
Support Vector Machines-Based Quantitative Structure-Property Relationship for the
Prediction of Heat Capacity

C. X. Xue,† R. S. Zhang,†,‡ H. X. Liu,† M. C. Liu,† Z. D. Hu,*,† and B. T. Fan§

Department of Chemistry and Department of Computer Science, Lanzhou University, Lanzhou 730000, China,
and Universite´ Paris 7-Denis Diderot, ITODYS 1, Rue Guy de la Brosse, 75005 Paris, France

Received February 17, 2004

The support vector machine (SVM), as a novel type of learning machine, for the first time, was used to
develop a Quantitative Structure-Property Relationship (QSPR) model of the heat capacity of a diverse set
of 182 compounds based on the molecular descriptors calculated from the structure alone. Multiple linear
regression (MLR) and radial basis function networks (RBFNNs) were also utilized to construct quantitative
linear and nonlinear models to compare with the results obtained by SVM. The root-mean-square (rms)
errors in heat capacity predictions for the whole data set given by MLR, RBFNNs, and SVM were 4.648,
4.337, and 2.931 heat capacity units, respectively. The prediction results are in good agreement with the
experimental value of heat capacity; also, the results reveal the superiority of the SVM over MLR and
RBFNNs models.

1. INTRODUCTION

The heat capacity of a substance is a measure of how well
the substance stores heat. Whenever we supply heat to a
material, it will necessarily cause an increase in the material’s
temperature. The heat capacity is defined as the amount of
heat required to raise the temperature of a unit of mass of a
substance by a unit change in temperature, so thatc )
∆Q/(m∆T), wherec is the specific heat capacity in J/(kg
°C), ∆Q is the change in heat content in Joules,m is the
mass in kg, and∆T is the change in temperature in°C.1 The
heat capacity of the compounds is a subject of interest in
terms of understanding the fundamental chemical and physi-
cal processes in combustion chemistry. It has also received
attention in recent years from the point of view of safety in
chemical industrial processes. Experimental heat capacity
data are desirable, but due to the advancement of technology
in discovery or synthesis of new compounds, there is often
a significant gap between the demand for such data and their
availability. Of the millions of known substances, heat
capacity values are only recorded for a few thousand.
Moreover, for some toxic, explosive, or radioactive com-
pounds the experimental determination of the heat capacity
is extremely difficult. Hence a reliable theoretical method
for predicting the heat capacity is desired.

The quantitative structure-property relationship (QSPR)
approach has become very useful in the prediction of many
physicochemical properties. The advantage of this approach
over other methods lies in the fact that the descriptors used
can be calculated from the structure alone and are not
dependent on any experimental properties. Once the structure
of a compound is known, any descriptor can be calculated
no matter whether it is synthesized or not. So once a reliable

model is established, we can use this method to predict the
property of compounds. This study can tell us which of the
structural factors may play an important role in the deter-
mination of a property. The QSPR approach is based on the
assumption that the variation of the behavior of the com-
pounds, as expressed by any measured physical or chemical
properties, can be correlated with a change in molecular
features of the compounds termed descriptors. After the
calculation of the molecular descriptors, linear methods, such
as multiple linear regression (MLR), principal component
regression (PCR), and partial least squares (PLS) or nonlinear
methods, e.g. neural networks, can be used in the develop-
ment of a mathematical relationship between the structural
descriptors and the property.

Machine learning techniques have been applied to the
QSPR analysis since the late 1980s, mainly in response to
increased accuracy demands. The most popular neural
networks model is the back-propagation (BP) neural networks
due to its simple architecture yet powerful problem-solving
ability. However, the BP neural networks suffers from a
number of weaknesses which include the need for a large
number of controlling parameters, difficulty in obtaining a
stable solution, and the danger of overfitting. Other problems
with the use of neural networks concern the reproducibility
of results, due largely to random initialization of the networks
and variation of stopping criteria.2 Genetic algorithms can
suffer in a similar manner. The stochastic nature of both
population initialization and the genetic operators used during
training can make results hard to reproduce.3 Owing to the
reasons outlined above, there is a continuing need for the
application of more accurate and informative techniques in
QSPR analysis.

The support vector machine (SVM) is a new algorithm
developed from the machine learning community. Due to
its remarkable generalization performance, the SVM has
attracted attention and gained extensive application, such as
pattern recognition problems,4-6 drug design,7 quantitative
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structure-activity relationship (QSAR),8 and QSPR analy-
sis.9-11 Nevertheless, to the best of our knowledge there is
no prediction of heat capacity by the QSPR approach based
on SVM.

