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The binding affinities to human serum albumin for 94 diverse drugs and drug-like compounds were modeled
with the descriptors calculated from the molecular structure alone using a quantitative structure-activity
relationship (QSAR) technique. The heuristic method (HM) and support vector machine (SVM) were utilized
to construct the linear and nonlinear prediction models, leading to a good correlation coefficient (R2) of
0.86 and 0.94 and root-mean-square errors (rms) of 0.212 and 0.134 albumin drug binding affinity units,
respectively. Furthermore, the models were evaluated by a 10 compound external test set, yieldingR2 of
0.71 and 0.89 and rms error of 0.430 and 0.222. The specific information described by the heuristic linear
model could give some insights into the factors that are likely to govern the binding affinity of the compounds
and be used as an aid to the drug design process; however, the prediction results of the nonlinear SVM
model seem to be better than that of the HM.

1. INTRODUCTION

Drugs in the human circulatory system often bind to the
components of the plasma such as albumin, acidglycoprotein
(AGP), or lipoproteins. Such binding can take place in
association with single, or multiple, plasma elements.
Albumin, which comprises more than half of all blood
proteins, is the most significant plasma component involved
in the binding of drugs.1 This protein is extremely important
from a biopharmacological point of view because it is the
major transporter of nonesterified fatty acids as well as of
different drugs and metabolites to different tissues.2 Drug
binding to Human Serum Albumin (HSA) is an area of
intense research. The pharmacokinetics and pharmacody-
namics of drugs are strongly affected by their binding to
this protein. Oral bioavailability (%F) is directly affected by
the extent to which a drug binds to plasma proteins because
the bound drug is not available to the mechanisms that govern
first pass metabolism. Drugs with high protein binding
activity values tend to have a greater half-life compared to
those with lower values.1 The development of computational
models for the prediction of drug pharmacokinetics is an area
of current intense research in the pharmaceutical industry.3,4

An undesirable proportion of compounds with good biologi-
cal activity fails to progress to later stages of drug develop-
ment because of inappropriate pharmacokinetic and phar-
macodynamic properties.5 Computational models of this type
are useful because they rationalize a large number of
experimental observations and therefore allow for saving time
and money in the drug design process. In addition, they are
useful in areas such as design of virtual compound collec-

tions, computational-chemical optimization of compounds,
and design of combinatorial libraries with appropriate ADME
(absorption, distribution, metabolism, and excretion) proper-
ties.

Quantitative structure-activity relationships (QSAR) have
been successfully established to predict different important
biopharmaceutical properties, such as metabolism,6 toxicity,7

oral bioavailability,8 etc. Given the importance of drug
binding to HSA, it should be extremely useful to develop
QSAR models to predict the binding affinity to HSA. This
would allow speeding up of the design of new compounds
with appropriate HSA binding properties and therefore the
optimization of the pharmacokinetics.

In the previous studies of drug albumin binding affinities,
Colmenarejo et al. has experimentally determined through
high-performance affinity chromatography the binding af-
finities to HSA of 95 diverse drugs and drug-like compounds
and then developed 7 QSAR models for specific well-known
families of drugs and for the whole database of 94 drugs
based on genetic algorithms.2 The best global model yields
correlation coefficient (R2) of 0.83. Hall et al. modeled the
binding affinities to HSA for the same data set of 94 drugs
using E-state topological descriptors, providingR2 of 0.77,
and a standard error (s) of 0.29.9 However, some compounds
have somewhat large residuals in both studies.

One of the important problems for the QSAR applications
is the numerical representation (often called molecular
descriptor) of the chemical structure. The built model
performance and the accuracy of the results are strongly
dependent on the structural representation. Various numerical
representations of the compounds were proposed in the
QSAR studies: constitutional and topological descriptors;
numerical code; quantum chemistry descriptors, etc. The
software CODESSA, developed by Katritzky group, enables
the calculation of a large number of quantitative descriptors
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based solely on the molecular structural information and
combines diverse methods with advanced statistical analysis
to establish molecular structure-property/activity relation-
ships.10,11 CODESSA has been applied successfully in a
variety of QSAR analyses.12,13

