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ABSTRACT
Motivation: An increasing number of observations support the
hypothesis that most biological functions involve the interac-
tions between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this context,
the problem of inferring a global protein network for a given
organism, using all available genomic data about the organ-
ism, is quickly becoming one of the main challenges in current
computational biology.
Results: This paper presents a new method to infer protein
networks from multiple types of genomic data. Based on a
variant of kernel canonical correlation analysis, its originality
is in the formalization of the protein network inference problem
as a supervised learning problem, and in the integration of het-
erogeneous genomic data within this framework. We present
promising results on the prediction of the protein network for
the yeast Saccharomyces cerevisiae from four types of widely
available data: gene expressions, protein interactions meas-
ured by yeast two-hybrid systems, protein localizations in the
cell and protein phylogenetic profiles. The method is shown
to outperform other unsupervised protein network inference
methods. We finally conduct a comprehensive prediction of
the protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypothesis
that most biological functions involve the interactions between
many proteins, and that the complexity of living systems arises
as a result of such interactions. In this context, the problem
of inferring a global protein network for a given organism,
using all available genomic data about the organism, is quickly
becoming one of the main challenges addressed in current
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computational biology. By protein network we mean, in this
paper, a graph with proteins as vertices and edges that corres-
pond to various binary relationships between proteins. More
precisely, we consider below the protein network with edges
between two proteins if (i) the proteins interact physically,
or (ii) the proteins are enzymes that catalyze two successive
chemical reactions in a pathway or (iii) one of the proteins
regulates the expression of the other. This definition of pro-
tein network involves various forms of interactions between
proteins, which should be taken into account for the study of
the behavior of biological systems.

Unfortunately, the experimental determination of this pro-
tein network remains very challenging nowadays, even for
the most basic organisms. The lack of reliable informa-
tion contrasts with the wealth of genomic data generated by
high-throughput technologies such as gene expression data
(Eisen et al., 1998), physical protein interactions (Ito et al.,
2001), protein localization (Huh et al., 2003), phylogen-
etic profiles (Pellegrini et al., 1999) or pathway knowledge
(Kanehisa et al., 2004). There is therefore an incentive
to develop methods to predict the protein network from
such data.

A variety of computational methods for this problem have
been investigated so far. Some methods perform the protein
network inference from a single type of genomic data, such
as Bayesian networks (Friedman et al., 2000) and Boolean
networks (Akutsu et al., 2000), which aim at inferring gene
regulation networks from gene expression data, or the mirror
tree method (Pazos et al., 2001), which predicts protein inter-
actions from evolutionary similarities. Other methods com-
bine different sources of data to infer the network: this is for
example, the case in the joint graph method (Marcotte et al.,
1999), where graphs representing similarities with respect to
various types of genomic information are overlapped in order
to detect strong associations between proteins.

These methods share the particularity of being unsuper-
vised, in the sense that the whole protein network is inferred
from the data. Inference typically relies on the assumption
that proteins sharing similarity according to a dataset (e.g.
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coexpression or coevolution), are more likely to be linked
than others. The reliable a priori knowledge about the protein
network, such as experimentally determined protein interac-
tions, is usually not used in the inference process itself, but
rather as a way to assess the accuracy of the inference engine.

In this paper, we propose a method to infer protein net-
works from multiple heterogeneous genomic datasets in a
supervised context. By supervised we mean that the reliable
a priori knowledge about parts of the true protein network is
used in the inference process itself. The supervised approach
is a two-step process. First, a model is learned to explain the
‘gold standard’ from available datasets. Second, this model is
applied to proteins absent from the ‘gold standard’, in order
to infer their interactions. While supervised classification is
a classical paradigm in machine learning and statistics, most
methods cannot be adapted directly to the network inference
problem, because the goal is to predict properties between
proteins, not about individual proteins. In order to develop
an algorithm adapted to this context, we propose a method
borrowing ideas from spectral clustering (Ng et al., 2002)
and finally equivalent to kernel canonical correlation analysis
(CCA) (Akaho, 2001) in order to detect correlations between
heterogeneous datasets, in particular between a protein net-
work and other genomic attributes. Kernel CCA has received
a lot of attention in computational biology recently, appear-
ing as a useful approach to predict gene functions (Vert et al.,
2003a), extract active metabolic pathway from gene expres-
sion (Vert et al., 2003b) or detect operon structures from
pathways, genomes and expression data (Yamanishi et al.,
2003).