In this work, for the first time, SVM was used for the
prediction of heat capacity at 298.15 K of a diverse set of
182 compounds using descriptors calculated by the software
CODESSA.12 The aim was to establish a QSPR model that
could be used for the prediction of heat capacity of a diverse
set of compounds from their molecular structures alone, to
show the flexible modeling ability of SVM and, at the same
time, to seek the important structural features related to the
heat capacity of compounds. MLR and radial basis function
networks (RBFNNs) methods were also utilized to establish
quantitative linear and nonlinear relationship to compare with
the results obtained by SVM.

2. EXPERIMENTAL SECTION

2.1. Data Preparation.The heat capacity values of 182
compounds were collected from the database and used for
this study.13 The compounds include hydrocarbons, chloro-
carbons, alcohols, acids, ketones, aldehydes, ethers, esters,
amines, nitriles, sulfide, and thios. A complete list of the
compounds’ names and corresponding experimental heat
capacities was given in Table 1. The data set was randomly
divided into two subsets: the training set (2,3,4,6,7,8,10...)
and the test set (1,5,9...) (136 and 46 points, respectively).
The training set was used to adjust the parameters of the
models, and the test set was used to evaluate its prediction
ability. Leave-one-out (LOO) cross-validation was performed
on the training set to select the parameters of RBFNNs and
SVM.

2.2. Descriptor Calculation. All structures of the mol-
ecules were drawn with the HyperChem program and ex-
ported in a file format suitable for MOPAC.14 The final
geometries were obtained with the semiempirical PM3
method in the MOPAC 6.0 program.15 All the geometries
had been fully optimized without symmetry restrictions. In
all cases frequency calculations had been performed in order
to ensure that all the calculated geometries correspond to
true minima. The resulted geometry was transferred into
software CODESSA that can calculate constitutional, topo-
logical, geometrical, electrostatic, and quantum-chemical
descriptors. The constitutional descriptors reflect the molec-
ular composition of the compound without using the geom-
etry or electronic structure of the molecule. The topological
descriptors describe the atomic connectivity in the molecule.
The geometrical descriptors describe the size of the molecule
and require 3D-coordinates of the atoms in the given mole-
cule. The electrostatic descriptors reflect characteristics of
the charge distribution of the molecule. The quantum-chem-
ical descriptors add important information to the conventional
descriptors.

3. METHODOLOGY

3.1. Feature Selection and Regression Analysis.Once
descriptors were generated, in this work, the correlation
analysis of descriptors was performed first. In the process
of correlation analysis, pairwise correlations between de-
scriptors were examined so that only one descriptor was
retained from a pair contributing similar information (cor-

relation coefficients greater than 0.85). After the correlation
analysis of the descriptors, descriptor-screening methods were
used to select the most relevant descriptor to establish the
models for prediction of the molecular property. Here, the
forward stepwise regression method was used to choose the
subset of the molecular descriptors. Forward stepwise
regression starts with no model terms, and at each step it
adds the most statistically significant term (the one with the
highestF-statistic or lowestP-value) until there are none
left.

After the descriptor was selected, multiple linear regression
was used to develop the linear model of the property of
interest, which takes the form below:

In this equation,Y is the property, that is, the dependent
variable, X1-Xn represents the specific descriptor, while
b1-bn represents the coefficients of those descriptors, and
b0 is the intercept of the equation. The statistical evaluation
of the data was obtained by the software SPSS.

3.2. Radial Basis Function Neural Networks Theory.
The theory of RBFNNs has been extensively presented in
the paper of Yao et al.16,17 Here only a brief description of
the RBFNNs principle was given. The RBFNNs consist of
three layers: the input layer, the hidden layer, and the output
layer. The input layer does not process the information; it
only distributes the input vectors to the hidden layer. Each
neuron on the hidden layer employs a radial basis function
(RBF) as a nonlinear transfer function to operate on the input
data. In general, there are several radial basis functions:
linear, cubic, thin plate spline (TPS), Gaussian, multiqua-
dratic, and inverse multiquadratic. The most often used RBF
is the Gaussian function that is characterized by a center
(cj) and width (rj). In this study, Gaussian was selected as
the radial basis function. The operation of the output layer
is linear, which is given in eq 2

whereyk is thekth output unit for the input vectorx, wkj is
the weight connection between thekth output unit and the
jth hidden layer unit, andhj is the notation for the output of
the jth RBF unit.

The training procedure when using RBF involves selecting
centers, width, and weights. In this paper, the forward subset
selection routine was used to select the centers from training
set samples.18,19 The adjustment of the connection weight
between the hidden layer and the output layer was performed
using a least-squares solution after the selection of centers
and width of radial basis functions.