After the calculation of the molecular descriptors, linear
methods, such as MLR, principal component regression
(PCR), and partial least squares (PLS) or nonlinear methods,
e.g. neural networks, can be used in the development of a
quantitative relationship between the structural descriptors
and the property. Machine learning techniques such as neural
networks, genetic algorithm, etc., have been applied to the
QSAR analysis since the late 1980s, mainly in response to
increased accuracy demands. The most popular neural
networks model is the back-propagation (BP) neural network
due to its simple architecture yet powerful problem-solving
ability. However, the BP neural network suffers from a
number of weaknesses which include the need for a large
number of controlling parameters, difficulty in obtaining a
stable solution, and the danger of overfitting. Other problems
with the use of neural networks concern the reproducibility
of results, due largely to random initialization of the networks
and variation of stopping criteria.14 Genetic algorithms can
suffer in a similar manner. The stochastic nature of both
population initialization and the genetic operators used during
training can make results hard to reproduce.15 Owing to the
reasons outlined above, there is a continuing need for the
application of more accurate and informative techniques in
QSAR analysis.

The support vector machine (SVM) is a new algorithm
developed from the machine learning community. Due to
its remarkable generalization performance, the SVM has
attracted attention and gained extensive application, such as
pattern recognition problems,16,17drug design,18 QSAR,19 and
quantitativestructure-propertyrelationship(QSPR)analysis.20-23

In the present work, the CODESSA program was used
for the calculation of the descriptors and for the statistical
analysis to obtain the multiparameter QSAR equations
describing the binding affinities of drugs. The heuristic
method (HM) in the CODESSA program and the SVM were
utilized to establish a quantitative linear and nonlinear
relationship between the binding affinity and the molecular
structure, respectively. The principal objective of this
investigation is the development of an accurate quantitative
model that will establish a relation between the structural
descriptors and the binding affinity and, at the same time,
seek the important structural features related to the drug
albumin binding affinity.

2. EXPERIMENTAL SECTION

2.1. Data Preparation. The study investigated QSAR
model development for a diverse, heterogeneous group of
commercially available drugs whose albumin binding affinity
has been determined by a high-performance affinity chro-
matography by using an immobilized HSA column. The
compounds and its albumin binding affinity values were
taken from the paper published by Colmenarejo et al. and
shown in Table 1.2 The binding affinity was calculated in
the logarithmic scale as logk(HSA) ) log((t - t0)/t0), where
t and t0 are the retention times of the drug and nonretained
material, respectively. The binding affinities in the data set

fall in the range of-1.39 for acetylsalicylic acid to+1.34
for clotrimazole, respectively, with a mean value of-0.06.
To compare the results with the literatures, the separation
of the drugs in the training and test sets is identical with
that in refs 2 and 9. The training set of 84 compounds was
used to adjust the parameters of the models, and the test set
of 10 compounds was used to evaluate its prediction ability.

2.2. Descriptor Calculation.The structures of the com-
pounds were drawn with the HyperChem program and
exported in a file format suitable for MOPAC.24 The
geometry optimization was performed with the semiempirical
AM1 method in the MOPAC 6.0 program.25,26 All the
geometries had been fully optimized without symmetry
restrictions. In all cases frequency calculations had been
performed in order to ensure that all the calculated geometries
correspond to true minima. The MOPAC output files were
used by the CODESSA program to calculate five classes of
descriptors: constitutional (number of various types of atoms
and bonds, number of rings, molecular weight, etc.);
topological (Wiener index, Randic indices, Kier-Hall shape
indices, Balaban index, etc.); geometrical (moments of
inertia, molecular volume, molecular surface area, etc.);
electrostatic (minimum and maximum partial charges, polar-
ity parameter, charged partial surface area descriptors, etc.);
and quantum chemical (reactivity indices, dipole moment,
HOMO and LUMO energies, etc.).10

3. METHODOLOGY

3.1. The Heuristic Method.10 The heuristic multilinear
regression procedures available in the framework of the
CODESSA program were used to perform a complete search
for the best multilinear correlations with a multitude of
descriptors. These procedures provide collinearity control
(i.e., any two descriptors intercorrelated above 0.8 are never
involved in the same model) and implement heuristic
algorithms for the rapid selection of the best correlation,
without testing all the possible combinations of the available
descriptors. The heuristic method of the descriptor selection
proceeds with a preselection of the descriptors by eliminating
(i) those descriptors that are not available for each structure,
(ii) descriptors having a small variation in magnitude for all
structures, (iii) descriptors that give aF-test’s value below
1.0 in the one-parameter correlation, and (iv) descriptors
whoset-values are less than the user-specified value, etc.
This procedure orders the descriptors by decreasing correla-
tion coefficient when used in one-parameter correlations. The
next step involves correlation of the given property with (i)
the top descriptor in the above list with each of the remaining
descriptors and (ii) the next one with each of the remaining
descriptors, etc. The best pairs, as evidenced by the highest
F-values in the two-parameter correlations, are chosen and
used for further inclusion of descriptors in a similar manner.