The method is tested on its ability to predict the pro-
tein network of Saccharomyces cerevisiae from four data-
sets for proteins: gene expression data obtained from DNA
microarrays, noisy protein interaction data obtained by yeast
two-hybrid systems, localization data and sequence data
encoded into phylogenetic profiles. It compares favorably two
other unsupervised methods we propose, one based on the
assumption that similar proteins (in the sense of the avail-
able datasets) should interact, the other based on a spectral
clustering approach. The systematic experiments we conduct
highlight the accuracy improvement resulting from the integ-
ration of heterogeneous data and from the supervised learning
approach. Finally, we perform a comprehensive prediction
of the protein network for all proteins of the yeast, which
enables us to propose protein candidates for missing enzymes
in biosynthesis pathways.

MATERIALS
Protein network data As a gold standard for part of the pro-
tein network of S.cerevisiae, we take the KEGG/PATHWAY
database (Kanehisa et al., 2004), which is a graph with
proteins as vertices and with three types of edges: enzyme–
enzyme relations when two proteins are enzymes that catalyze

successive reactions in a known pathway, direct physical
protein–protein interactions, and gene expression regulation
between a transcription factor and its target gene products.
The resulting protein network, that contains 769 nodes and
3702 edges, is regarded as a reliable part of the global protein
network to be inferred below.

Expression data Expression data corresponding to 157
experiments [77 experiments in Spellman et al. (1998) and
80 experiments in Eisen et al. (1998)] were used. Each protein
is therefore associated with a vector of dimension 157.

Protein interaction data We used 5470 interacting protein
pairs, detected from several yeast two-hybrid (Y2H) experi-
ments (Ito et al., 2001; Uetz et al., 2000). Because the Y2H
method is known to introduce many false positives, this data-
set should be considered as a very noisy version of the physical
interaction part of the true protein network.

Localization data The localization data were obtained
from the budding yeast localization (Huh et al., 2003).
This dataset describes localization information of proteins
in 23 intracellular locations, such as mitochondrion, Golgi
and nucleus. To each protein is therefore attached a string of
23 bits, in which the presence and absence of the protein in a
certain intracellular location is coded as 1 and 0, respectively,
across the 23 intracellular locations.

Phylogenetic profile Phylogenetic profiles were construc-
ted from the ortholog clusters in the KEGG database, which
describes the sets of orthologous proteins in 145 organisms.
In this study, we focus on the organisms with fully sequenced
genomes, including 11 eukaryotes, 16 archaea and 118 bac-
teria. Each phylogenetic profile consists of a string of bits,
in which the presence and absence of an orthologous pro-
tein is coded as 1 and 0, respectively, across the above
145 organisms.

METHODS
Data representation and integration by kernels
Kernel representation In order to represent each type of
genomic information described in the previous section into a
coherent and useful mathematical framework, we first trans-
form each dataset into a symmetric positive definite kernel
function (simply called kernel below), that is, a real-valued
function K(x, y) satisfying K(x, y) = K(y, x) for any two
proteins x and y, and