3.3. Support Vector Machines. 3.3.1. Structural Risk
Minimization. 20,21Previous approaches to statistical learning
have tended to be based on finding functions to map vector-
encoded data to their respective classes. The conventional
minimization of the empirical risk over the training data does
not, however, imply a good generalization to the novel test
data. Indeed, there could be a number of different functions
which all give a good approximation to a training set. It is
nevertheless difficult to determine a function which best
captures the true underlying structure of the data distribution.
Structural risk minimization (SRM) aims to address this

Y ) b0 + b1X1 + b2X2 + ‚‚‚ + bnXn (1)

yk(x) ) ∑wkjhj(x) + bk (2)
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Table 1. Compounds and the Predicted Results of the Heat Capacity (J K-1 Mol-1)

no. name
heat

capacity MLRa RBFNNsb SVMc no. name
heat

capacity MLRa RBFNNsb SVMc

1d methane 35.695 33.940 32.859 35.220 76 2-butene, (Z)- 80.150 87.298 85.953 85.523
2 methyl chloride 40.740 43.198 41.321 42.724 77d 1-butyne 81.820 80.360 78.747 78.316
3 methylene chloride 50.950 55.602 54.339 53.248 78 1-butene 85.560 87.847 86.564 86.127
4 chloroform 63.521 68.926 65.452 66.950 79 2-butene, (E)- 87.670 87.772 86.481 86.023
5d carbon tetrachloride 82.888 84.111 72.643 83.012 80 1-propene, 2-methyl- 88.090 90.592 88.379 88.775
6 carbon monoxide 29.141 31.318 31.404 31.756 81d isobutane 96.650 100.336 98.730 98.505
7 carbon dioxide 37.135 39.439 40.608 38.574 82 butane 98.490 97.168 96.452 95.579
8 methyl alcohol 44.101 42.440 43.623 44.502 83 butane, 1-chloro- 107.940 108.139 107.770 107.970
9d formic acid 45.801 43.767 45.387 43.541 84 butane, 2-chloro- 110.220 110.281 109.28 109.958