The goodness of the correlation is tested by the correlation
coefficient (R2), theF-test (F), and the squared standard error
(s2). The stability of the correlations was tested against the
cross-validated coefficient,R2

cv. The R2
cv describes the

stability of a regression model obtained by focusing on the
sensitivity of the model to the elimination of any single data
point. Briefly, for each data point, the regression is recal-
culated with the same descriptors but for the data set without
this point. The obtained regression is used to predict the value
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of this point, and the set of estimated values calculated in
this way is correlated with the experimental values.

The heuristic method usually produces correlations 2-5
times faster than other methods, with comparable quality.27

The rapidity of calculations from the heuristic method renders
it the first method of choice in practical research. Thus, in
this work, the heuristic method was used to build the linear
model.

3.2. Support Vector Machine.28,29 The foundation of
support vector machines has been developed by Vapnik and
is gaining popularity due to many attractive features and
promising empirical performance.30,31 The formulation em-
bodies the Structural Risk Minimization (SRM) principle,28,29

which has been shown to be superior to the traditional
Empirical Risk Minimization (ERM) principle, employed by
conventional neural networks. SRM minimizes an upper
bound on VC dimension (“generalization error”), as opposed

to ERM that minimizes the error on the training data. It is
the difference that equips the SVM with good generalization
performance, which is the goal in statistical learning.
Originally, the SVM was developed for classification prob-
lems.32 And now, with the introduction ofε-insensitive loss
function, the SVM has been extended to solve nonlinear
regression estimation.33

Compared to other neural network regressors, there are
three distinct characteristics when a SVM is used to estimate
the regression function. First of all, SVM estimates the
regression using a set of linear functions that are defined in
a high dimensional space. Second, SVM carries out the
regression estimation by risk minimization where the risk is
measured using Vapnik’sε-insensitive loss function. Third,
SVM uses a risk function consisting of the empirical error
and a regularization term which is derived from the SRM
principle.

Table 1. Experimental and Calculated Binding Affinities of Drugs to HSA

no. name
logk

(HSA) HMb residue SVMc residue no. name
logk

(HSA) HMb residue SVMc residue

1a acetylsalicylic acid -1.39 -0.48 0.91 -1.22 0.17 48 camptothecin -0.08 0.49 0.57 -0.06 0.02
2 cefuroxime -1.33 -1.26 0.07 -1.22 0.11 49 tetracycline -0.08 -0.35 -0.27 -0.18 -0.10
3 amoxicillin -1.21 -0.92 0.29 -1.04 0.17 50a bupropion -0.05 0.13 0.18 -0.03 0.02
4 cephalexin -1.11 -0.73 0.38 -0.93 0.18 51 sumatriptan -0.05 -0.29 -0.24 -0.12 -0.07
5 5-fluorocytosine -1.11 -1.13 -0.02 -1.01 0.10 52 warfarin -0.04 0.30 0.34 0.03 0.07
6 cromolyn -1.07 -1.31 -0.24 -1.02 0.05 53 bumetanide -0.03 0.05 0.08 -0.12 -0.09
7 ebselen -1.04 -1.07 -0.03 -1.04 0.00 54 oxyphenbutazone-0.02 0.06 0.08 0.07 0.09
8 zidovudine -1.02 -1.26 -0.24 -1.15 -0.13 55 acrivastine -0.02 0.44 0.46 -0.22 -0.20
9 caffeine -0.92 -0.71 0.21 -0.89 0.03 56 phenytoin 0.00 0.03 0.03 0.05 0.05