∑n
i=1 aiajK(xi , xj ) ≥ 0 for any

integer n, set of proteins (x1, . . . , xn) and set of real num-
bers (a1, . . . , an) (Schölkopf and Smola, 2002). Intuitively,
the kernel corresponding to a given dataset can be thought
of as a measure of similarity between proteins with respect
to the dataset. For example, when a dataset assigns a vec-
tor to each protein (such as expression, localization data or
phylogenetic profiles), the Gaussian RBF kernel k(x, y) =
exp(−‖x − y‖2/2σ 2) or the linear kernel k(x, y) = x · y
are natural candidates. When a dataset comprises a graph
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of proteins (such as the gold standard protein network or
the noisy protein interactions), then a natural choice is the
diffusion kernel (Kondor et al., 2002) defined as the matrix
K = exp (βH), where β > 0 is a parameter and H is the
opposite Laplacian matrix of the graph (H = A − D where
A is the adjacency matrix and D is the diagonal matrix of
node connectivity). The two main motivations behind repres-
enting all datasets by kernel functions are first that all types of
data are encoded in the same mathematical framework even
though they might be different by nature (e.g. vectors, strings,
graphs), and second that this choice paves the way to the use
of kernel methods (Schölkopf and Smola, 2002).

Data integration In this study, we use P ≥ 1 sorts of hetero-
geneous genomic data in order to predict the protein network,
which are represented by P kernels K1, . . . , KP . The function
Kp measures the similarity of proteins with respect to the p-th
dataset. A simple data integration can be performed by creat-
ing a new kernel as the sum of the kernels corresponding to
different genomic data, namely K = ∑P

p=1 Kp. While more
complex approaches can be imagined to combine heterogen-
eous data through kernel operation, this simple operation has
proved to be useful in Pavlidis et al. (2001) and Yamanishi
et al. (2003), and is used below.

Direct approach for protein network prediction
We consider the problem of predicting the protein network of
S.cerevisiae from several genomic datasets. As a first direct
inference method, under the assumption that connected pro-
teins probably share similarities in the datasets, we propose
to predict an edge between two proteins x and y when the
value K (x, y) is large enough. Depending on the choice of K ,
this covers the situations of selecting proteins with correlated
expression, similar profiles, similar localization or all of these
simultaneously. For a fixed choice of K , a predicted network
can be built progressively by starting from isolated nodes and
adding edges between pairs of proteins with decreasing kernel
values. The discrete version of this approach, which we call
the direct approach below, is related to the joint graph method
(Marcotte et al., 1999).

Unsupervised spectral approach for protein
network prediction
Spectral clustering (Ng et al., 2002) has attracted a lot of
attention recently and led to impressive results in complex
clustering tasks. Given a set of points (e.g. proteins) to cluster,
the idea of spectral clustering is to map them onto a feature
space where clusters are easier to detect, before applying a
classical clustering algorithm. The feature space is defined as
the linear span of the first eigenvectors of a similarity mat-
rix between the points. In case one has a kernel to define
the similarity between points, then kernel principal com-
ponent analysis (PCA) (Schölkopf et al., 1998) is known to

be related to spectral clustering: the feature space spanned
by the first few principal components (PCs) is also a space
where clusters can be easier to detect (Bengio et al., 2003).
Kernel PCA can be shortly summarized as follows. Given
a set of N proteins X = {x1, . . . , xN } and a kernel function
K : X 2 → R, one considers the set H of real-valued functions{
f (x) = ∑N

i = 1 αiK(xi , x), (α1, . . . , αN) ∈ RN
}

endowed with
the norm ||f ||H = ∑

i,j αiαjK(xi , xj ). The projection onto
the first principal direction is defined up to a scaling factor
as the function f (1) ∈ H that minimizes ||f (1)||H under
the constraint

∑N
i=1 f (1)(xi )

2 = 1. The projections onto
the following principal directions are defined recursively
in the same way with the additional orthogonality constraint∑N

i=1 f (l)(xi )f
(m)(xi ) = 0 if l < m. If K(xi , xj ) =

xi · xj for vectors, then one recovers the classical PCA
method. As a result, spectral clustering suggests to repres-
ent the point xi by the vector [f (1)(xi ), . . . , f (L)(xi )]� with
L < N , before performing classical clustering on these
representations.