10 methylamine 50.050 47.203 48.229 48.738 85d propane, 2-chloro- 111.950 115.254 112.76 114.230
11 ethylene 42.883 44.149 41.901 43.909 2-methyl-
12 acetylene 44.036 36.795 35.804 45.922 86 furan 65.400 65.182 68.176 67.715
13d ethane 52.487 53.637 50.415 52.594 87 furan, 2,3-dihydro- 74.310 74.802 74.024 74.092
14 ethene, chloro- 53.680 56.431 55.348 53.864 88 cyclobutanone 74.310 76.074 76.812 78.704
15 ethene, 1,2-dichloro-, (Z)- 64.890 66.495 64.238 62.883 89d furan, tetrahydro- 76.634 84.024 80.161 80.556
16 ethyl chloride 65.640 66.057 64.445 63.587 90 2-oxetanone, 84.410 78.190 83.385 81.208
17d ethene, 1,2-dichloro-, (E)- 66.560 66.688 64.388 63.583 91 gamma-butyrolactone 86.100 85.285 86.316 85.491
18 ethene, 1,1-dichloro- 67.123 69.695 67.210 67.128 92 1,3-dioxane 89.400 94.065 90.671 90.739
19 ethane, 1,1-dichloro- 76.320 79.673 76.552 77.964 93d 1,4-dioxane 92.100 94.149 90.739 90.585
20 ethane, 1,2-dichloro- 77.320 76.657 74.190 73.953 94 2-butenal 93.920 87.974 88.369 88.014
21d tetrachloroethylene 94.919 90.931 77.904 89.971 95 cyclobutanol 94.470 85.931 86.698 86.309
22 ethylene oxide 47.850 43.559 50.428 48.045 96 1-butanol 108.030 106.866 109.030 108.569
23 ketene 51.750 50.597 51.832 48.980 97d ethanol, 1,1-dimethyl- 113.630 114.111 111.140 113.572
24 acetaldehyde 55.320 55.314 56.450 54.992 98 ethyl acetate 113.640 109.717 108.230 108.709
25d acetic acid 63.440 67.743 65.853 66.453 99 ethoxy ethane 119.460 107.809 107.780 116.866
26 methyl formate 64.380 65.442 64.056 63.044 100 pyrrole 71.600 69.931 71.358 72.315
27 ethanol 65.210 65.117 65.607 65.385 101d (Z)-2-butenenitrile 83.850 91.827 89.899 80.484
28 dimethyl ether 65.570 65.523 63.583 63.406 102 (E)-2-butenenitrile 86.740 92.096 90.140 90.883
29d 1,2-ethanediol 77.990 74.685 74.813 74.478 103 1-butanamine 113.900 112.327 114.150 114.418
30 acetonitrile 52.220 53.020 54.409 52.104 104 2-butanamine 120.300 114.191 116.720 115.101
31 dimethylamine 70.500 70.292 70.423 70.891 105d 2-propanamine, 2-methyl- 120.920 119.266 118.010 118.930
32 thiirane 53.320 49.635 55.351 53.717 106 thiophene, tetrahydro- 90.860 90.266 91.398 89.515
33d ethanethiol 73.008 71.500 73.099 71.892 107 diethyl sulfide 116.570 113.532 117.930 117.130
34 dimethyl sulfide 74.060 71.599 73.208 71.970 108 1-propanethiol, 2-methyl- 118.830 115.463 120.240 118.423
35 disulfide, dimethyl 94.220 88.860 90.835 90.123 109d 2-butanethiol 119.700 115.607 120.440 118.554
36 acetyl chloride 67.860 69.073 67.828 67.391 110 propane, 2-(methylthio)- 120.000 115.870 120.780 118.812
37d urea, methyl- 88.700 86.850 84.301 86.051 111 2-propanethiol, 2-methyl- 121.130 120.483 120.990 122.912
38 cyclopropene 52.900 45.268 51.496 48.828 112 1,3-cyclopentadiene 75.400 76.144 74.891 75.241
39 cyclopropane 55.600 54.311 56.208 55.256 113d cyclopentene 81.280 85.482 81.253 81.853
40 allene 59.030 61.708 60.269 59.180 114 cyclopentane 82.800 95.084 88.354 89.770
41d propyne 60.730 59.142 57.847 56.778 115 cyclobutane, methylene- 87.400 87.497 84.969 84.986
42 propene 64.320 66.974 65.130 64.860 116 1,3-pentadiene, (Z)- 97.180 99.464 98.549 98.431
43 propane 73.600 76.106 74.026 74.118 117d 1,4-pentadiene 98.240 99.412 98.500 98.369
44 propane, 1-chloro- 85.300 86.692 85.311 85.062 118 2-pentene, (Z)- 98.800 108.921 109.000 98.212
45d propane, 2-chloro- 87.560 90.125 87.813 88.374 119 1,3-pentadiene, (E)- 99.060 99.532 98.619 98.489
46 oxetane 61.541 63.813 64.398 64.121 120 2,3-pentadiene 99.900 103.085 102.110 102.648
47 cyclopropanone 64.300 55.493 61.009 60.113 121d 1,2-pentadiene 101.000 103.657 102.650 103.305
48 1,3-dioxolane 71.000 73.249 72.991 73.129 122 1,3-butadiene, 2-methyl- 102.690 100.684 99.057 99.320
49d beta-propiolactone 71.240 65.136 70.270 68.993 123 2-butene, 2-methyl- 105.020 110.005 109.460 108.905
50 acetone 75.020 79.420 76.476 78.895 124 1,2-butadiene, 3-methyl- 105.250 105.213 103.520 104.586
51 2-propen-1-ol 76.020 76.682 77.235 76.815 125d cyclopropane, 1,1- 106.370 100.324 100.760 97.931
52 propanal 80.730 87.766 86.474 80.032 dimethyl-
53d 2-propenoic acid 81.800 78.417 76.178 77.036 126 2-pentene, (E)- 108.900 108.724 108.790 107.932
54 1,3,5-trioxane 81.900 82.852 82.289 82.094 127 1-butene, 2-methyl- 109.960 110.500 110.010 109.471
55 1-propanol 85.560 85.928 86.283 86.715 128 butane, 2-methyl- 118.900 120.424 120.750 119.504
56 acetic acid, methyl ester 86.030 88.312 85.933 86.438 129d pentane 120.070 118.196 118.750 117.528
57d isopropyl alcohol 89.320 89.171 86.619 88.866 130 propane, 2,2-dimethyl- 120.820 124.813 124.260 123.340
58 ethane, methoxy- 93.300 86.342 84.878 94.486 131 pentane, 1-chloro- 130.580 129.439 129.230 130.431
59 acrylonitrile 63.940 64.260 64.989 62.691 132 2H-pyran, 3,4-dihydro- 92.200 95.340 91.644 91.706
60 1-propanamine 91.170 91.022 91.294 92.181 133d cyclopentanone 95.330 96.113 97.630 96.602
61d 2-propanamine 97.550 94.306 92.526 94.326 134 2H-pyran, tetrahydro- 99.100 104.817 99.354 98.402
62 thietane 68.620 69.902 71.181 71.474 135 cyclopentanol 105.430 105.812 108.730 103.496
63 1-propanethiol 94.890 92.553 94.841 94.399 136 2-pentanone 125.900 120.740 125.680 122.521
64 ethane, (methylthio)- 95.060 92.811 95.159 94.707 137d 3-pentanone 129.870 119.471 124.580 131.726
65d 2-propanethiol 96.150 95.510 95.261 96.288 138 1-pentanol 130.700 128.471 131.070 131.758
66 urea,N,N′-dimethyl- 103.800 107.537 109.300 108.815 139 pyridine 78.230 80.979 81.204 82.931
67 urea,N,N-dimethyl- 107.200 109.485 108.58 109.879 140 1H-pyrrole, 1-methyl- 90.890 92.813 93.662 94.149
68 urea, ethyl- 115.700 108.422 109.080 118.706 141d (E)-2-pentenenitrile 106.100 106.567 108.950 108.476
69d cyclobutene 64.410 65.308 65.381 64.955 142 (Z)-2-pentenenitrile 106.100 106.640 109.040 109.016
70 cyclobutane 70.600 74.707 70.984 72.007 143 pentanenitrile 116.540 115.683 120.720 118.689
71 methylenecyclopropane 72.930 66.971 68.447 67.613 144 butanenitrile, 2-methyl- 121.800 116.226 120.930 118.503
72 1-methylcyclopropene 74.680 67.208 68.600 67.802 145d propanenitrile, 2,2- 124.220 121.206 122.560 122.466
73d 2-butyne 78.020 79.932 78.323 77.867 dimethyl-
74 1,2-butadiene 79.480 82.479 80.804 80.749 146 thiophene, 2-methyl- 95.370 92.974 92.953 95.048
75 1,3-butadiene 79.810 78.289 76.658 76.155 147 thiophene, 3-methyl- 95.790 93.177 93.131 95.043
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problem and provides a well-defined quantitative measure
for the capacity of a learned function to generalize over
unknown test data. Due to its relative simplicity, the Vapnik-
Chervonenkis (VC) dimension in particular has been adopted
as one of the more popular measures for such a capacity.
By choosing a function with a low VC dimension and
minimizing its empirical error to a training data set, SRM
can offer a guaranteed minimal bound on the test error.