10a acetaminophen -0.81 -0.92 -0.11 -0.74 0.07 57 doxiciclyne 0.01-0.61 -0.62 0.04 0.03
11 l-tryptophan -0.78 -0.56 0.22 -0.73 0.05 58 ketoprofen 0.03-0.01 -0.04 0.11 0.08
12 methotrexate -0.77 -0.52 0.25 -0.84 -0.07 59 alprenolol 0.04 -0.06 -0.10 -0.13 -0.17
13 propylthiouracil -0.75 -0.77 -0.02 -0.58 0.17 60a prazosin 0.06 -0.21 -0.27 -0.28 -0.34
14 antipyrine -0.69 -0.24 0.45 -0.45 0.24 61 digitoxin 0.13 0.25 0.12-0.03 -0.16
15 phenoxymethyl- -0.69 -0.55 0.14 -0.63 0.06 62 levofloxacin 0.14-0.03 -0.17 -0.12 -0.26

penicillinic acid 63 ciprofloxacin 0.14 0.02 -0.12 -0.15 -0.29
16 salicylic acid -0.66 -0.77 -0.11 -0.78 -0.12 64 labetalol 0.14 0.08 -0.06 -0.31 -0.45
17 cefuroxime axetil -0.56 -0.61 -0.05 -0.52 0.04 65 norfloxacin 0.14-0.16 -0.30 -0.20 -0.34
18 etoposide -0.49 -0.27 0.22 -0.24 0.25 66 phenylbutazone 0.19 0.38 0.19 0.14-0.05
19 atenolol -0.48 -0.32 0.16 -0.40 0.08 67 sancicline 0.21-0.02 -0.23 0.12 -0.09
20a chloramphenicol -0.46 -0.81 -0.35 -0.77 -0.31 68 minocycline 0.21 0.11 -0.10 0.26 0.05
21 cimetidine -0.44 -0.65 -0.21 -0.55 -0.11 69 naproxen 0.25 0.03-0.22 0.33 0.08
22 chlorpropamide -0.44 -0.50 -0.06 -0.57 -0.13 70a clofibrate 0.27 -0.03 -0.30 -0.09 -0.36
23 sotalol -0.44 -0.13 0.31 -0.34 0.10 71 propranolol 0.28 0.05-0.23 0.14 -0.14
24 hydrochlorothiazide -0.42 -0.43 -0.01 -0.27 0.15 72 tetracaine 0.32 0.31-0.01 0.35 0.03
25 tolazamide -0.42 -0.54 -0.12 -0.29 0.13 73 fusidic acid 0.33 0.60 0.27 0.48 0.15
26 hydrocortisone -0.40 -0.22 0.18 -0.35 0.05 74 novobiocin 0.35 0.30-0.05 0.40 0.05
27 nadolol -0.40 -0.30 0.10 -0.35 0.05 75 ondansetron 0.37 0.33-0.04 0.15 -0.22
28 prednisolone -0.40 -0.29 0.11 -0.45 -0.05 76 droperidol 0.43 0.63 0.20 0.49 0.06
29 scopolamine -0.34 -0.26 0.08 -0.29 0.05 77 quinidine 0.44 0.41-0.03 0.54 0.10
30a timolol -0.33 -0.51 -0.18 -0.35 -0.02 78 indomethacin 0.47 0.31-0.16 0.36 -0.11
31 metoprolol -0.29 -0.03 0.26 -0.40 -0.11 79 quinine 0.49 0.40 -0.09 0.38 -0.11
32 trimethoprim -0.26 -0.35 -0.09 -0.29 -0.03 80a verapamyl 0.52 0.98 0.46 0.76 0.24
33 dansylglycine -0.26 -0.30 -0.04 -0.21 0.05 81 sulfasalazine 0.56 0.21-0.35 0.61 0.05
34 lidocaine -0.23 -0.01 0.22 -0.24 -0.01 82 progesterone 0.59 0.49-0.10 0.64 0.05
35 methylprednisolone -0.22 -0.25 -0.03 -0.37 -0.15 83 desipramine 0.61 0.56-0.05 0.70 0.09
36 tolbutamide -0.22 -0.14 0.08 -0.18 0.04 84 estradiol 0.68 0.37-0.31 0.79 0.11
37 sulfaphenazole -0.21 -0.12 0.09 -0.11 0.10 85 glibenclamide 0.68 0.58-0.10 0.57 -0.11
38 acebutolol -0.21 -0.05 0.16 -0.22 -0.01 86 testosterone 0.74 0.30-0.44 0.72 -0.02
39 procaine -0.19 -0.19 0.00 -0.09 0.10 87 imipramine 0.75 0.77 0.02 0.81 0.06
40a terazosin -0.16 -0.08 0.08 -0.07 0.09 88 ketoconazole 0.84 0.86 0.02 0.79-0.05
41 oxprenolol -0.15 -0.04 0.11 -0.03 0.12 89 promazine 0.92 0.81-0.11 0.97 0.05
42 lamotrigine -0.13 -0.26 -0.13 -0.22 -0.09 90a itraconazole 1.04 1.70 0.66 0.81-0.23
43 clonidine -0.13 -0.18 -0.05 -0.29 -0.16 91 triflupromazine 1.05 1.02-0.03 1.15 0.10
44 pindolol -0.13 -0.25 -0.12 -0.24 -0.11 92 chlorpromazine 1.10 0.89-0.21 0.98 -0.12
45 frusemide -0.13 -0.25 -0.12 -0.18 -0.05 93 terbinafine 1.17 0.82-0.35 0.83 -0.34
46 carbamazepine -0.10 0.34 0.44 0.09 0.19 94 clotrimazole 1.34 1.20-0.14 1.19 -0.15
47 ranitidine -0.10 -0.08 0.02 -0.06 0.04