Even though our concern is not directly on gene cluster-
ing, the problem of network reconstruction bears similarity
with clustering. It can be thought of as an extreme clus-
tering problem, where one looks for clusters of two points
(that correspond to connected protein pairs in the network).
Given a kernel K between proteins, this suggests an altern-
ative to the direct approach: first project all proteins onto
the subspace defined by the first few PCs obtained by ker-
nel PCA, and then select pairs of similar points in this feature
space.

Supervised approach for protein network
prediction
The actual problem we are confronted with is illustrated in
Figures 1 and 2: we would like to infer a protein network
from a lot of noisy data about the proteins in Figure 2,
and we already know with some confidence part of the net-
work to be inferred. This prior knowledge is depicted in
Figure 1, where we assume that the protein network restricted
to n < N proteins is known, N being the total number of
proteins. Both the direct approach and the spectral approach
are unsupervised, in the sense that they do not use the prior
information illustrated in Figure 1 but rather directly infer a
network from the data illustrated in Figure 2.

In contrast, we propose in this section a supervised method
to infer the network from both the data and the prior know-
ledge. The method is a slight modification of the unsupervised
spectral approach described in the previous section. In the
spectral approach, each protein x is first represented by a
vector f (x) = [f (1)(x), . . . , f (L)(x)]�, where L < N and
f (l) (x) is the projection of x onto the l-th principal com-
ponent. The goal of this projection is to define a feature
space where pairs of interacting proteins have similar pro-
jection, so that it becomes possible to infer interaction from
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Fig. 1. An example of adjacency matrix of proteins in protein
network.

similarity in the feature space. Hence, whenever xi interacts
with xj , we would like f (xi ) to be similar to f

(
xj

)
, which

ideally would be fulfilled if f (l) (xi ) was close to f (l)
(
xj

)
for

each l = 1, . . . , L. Consequently an ‘ideal’ feature space,
if the protein network was known beforehand, would be
a subspace defined by functions f (l) (l = 1, . . . , L) that
vary slowly between adjacent nodes of the protein network.
Such functions are usually called smooth, and it is known
(Vert et al., 2003a) that the norm ‖f ‖H associated with a
diffusion kernel on a graph exactly quantifies this smooth-
ness: the smoother f , the smaller ‖f ‖H. As a result, if the
protein network was known, an ideal feature space would
be defined by the projection onto the first principal direc-
tions defined by kernel PCA with a diffusion kernel on the
graph.

As the total protein network is not known beforehand, the
projections onto this ideal feature space cannot be computed,
as opposed to the projections in the unsupervised spectral
approach. In order to improve the representation provided
by the spectral approach, we propose to constrain it to some-
how fit the ideal feature space, at least on the part of the
network known beforehand. This can be done as follows.
Let {x1, . . . , xn} be the n proteins in the ‘gold standard’, and
{xn+1, . . . , xN } be the remaining proteins whose participation
in the protein network must be inferred (Fig. 1). Let K1 be
the kernel representing the genomic information restricted to
the n first proteins, and K2 be the diffusion kernel derived
from the known protein network. Both K1 and K2 are then
n × n matrices. For any function f defined on {x1, . . . , xn},

Fig. 2. An example of similarity matrix of proteins in the other
genomic data.

let ‖f1‖ and ‖f2‖ be the corresponding norms. In order to
define a feature f such that ‖f1‖ be small, as in the spectral
approach, and ‖f2‖ be small simultaneously, as in the ideal
representation, we propose to use the following trick: find two
functions f1 and f2 such that

∑n
i=1 fk (xi )

2 = 1 for k = 1, 2,
and that maximize the functional

corr (f1, f2) × 1√
1 + λ1‖f1‖2

× 1√
1 + λ2‖f2‖2

, (1)

where λ1 and λ2 are positive regularization parameters, and
corr (f1, f2) is the correlation coefficient between f1 and f2.
The first term of this product ensures that f1 ‘fits’ f2 on the
a priori known part of the network, while the second and last
terms ensure that ‖f1‖ and ‖f2‖ are small simultaneously.
Subsequent features can be defined recursively by minimizing
the same functional with additional orthogonality conditions.
The main reason for using the functional (1) is that it can be
shown (Akaho, 2001; Bach and Jordan, 2002) to be equivalent
to the following generalized eigenvalue problem:(