3.3.2. Theory of SVM for Regression.22 The foundation
of Support Vector Machines (SVM) has been developed by
Vapnik, and they are gaining popularity due to many
attractive features and promising empirical performance.21,23

The formulation embodies the Structural Risk Minimization
(SRM) principle, which has been shown to be superior to
the traditional Empirical Risk Minimization (ERM) principle,
employed by conventional neural networks. SRM minimizes
an upper bound on VC dimension (“generalization error”),
as opposed to ERM that minimizes the error on the training
data. It is the difference that equips SVM with good
generalization performance, which is the goal in statistical
learning. Originally, SVM were developed for pattern
recognition problems24 and now, with the introduction of
ε-insensitive loss function, SVM have been extended to
solve nonlinear regression estimation. The estimated function
is a linear expansion in terms of functions defined on a
certain subset of the data (support vectors), and the final
number of coefficients in such an expansion does not depend
on the dimensionality of the space of input variables. These
two properties make SVM an especially useful technique
for dealing with very large data sets in a high-dimensional
space.

Compared to other neural network regressors, there are
three distinct characteristics when SVM are used to estimate
the regression function. First of all, SVM estimate the
regression using a set of linear functions that are defined in
a high-dimensional space. Second, SVM carry out the
regression estimation by risk minimization where the risk is
measured using Vapnik’sε-insensitive loss function. Third,
SVM use a risk function consisting of the empirical error
and a regularization term which is derived from the structural
risk minimization principle of converging to the global
optimum and not to a local optimum.

Figure 1 contains a graphical overview over the different
steps in the regression stage of SVM. In support vector
regression (SVR), the basic idea is to map the datax into a
higher-dimensional feature spaceF via a nonlinear mapping
Φ and then to do linear regression in this space. Therefore,
regression approximation addresses the problem of estimating
a function based on a given data setG ) {(xi,di)}i

n (xi is the
input vector,di is the desired value, andn is the total number
of data patterns), and SVM approximate the function using
the following equation

whereΦ(x) is the high-dimensional feature space which is
nonlinearly mapped from the input spacex. The coefficients
w andb are estimated by minimizing