a Compounds in the test set.b Predicted binding affinity by HM.c Predicted binding affinity by SVM.
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In support vector regression (SVR), the basic idea is to
map the datax into a higher-dimensional feature spaceF
via a nonlinear mappingΦ and then to do linear regression
in this space. Therefore, regression approximation addresses
the problem of estimating a function based on a given data
set G ) {(xi,di)i

n (xi is the input vector,di is the desired
value, andn is the total number of data patterns). SVM
approximates the function using the following

whereΦ(x) denotes the element wise mapping fromx into
feature space. The coefficientsw and b are estimated by
minimizing

In eq 2,RSVM is the regularized risk function, and the first
term C(1/n) ∑i)1

n Lε(di,yi) is the empirical error (risk). They
are measured by theε-insensitive loss function (Lε) given
by eq 3. This loss function provides the advantage of enabling
one to use sparse data points to represent the decision
function given by eq 1. The second term (1/2)|w|2, on the
other hand, is the regularization term.C is referred to as the
regularized constant, and it determines the tradeoff between
the empirical risk and the regularization term. Increasing the
value of C will result in the relative importance of the
empirical risk with respect to the regularization term to grow.
ε is called the tube size, and it is equivalent to the
approximation accuracy placed on the training data points.
Both C andε are user-prescribed parameters.

Finally, by introducing Lagrange multipliers (ai,ai
/) and

exploiting the optimality constraints, the decision function
given by eq 4 has the following explicit form:

Based on the Karush-Kuhn-Tucker (KKT) conditions of
quadratic programming, only a number of coefficients (ai -
ai
/) will assume nonzero values, and the data points associ-

ated with them could be referred to as support vectors. In
eq 4, the kernel functionK corresponds toK(x,xi) ) Φ(x)‚
Φ(xi). One has several possibilities for the choice of this
kernel function, including linear, polynomial, splines, and
radial basis function. The elegance of using kernel function
lies in the fact that one can deal with feature spaces of
arbitrary dimensionality without having to compute the map
Φ(x) explicitly. In SVR, a commonly used kernel function
is the Gaussian Radial Basis Function.

The overall performances of HM and SVM were evaluated
in terms of root-mean-square (rms) error which was defined
as below

whereyk is the desired output, yˆk is the actual output of the
model, andns is the number of compounds in analyzed set.

All calculation programs implementing SVM were written
in R-file based on the R script for SVM.34 The scripts were
compiled using an R 1.7.1 compiler running on a Pentium
IV PC with 256M RAM.

4. RESULTS AND DISCUSSION

4.1. Results of the Heuristic Method.About 600 descrip-
tors were calculated by the CODESSA program for each of
the compounds. After the heuristic reduction, the pool of
the descriptors was reduced to 243. A variety of subset sizes
was investigated to determine the optimum number of the
descriptors in a model. When adding another descriptor did
not improve significantly the statistics of a model, it was
determined that the optimum subset size had been achieved.
To avoid the “overparametrization” of the model, an increase
of theR2 value of less than 0.02 was chosen as the breakpoint
criterion. The influences of the number of the descriptors
on the correlation coefficient (R2), the cross-validated coef-
ficient (R2

cv), and the squared standard error (s2) were shown
in Figure 1. From Figure 1, it can be seen that seven
descriptors appear to be sufficient for a successful regression
model. The multilinear analysis of the binding affinity values
for the 84 compounds of the training set resulted in the seven-
parameter model were summarized in Table 2, and the
correlation matrix of these descriptors was shown in Table

Figure 1. Influence of the number of descriptors onR2, R2
cv, and

s2 of the regression models.

