
classification of these five compounds arises from an
inadequate description of the flexibility about the short
hydrophilic tail attached to bulky rigid ring structures.

Table 8 gives the molecular descriptors selected from the
feature selection method RFE. Those from the class of
topological descriptors constitute the largest percentage of
the descriptors selected. This is consistent with the findings
from the classification of multidrug-resistant (MDR) agents,
many of which are P-gp substrates, by using structure-based
descriptors and linear discriminant analysis, which showed
that 60% of the molecular descriptors important for MDR
are topological in nature.8 A study of quantitative structure-
activity relationships (QSAR) of MDR agents also identified
several biophores, e.g., a generic form of C-C-X-C-C
with X ) N, NH, or O (preferably a tertiary nitrogen), as a
key structural element for MDR.7 These biophores are
primarily determined by electrotopological features and bond
connectivity. In addition to the large percentage of electro-
topological, the RFE method also selected three molecular
connectivity descriptors, which seem to correlate with the
features of the biophores identified from the QSAR study
of MDR agents.

The rest of the RFE selected descriptors are from the
quantum chemical class and simple molecular property class.
The selected quantum chemical descriptors determine po-
larizability, molecular dipole moment, electrophilicity, and
the atomic charge of the positively charged hydrogen atoms
in a molecule. The selected simple molecular property
descriptors give the number of hydrogen bond donors and
that of Cl atoms. With the exception of the last descriptor,

Table 8. Molecular Descriptors Selected from the Feature Selection Method for Classification of P-gp Substrates and Nonsubstrates

descriptors description class

Ncocl count of Cl atoms simple molecular properties
Ndonr number of H-bond donors simple molecular properties
5øCH simple molecular connectivity Chi indices for cycle of 5 atoms connectivity and shape
3øV

P valence molecular connectivity Chi indices for path order 3 connectivity and shape
5øV

CH valence molecular connectivity Chi indices for cycle of 5 atoms connectivity and shape
Scar sum of Estate indices of carbon atoms geometrical properties
dis2 length vector (longest third atom) geometrical properties
Sapcw sum of charge weighted solvent accessible surface areas of positively charged atoms geometrical properties
S(1) atom-type H Estate sum for-OH electro-topological state
S(9) atom-type H Estate sum fordCH- (sp2) electro-topological state
S(12) atom-type H Estate sum for CHn (saturated) electro-topological state
S(13) atom-type H Estate sum for CHn (unsaturated) electro-topological state
S(16) atom-type Estate sum for-CH3 electro-topological state
S(18) atom-type Estate sum for>CH2 electro-topological state
S(20) atom-type Estate sum fordCH- electro-topological state
S(21) atom-type Estate sum for: CH: (aromatic) electro-topological state
S(25) atom-type Estate sum fordC< electro-topological state
S(36) atom-type Estate sum for>N- electro-topological state
πi polarizability index quantum chemical properties
q+ atomic charge on the most positively charged H atom quantum chemical properties
µ molecular dipole moment quantum chemical properties
ω electrophilicity index quantum chemical properties
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the MolSurf counterparts of these quantum chemical and
simple molecular property descriptors have been used for
the prediction of P-gp-interacting drugs by means of the
multivariate statistics method.51 Based on structural com-
parison, it has been found that the number of electron donors
and hydrogen bond acceptor groups are important elements
for P-gp substrate recognition.11 An analysis of multiple
pharmacophores of P-gp substrates has identified hydro-
phobe, hydrogen bond donor and acceptor as important
elements for P-gp substrates.12 Thus these studies consistently
suggested the importance of the selected quantum chemical
features and hydrogen-bond property for prediction of P-gp
substrates and nonsubstrates.

The other RFE selected descriptor, the count of Cl atoms,
has not been specifically used in other P-gp substrate studies.
One possible reason is that the molecules used in those
studies do not contain a Cl atom, thus it is unnecessary to
introduce this descriptor in those studies. In this work, the
descriptor for hydrogen bond acceptor was not selected by
RFE, which has been found to be an important element for
P-gp substrates in other studies.11,12 One likely reason for
the exclusion of this descriptor is that it has a high level of
redundancy with the relevant features covered by the
quantum chemical descriptors such as electrophilicity, po-
larizability, and molecular dipole moment when they are
combined with the hydrogen bond donor descriptor.

CONCLUSION

SVM is a potentially useful computational method for
facilitating the prediction of P-gp substrates. Prediction
accuracy may be further improved by consideration of factors
such as hydrogen bonding, active transport, and relationship
with pharmacodynamic properties. Moreover, recent works
on the introduction of weighting function into SVM descrip-
tors52 may also be helpful in developing SVM into a practical
tool for the prediction of P-gp substrates and thus facilitate
new drug development.
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