In the regularized risk function given by eq 4, the first term
C(1/n)∑i)1

n Lε(di,yi) is the empirical error (risk). They are
measured by theε-insensitive loss function given by eq 5.
This loss function provides the advantage of enabling one
to use sparse data points to represent the decision function
given by eq 3. The second term 1/2||w||2, on the other hand,
is the regularization term.C is referred to as the regularized

Table 1 (Continued)

no. name
heat

capacity MLRa RBFNNsb SVMc no. name
heat

capacity MLRa RBFNNsb SVMc

148 ethyl propyl sulfide 139.200 135.130 138.150 141.078 165d 2-hexyne 119.650 122.393 122.440 122.995
149d butane, 1-(methylthio)- 139.790 134.493 137.570 139.282 166 cyclobutane, ethyl- 122.800 117.437 110.460 118.365
150 1-pentanethiol 141.210 134.838 137.880 139.360 167 2-butene, 2,3-dimethyl- 123.600 133.233 133.410 122.452
151 2-butanethiol, 2-methyl- 143.390 139.783 143.920 142.724 168 1-hexyne 125.950 122.697 122.700 123.192
152 propane, 2-methyl-2- 143.800 140.217 144.380 143.432 169d 2-pentene, 3-methyl-, (E)- 126.600 130.988 131.310 130.903

(methylthio)- 170 2-pentene, 3-methyl-, (Z)- 126.600 131.245 131.530 131.192
153d benzene 94.100 89.269 86.429 94.947 171 1-hexene 130.830 129.577 129.960 129.259
154 1,4-cyclohexadiene 94.100 96.330 92.379 92.588 172 1-butyne, 3,3-dimethyl- 131.310 127.221 126.300 125.824
155 1,3-cyclohexadiene 94.200 96.716 92.662 92.966 173d pentane, 3-methylene- 133.600 130.256 130.640 130.011
156 cyclopentene, 4-methyl- 100.000 107.683 104.360 102.903 174 butane, 2,3-dimethyl- 139.400 141.700 140.560 140.004
157d cyclopentene, 3-methyl- 100.000 108.044 104.650 102.935 175 pentane, 3-methyl- 140.100 140.288 138.850 138.877
158 bicyclo[3.1.0]hexane 100.500 95.349 100.400 92.113 176 butane, 2,2-dimethyl- 141.500 143.422 142.080 140.166
159 cyclopentene, 1-methyl- 101.000 107.514 104.220 102.701 177d hexane 142.600 139.956 138.230 139.595
160 cyclohexane 105.300 115.230 107.700 107.680 178 1-butene, 2,3-dimethyl- 143.500 132.813 133.020 141.825
161d cyclopentane, methyl- 109.500 116.769 111.760 108.911 179 phenol 103.220 100.008 100.700 99.857
162 1,3,5-hexatriene, (Z)- 110.170 110.826 109.900 110.723 180 toluene 103.700 112.238 110.490 109.928
163 1,3,5-hexatriene, (E)- 110.620 111.226 110.260 111.200 181d styrene 151.290 122.248 119.670 149.550
164 3-hexyne 119.500 122.364 122.410 122.960 182 naphthalene 133.020 132.444 132.710 137.580

a Predicted heat capacity by MLR.b Predicted heat capacity by RBFNNs.c Predicted heat capacity by SVM.d Test set.

Figure 1. Architecture of a regression machine constructed by the
support vector algorithm.22

y ) f(x) ) wΦ(x) + b (3)

RSVMs(C) ) C
1

n
∑
i)1

n

Lε(di,yi) +
1

2
||w||2 (4)

Lε(d,y) ) {|d - y| - ε|d - y| g ε

0 otherwise
(5)
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constant, and it determines the tradeoff between the empirical
risk and the regularization term. Increasing the value ofC
will result in the relative importance of the empirical risk
with respect to the regularization term to grow.ε is called
the tube size, and it is equivalent to the approximation
accuracy placed on the training data points. BothC and ε

are user-prescribed parameters.
To obtain the estimations ofw andb, eq 4 is transformed

to the primal function given by eq 6 by introducing the
positive slack variablesêi andêi* as follows:

Finally, by introducing Lagrange multipliers and exploiting
the optimality constraints, the decision function given by eq
3 has the following explicit form

where the kernel functionK corresponds toK(x,xi) )
φ(x)Tφ(xi). One has several possibilities for the choice of
this kernel function, including linear, polynomial, splines,
and radial basis function. The elegance of using kernel
function lies in the fact that one can deal with feature spaces
of arbitrary dimensionality without having to compute the
map Φ(x) explicitly. In the support vector regression, a
commonly used kernel function is the Gaussian Radial Basis
Function.