Table 2. Seven-Descriptor Linear Model for the Binding Affinitya

descriptor chemical meaning coefficient t-test

(constant) intercept -2.513( 0.388 -6.472
HDCA-2 HA dependent HDCA-2

[Zefirov’s PC]
-0.401( 0.078 -5.136

MSA molecular surface area 0.007( 0.001 12.801
NO number of O atoms -0.149( 0.017 -8.877
RNR relative number of rings 9.210( 1.395 6.605
RNN relative number of N atoms -3.945( 0.663 -5.950
BI Balaban index 0.403( 0.097 4.147
RNCS relative negative charged

SA (SAMNEG*RNCG)
[quantum-chemical PC]

-0.045( 0.013 -3.392

a R2 ) 0.86;s2 ) 0.050; rms) 0.212;n ) 84; F ) 63.89;R2
cv )

0.63.

y ) f (x) ) wΦ(x) + b (1)

RSVM(C) ) C
1

n
∑
i)1

n

Lε(di,yi) +
1

2
|w|2 (2)

Lε(d,y) ) {|d - y| - ε|d - y| gε

0 otherwise
(3)

f (x,ai,ai
/) ) ∑(ai - ai

/)K(x,xi) + b (4)

rms) x∑
i)1

ns

(yk - ŷk)
2

ns

(5)
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3. The linear correlation coefficient value of each two
descriptors is< 0.80 (Table 3), which means the descriptors
were independent in this multilinear analysis. The obtained
model had a correlation coefficientR2 ) 0.86,F ) 63.89,
with a squared standard error (s2) of 0.050, and the cross-
validated coefficient (R2

cv) of 0.63. This model gave an rms
error of 0.212 binding affinity units for the training set.

With the test set (Table 1), the prediction results were
obtained, confirming the predictive capability of the model.
The statistical parameters wereR2 ) 0.71;F ) 19.27; and
s2 ) 0.216. The heuristic model produced an rms error of
0.430 binding affinity units for the test set and 0.245 for the
whole data set. Figure 2 showed a plot of the calculated
versus experimental binding affinities for all of the 94
compounds studied, the training set and the test set.

By interpreting the descriptors in the regression model, it
is possible to gain some insight into factors that are likely
to govern the binding affinities of the drugs to HSA.
Generally, small molecules are bound to macromolecules
through several types of interactions, such as hydrogen
bonding, van der Waals, electrostatic, and hydrophobic
interactions.35,36 Extensive biochemical studies by Sudlow
in the 1970s resulted in the proposition of two main drug-
binding sites in HSA, denoted as I, or warfarin site, and II,
or indole-benzodiazepine site.37,38These sites were afterward
localized at subdomains IIA and IIIA, when the crystal
structures of HSA with ligands were available. Due to the
diversity of the molecules studied in this work, the binding
affinities of the drugs related to the molecular structure in a
complex way. Of the 7 descriptors, 3 are constitutional, 1 is

topological, 1 is geometrical, 1 is electrostatic, and 1 is
quantum-chemical descriptors. These descriptors encode
different aspects of the molecular structure.

HA dependent HDCA-2 [Zefirov’s PC] (HDCA-2), an
electrostatic descriptor, is a hydrogen bonding acceptor
dependent hydrogen bonding donor surface area, and this
descriptor describes the hydrogen bonding acceptor properties
of the compounds. The number of O atoms (NO) and the
relative number of N atoms (RNN) are two constitutional
descriptors. RNN is calculated as the number of N atoms
divided by the number of atoms. The NO and RNN also
partially account for the hydrogen bonding acceptor ability
of the compounds. The three descriptors, HDCA-2, NO, and
RNN, have a negative coefficient in the linear model, which
indicates that these structural features make a negative
contribution to the extent of protein binding. The larger the
descriptors value is, the lower the calculated logk(HSA) is.
Hence, the hydrogen bonding might not be favorable in
protein binding, and we speculated that it is probably due to
the hydrogen bonding weakening other factors which are
important in determining HSA binding extent. Hydrogen
bonding is formed when the distance between the hydrogen
donor and the hydrogen acceptor and the angle made by
covalent bonds to the donor and acceptor atoms are under
certain conditions. The formation of the hydrogen bonding
affects the space-matching between the protein and the drug,
and this might weaken other interactions between the drug
and HSA.