0 K1K2

K2K1 0

) (
α1

α2

)

= ρ

(
(K1 + λ1I )2 0

0 (K2 + λ2I )2

) (
α1

α2

)
, (2)

where I is the identity matrix. Indeed, the successive solu-
tions to Equation (1) can be written as f1 = K1α1 and
f2 = K2α2, where α1 and α2 are the eigenvectors of
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Equation (2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . , α(L)

1 of Equation (2) (sorted by decreasing value of

ρ), then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . , L. These features are built from the genomic
dataset kernel K1 only, and are expected to fit the ideal fea-
tures on the gold standard set of proteins. These features
can now be generalized to any protein x by the following
equation:

f (l) (x) =
n∑

k=1

α
(l)
1 (xk) K (xk , x) . (3)

This is the set of features we propose to map the proteins to
before inferring protein interactions.

In both the spectral method and this supervised
method, each protein x is mapped to a feature space
as an L-dimensional vector u = (u1, . . . , uL)� =
[f (1)(x), . . . , f (L)(x)]�. To assess the similarity of protein x
and protein y in this feature space, we simply follow the spirit
of the direct approach and quantify the similarity between
points u = (u1, . . . , uL)� and v = (v1, . . . , vL)� by their
correlation:

ĉorr (u, v) = ĉov(u, v)√
v̂ar(u)

√
v̂ar(v)

= (1/L)
∑L

l=1 (ul − ū) (vl − v̄)√
(1/L)

∑L
l=1(ul − ū)2

√
(1/L)

∑L
l=1(vl − v̄)2

,

(4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as fol-
lows. The gold standard protein network and the noisy protein
interaction datasets are represented by a diffusion kernel
with parameter β = 1, and respectively denoted Kgold and
Kppi. For the gene expression data, we used the Gaussian
RBF kernel with σ = 5, and denote the resulting kernel
Kexp. For both localization data and the phylogenetic pro-
files, a simple linear kernel, is denoted respectively Kloc

and Kphy. All kernels are then normalized to 1 on the diag-
onal and centered in the feature space (Schölkopf and Smola,
2002).

We tested the direct and spectral approaches either on single
types of genomic datasets, or on the integrated kernel repres-
enting all datasets. For the spectral approach, we arbitrarily
kept the first L = 50 principal components to define the fea-
ture space. The accuracy of both methods is assessed on the
gold standard dataset, by their capacity to recover the pro-
tein network. Starting from isolated nodes, each method can

Table 1. List of experiments of direct approach, spectral approach based on
kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor) Kernel (Target)

Direct Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy

(Integration)
Spectral Kexp (Expression)

Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy

(Integration)
Supervised Kexp (Expression) Kgold (Protein network)

Kppi (Protein interaction) Kgold (Protein network)
Kloc (Localization) Kgold (Protein network)
Kphy (Phylogenetic profile) Kgold (Protein network)
Kexp + Kppi + Kloc + Kphy Kgold (Protein network)

(Integration)

be used to build progressively a network by adding edges
between pairs of proteins sorted by decreasing similarity. At
each addition, we recorded the number of true positives (pre-
dicted edges that indeed are present in the gold standard) and
false positives (predicted edges that are absent from the gold
standard). Figures 3 and 4 show the ROC curves representing
the numbers of true positives as a function of the number of
false positives for the two methods. In both cases, the over-
all accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach, while
the spectral approach gives slightly better results, in particular,
when used in combination with the kernel that integrates all
genomic datasets, but remains useless in practice due to the
large rate of false positives at any rate of true positives. These
negative results, in particular for the direct approach, confirm
that the problem of protein network reconstruction is far from
trivial.