The overall performances of RBFNNs and SVM were
evaluated in terms of the root-mean-square (rms) error which
was defined as below

whereyk is the desired output andŷk is the actual output of
the model, andns is the number of compounds in the
analyzed set.

3.4. RBFNNs and SVM Implementation and Computa-
tion Environment. All calculation programs implementing
RBFNNs were written in M-file based on the basis MAT-
LAB script for RBFNNs. All calculation programs imple-
menting SVM were written in R-file based on the R script
for SVM and compiled using an R1.7.1 compiler.25 The
scripts were run on a Pentium IV PC with 256M RAM.

4. RESULTS AND DISCUSSION

4.1. Results of MLR. About 600 descriptors were
calculated by the CODESSA program. After the correlation
analysis of the descriptors, the pool of descriptors was
reduced to 227. The stepwise regression routine was used
to develop the linear model for the prediction of the heat
capacity using calculated structural descriptors. The best
linear model contains 4 molecular descriptors. The regression

coefficients of the descriptors and their physical-chemical
meaning were listed in Table 2. The linear correlation
coefficient value of each of the two descriptors is<0.85,
which means the descriptors were independent in this MLR
analysis. The predicted results were given in Table 1. This
model gave an rms error of 4.268 heat capacity units for the
training set, 5.794 for the test set, and 4.648 for the whole
set, and the corresponding correlation coefficients (R) were
0.988, 0.975, and 0.985, respectively. Figure 2 showed these
predicted versus experimental heat capacity.

4.2. Result of RBFNNs.From Table 2, it can be seen
that the model of MLR was not sufficiently accurate (rms
) 4.189, SE) 4.268) and showed the factors influencing
the heat capacity were complex and not all of them were a
linear correlation with the heat capacity. So, we built the
nonlinear prediction models by RBFNNs and SVM to further
discuss the correlation between the molecular structure and
the heat capacity based on the same descriptor set.

After the establishment of a linear model, RBFNNs were
used to develop a nonlinear model based on the same subset
of descriptors. Each minimum error on the LOO cross-
validation was plotted versus the width (Figure 3), and the
minimum was chosen as the optimal conditions.

Through the above process, the optimum width and the
best number of hidden layer units were selected as 2.0 and
20, respectively. From the best network, the inputs in the
test set were presented with it, and the results with RBFNNs
were obtained. They were shown in Table 1 and Figure 4.
The network gave an rms error of 3.422 for the training set,
6.310 for the prediction set, and 4.337 for the whole set,
and the corresponding correlation coefficients (R) were 0.987,
0.992, and 0.973, respectively.

Minimize RSVMs(w,ê(*)) )
1

2
||w||2 + C∑

i)1

n

(êi + êi*)

Subject to{di - wΦ(xi) - bi eε + êi

wΦ(xi) + bi - di e ε + êi*
êi,êi* g 0

(6)

f(x,ai,ai*) ) ∑(ai - ai*)K(x,xi) + b (7)

rms) x∑
i)1

ns

(yk - ŷk)
2

ns

(8)

Table 2. Descriptors, Coefficients, Standard Error, andT-Values
for the Linear Modela

chemical meaning descriptor coeff SE betaT-value

intercept (constant) 0.882 1.911 0.461
molecular volume MV 0.678 0.064 0.502 10.520
number of rings NR -12.697 0.942 -0.236 -13.476
number of atoms NA 2.762 0.267 0.407 10.348
Randic index (order 2) RI2 4.262 1.048 0.115 4.068

a R ) 0.988;R2 ) 0.975; SE of the estimate) 4.268; rms) 4.189;
n ) 136; F )1295.787.

Figure 2. Predicted versus experimental heat capacity (MLR).
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4.3. Result of SVM. 4.3.1. Selection of the Parameters
of the SVM. Analysis of the results obtained by RBFNNs,
it can be seen that the model constructed by RBFNNs was
not sufficiently accurate and the prediction ability was bad
(the rms error for the test set was 6.310), so after the
establishment of nonlinear model by RBFNNs, the support
vector machines were used to develop an accurate nonlinear
model based on the same subset of descriptors.

Similar to other multivariate statistical models, the perform-
ances of SVM for regression depend on the combination of
several parameters. They are capacity parameterC, ε of
ε-insensitive loss function, the kernel typeK, and its corre-
sponding parameters. In this work, LOO cross-validation was
performed for parameters selection,26,27 which probably is
the current best-performing approach to the SVM design
problem.28 C is a regularization parameter that controls
the tradeoff between maximizing the margin and minimizing
the training error. IfC is too small, then insufficient stress
will be placed on fitting the training data. IfC is too large,
then the algorithm will overfit the training data. To make
the learning process stable, a large value should be set up
for C.