The relative negative charged surface area (RNCS), a
quantum-chemical descriptor, represents or depends directly
on the quantum-chemically calculated charge distribution in
the molecules and can account for the electrostatic interaction
between drugs and HSA. The descriptors of NO and RNN,
on the other hand, also describe the electron accessibility of
the molecules and give some information about the electro-
static interaction. NO, RNN, and RNCS have negative
coefficients in the linear model, which indicates that logk(H-
SA) is inversely proportional to these descriptors. This might
due to the electrostatic repulsion. The larger the descriptors
value is, the larger the electrostatic repulsion is. Thus, an
increase of these descriptors leads to a decrease of the
calculated logk(HSA).

The molecular surface area (MSA) is a geometrical
descriptor, which calculation requires 3D-coordinates of the
atoms in the given molecule and gives information about
the hydrophobic interaction. The positive coefficient in the
linear model indicates that logk(HSA) is proportional to this
descriptor; therefore, binding is favored for the molecules
with large molecular surface area; and we concluded that
an increasing of hydrophobicity increases drug binding to
HSA. According to thet-test values (Table 2), the more
relevant descriptor is MSA, and this indicates that hydro-
phobic interaction plays a prevailing role in the binding. This
coincides with the conclusion in the previous work2 and is
supported by the X-ray structures of HSA, both alone and
bound to different ligands.39-41

The relative number of rings (RNR), a constitutional
descriptor, is calculated as the number of rings divided by
the number of atoms. A wide variety of five- and six-
membered rings are encountered in this data set including
saturated, unsaturated rings, various di- and triazo rings, and
various systems with more than one heteroatom. This

Table 3. Correlation Matrix of the 7 Descriptors Used in This
Worka

HDCA-2 MSA NO RNR RNN BI RNCS

HDCA-2 1.000 0.434 0.689 0.094 0.158-0.320 -0.198
MSA 1.000 0.608 0.011-0.208 -0.700 -0.394
NO 1.000 0.019 -0.278 -0.394 -0.193
RNR 1.000 0.098-0.432 -0.023
RNN 1.000 0.197 -0.004
BI 1.000 0.311
RNCS 1.000

a The definitions of the descriptors were given in Table 2.

Figure 2. Plot of predicted logk(HSA) versus experimental values
for the training and test sets by heuristic method.
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descriptor has a positive coefficient in the linear model and
therefore indicates that molecules with a larger number of
rings are expected to bind more tightly to HSA.

The Balaban index (BI), a topological descriptor, describes
the atomic connectivity and branching information in the
molecule and has some correlation with the hydrophobic
interaction of the molecules. Because of its positive coef-
ficient in the linear model, increasing this descriptor also
increases the calculated logk(HSA) values, indicating that
the large degree of branching for molecules is in favor of
the binding. This echoes the importance of hydrophobicity
in binding.

From the above discussion, it can be seen that all the
descriptors involved in the model have explicit physical
meaning, and these descriptors can account for the structural
features responsible for the drug protein binding. According
to the analysis of the corresponding regression coefficient
(Table 2), molecular surface area, relative number of rings,
and the Balaban index present positive contributions for
binding affinity, whereas HA dependent HDCA-2 [Zefirov’s
PC], number of O atoms, relative number of N atoms, and
relative negative charges surface area present negative
contribution.

4.2. Result of SVM. 4.2.1. Selection of the Parameters
of the SVM. From Table 1 and Figure 2, it can be seen that
the model of the heuristic method was not sufficiently
accurate and the prediction ability was not satisfactory (the
rms error for the test set was 0.430), showing the factors
influencing the binding affinities of these compounds were
complex and not all of them were linear correlations with
the binding affinity. So, after the establishment of the linear
model by HM, we built the nonlinear prediction model by
SVM to further discuss the correlation between the molecular
structure and the binding affinity based on the same subset
of descriptors.

Similar to other multivariate statistical models, the per-
formances of SVM for regression depend on the combination
of several parameters. They are capacity parameterC, ε of
ε-insensitive loss function, the kernel typeK, and its
corresponding parameters. In this work, LOO cross-validation
was performed for parameters selection,42,43which probably
is the current best-performing approach to the SVM design
problem.44 C is a regularization parameter that controls the
tradeoff between maximizing the margin and minimizing the
training error. IfC is too small, then insufficient stress will
be placed on fitting the training data. IfC is too large, then
the algorithm will overfit the training data. To make the
learning process stable, a large value should be set up for
C.