The kernel type is another important parameter. For
regression tasks, the Gaussian kernel is commonly used. The
form of the Gaussian function is as follows

whereγ is a constant, the parameter of the kernel, andu
andV are two independent variables.γ controls the amplitude
of the Gaussian function and, therefore, controls the gener-
alization ability of SVM. Each rms error on the LOO cross-
validation was plotted versusγ (Figure 5), and the minimum
was chosen as the optimal conditions. In this case:γ )
0.008.

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions,
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value
of ε is critical from theory. To find an optimalε, the rms on

LOO cross-validation on differentε was calculated. The
curve of rms versus the epsilon was shown in Figure 6. The
optimal ε was found as 0.02.

The last important parameter is the regularization param-
eterC, of which the effect on the rms was shown in Figure
7. From Figure 7, the optimalC was found as 100.

4.3.2. The Predicted Results of SVM.Through the above
process, theγ, ε, andC were fixed to 0.008, 0.02, and 100,
respectively, when the support vector number of the SVM

Figure 3. The width of RBFNNs versus rms error on LOO cross-
validation.

exp(- γ* |u - V|2)

Figure 4. Predicted versus experimental heat capacity (RBFNNs).

Figure 5. The gamma versus rms error on LOO cross-validation
(C ) 100, ε ) 0.1).

Figure 6. The epsilon versus rms error on validation set (C )
100, γ ) 0.008).
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model was 19, the predicted results of the optimal SVM were
shown in Table 1 and Figure 8. The model gave an rms of
2.880 for the training set, 3.078 for the prediction set, and
2.931 for the whole set, and the corresponding correlation
coefficients (R) were 0.994, 0.993 and 0.994, respectively.
The performance of SVM is better than MLR and RBFNNs
models in Table 1.

4.4. Discussion of the Input Parameters and the Results.
By interpreting the descriptors in the regression model, it is
possible to gain some insight into factors that are likely to
govern the heat capacity of the compounds. Of the four
descriptors, two are constitutional, one is topological, and
one is geometrical descriptor. According to the beta values
(Table 2), the more relevant descriptor is a geometrical
descriptor: molecular volume (MV). MV is a bulk property,
which describes the size of a molecule and relates to the
dispersion interaction among molecules; this parameter
receives a positive regression coefficient in the regression
indicating that the larger the molecular volume is, the higher
the heat capacity is. The constitutional descriptors include
the number of rings (NR) and the number of atoms (NA).
NR receives a negative coefficient in the regression, and this
indicates that increasing the number of rings leads to a low
heat capacity. So, the heat capacity of noncyclic compound
is higher than that of cyclic compound. NA receives a

positive coefficient indicating that the heat capacity increases
with the increasing of the number of the atoms. The inclusion
of topological descriptors: the Randic index (order 2) (RI2),
which encodes the size, shape, and degree of branching in
the compound and also relates to the dispersion interaction
among molecules. It receives a positive coefficient in the
regression model indicating the heat capacity increases with
increasing the RI2 of the molecule.

Analysis of the results obtained indicated that the models
we proposed correctly represent the structural-property
relationships of these compounds and that molecular descrip-
tors calculated solely from structures can represent the
structural features of the compounds responsible for their
heat capacity. Moreover, it seems that the prediction ability
of SVM is better than MLR and RBFNNs models. The root
cause that SVM can obtain the best results is that SVM
adopts the Structural Risk Minimization principle.

5. CONCLUSION

The support vector machine, as a novel type of learning
machine, for the first time, was used to develop a QSPR
model for the prediction of the heat capacity of a diverse
set of 182 compounds based on descriptors calculated from
the molecular structure alone. MLR and RBFNNs were also
utilized to establish quantitative linear and nonlinear relation-
ships to compare with the results obtained by SVM. Very
satisfactory results were obtained with the proposed methods.
The models proposed could identify and give some insight
into factors that are likely to govern the heat capacity of the
compounds. Additionally, nonlinear models using SVM
based on the same set of descriptors produced even better
models with a good predictive ability than the two other
MLR and RBFNNs models. This study of the QSPR model
shows that the SVM is a very promising tool in the prediction
of heat capacity and exhibits a high speed of leaning when
compared with RBFNNs. The training procedure is also
simple when using SVM because there are fewer parameters
having to be optimized, and only support vectors are used
in the generalization process. Besides, the SVM exhibits the
better whole performance due to embodying the Structural
Risk Minimization principle and some advantages over the
other techniques. Furthermore, the proposed approach can
also be extended to other QSPR or QSAR investigations.
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