The kernel type is another important parameter. For
regression tasks, the Gaussian kernel is commonly used. The
form of the Gaussian function is as follows

whereγ is a constant, the parameter of the kernel, andu
andV are two independent variables.γ controls the amplitude
of the Gaussian function and, therefore, controls the gener-
alization ability of SVM. Each rms error on the LOO cross-
validation was plotted versusγ (Figure 3), and the minimum
was chosen as the optimal conditions. In this case:γ )
0.010.

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value

exp(- γ* |u - V|2)

Figure 3. The gamma versus rms error on LOO cross-validation
(C ) 100, ε ) 0.1).

Figure 4. The epsilon versus rms error on LOO cross-validation
(C ) 100, γ ) 0.008).

Figure 5. The C versus rms error on LOO cross-validation (γ )
0.010,ε ) 0.065).
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of ε is critical from theory. To find an optimalε, the rms on
LOO cross-validation on differentε was calculated. The
curve of rms versus the epsilon was shown in Figure 4. The
optimal ε was found as 0.065.

The last important parameter is the regularization param-
eterC, of which the effect on the rms was shown in Figure
5. From Figure 5, the optimalC was found as 100.

4.2.2. The Predicted Results of SVM.Through the above
process, theγ, ε, andC were fixed to 0.010, 0.065, and 100,
respectively, when the support vector number of the SVM
model was 70, the predicted results of the optimal SVM were
shown in Table 1 and Figure 6. The model gave an rms error
of 0.134 for the training set, 0.222 for the prediction set,
and 0.146 for the whole set, and the corresponding correlation
coefficients (R2) were 0.94, 0.89, and 0.94, respectively.
Figure 6 proved that the SVM model was statistically stable
and fitted the data well.

4.3. Compare the Results Obtained by Different QSAR
Approaches.To test the suitability of the QSAR approach
constructed by SVM, the obtained binding affinities were
compared with those calculated in refs 2 and 9 and the
heuristic method. Table 4 showed the statistical parameters
of the results obtained from the three studies for the same
set of compounds. The rms errors of the SVM model for
the training, the test, and the whole data set were much lower
than that of the models proposed in ref 9 and the heuristic
method. The correlation coefficient (R2) given by the SVM
model was higher than that of the models in refs 2 and 9
and the heuristic method. Through a regression analysis on
the experimental and the calculated binding affinity obtained
by different methods for the whole data set, the results of
F-test andt-test were obtained and also shown in Table 4.
From Table 4, it can be seen that the SVM model gives the

highest F and t values, so this model gives the most
satisfactory results, compared with the results obtained from
ref 2, ref 9, and the heuristic methods. Consequently, this
SVM approach currently constitutes the most accurate
method to predict the binding affinity of drugs.

5. CONCLUSION

The heuristic method and the support vector machine were
used to construct the linear and nonlinear quantitative
relationships for the prediction of the affinity of a diverse
set of 94 drugs binding to human serum albumin based on
the descriptors calculated from the molecular structure alone.
Both the linear and nonlinear models provided the satisfac-
tory results, and, at the same time, the nonlinear SVM models
produced better results with good predictive ability than that
of the linear model, so we can conclude that (1) the linear
model constructed by the heuristic method could correctly
represent the relationship between the binding affinities and
the molecular descriptors calculated solely from the molec-
ular structures, moreover, the 7 selected descriptors can
represent the features of the compounds responsible for their
binding behavior. So, the heuristic linear model could identify
and provide some insight into which structural features are
related to the drug albumin binding affinity. The linear model
indicates that an increase of hydrophobicity is expected to
result in an increased drug HSA binding. (2) By comparison
of the results from the different QSAR approaches, it can
be seen that the nonlinear model can describe accurately the
relationship between the structural parameter and the drug
HSA binding affinity. (3) SVM proved to be a very
promising tool in the prediction of the affinity of drugs
binding to HSA. The training procedure is also simple when
using SVM because there are fewer parameters having to
be optimized, and only support vectors are used in the
generalization process. Besides, the SVM exhibits the better
whole performance due to embodying the Structural Risk
Minimization principle and some advantages over the other
techniques. Furthermore, the proposed approach can also be
extended to other QSPR or QSAR investigations.
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