We then tested the supervised approach. The parameters λ1

and λ2 were set to 0.1, and again we kept L = 50 features
to define the feature space. We tested various combinations
of dataset kernels to be fitted to the gold standard kernel, as
described in Table 1. In order to assess the accuracy of the
method, we carried out a 10-fold cross-validation experiment
as follows. In each out of 10 iterations, the set of 769 proteins
in the gold standard is split into a training set and a test set in
the proportion 9/1. The feature space is trained on the train-
ing set, and the inference of interaction is performed on the
possible interactions involving the proteins in the test set (the
gray part in Fig. 1). Once again a graph is built progressively
and we record the number of true positive interactions as a
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Fig. 3. ROC curves: direct approach.

function of false positives. The resulting ROC curves aver-
aging over 10 iterations are plotted in Figure 5. As opposed
to the direct and spectral approaches, we observe here that
the supervised approach is able to catch information about
the protein network and make interesting prediction. Among
all single datasets, expression and phylogenetic profiles seem
to provide similar amount of information, followed by loc-
alization data and noisy protein interactions. The supervised
method applied in conjunction with the integration of all four
datasets gives the overall best results. The comparison of these
experimental results highlights the accuracy improvements
resulting from both the integration of multiple dataset, and
the use of a supervised approach.

Finally, we investigated the effect of the number of fea-
tures L had on the performance of the spectral and supervised
approaches. In both cases, we used the integrated kernel that
represents all genomic dataset, and varied the number of
features L from 10 to 400. Figure 6 shows the area under
the ROC curves obtained by both approaches for varying L,
where triangles and squares indicate spectral and supervised
approaches, respectively. The supervised approach seems to
be sensitive to the number of features, with a maximum
reached for L = 40. In contrast, the spectral approach seems
to have little variability when the number of features varies.
This result suggests that we need to choose an appropriate
number of features in actual applications of the supervised
approach.

The validity of the supervised method being confirmed
by these experiments, we then conducted a comprehens-
ive prediction of protein network for all the proteins (6059

Fig. 4. ROC curves: spectral approach.

ORFs in this study) of the yeast. The predicted network
enabled us to make new biological inferences not only
about unknown protein interactions, but also about missing
enzymes in biochemical pathways. As an example, there
is a missing enzyme (EC:2.4.1.141) between EC:2.7.8.15
and EC:2.4.1.142 in the N -glycans biosynthesis pathway
(Fig. 7). From the predicted protein network with a threshold
set to 0.6, we regard YPL207W and YGL010W as can-
didates for the missing enzyme, because they have high
scores with both EC:2.7.8.15 and EC:2.4.1.142. According
to the annotation, they are hypothetical proteins, and the
other high-scoring proteins are glycosyltransferase. There-
fore, we can guess that they might work as an enzyme
catalyzing the chemical reaction. Of course, such inference
can be applied to missing enzymes in other pathways
also. The results of the whole protein network predicted
can be obtained from the author’s website (http://web.
kuicr.kyoto-u.ac.jp/~yoshi/ismb04/).

DISCUSSION AND CONCLUSION
In this paper, we proposed an approach for predicting
the protein network from multiple genomic data using a
supervised learning approach. The resulting algorithm bor-
rows ideas from the theory of spectral clustering, and involves
the kernel CCA algorithm as a pre-processing step. Cross-
validated experiments show that this method predicts the
protein network more accurately than several other compet-
ing techniques. The predicted pathway network of all proteins
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Fig. 5. ROC curves: supervised approach.

enables us to make new biological inferences for unknown
protein–protein interactions.

This method is a supervised approach, while most meth-
ods which have been proposed so far are unsupervised. The
motivation to use a supervised approach is to explicitly learn
the correlation between known networks and genomic data in
the algorithm. It should be pointed out that in this supervised
framework, different networks can be inferred from the same
data, by changing the partial network used in the learning step.
Another strength of this method is the possibility to naturally
integrate heterogeneous data. Experimental results confirmed
that this integration is beneficial for the prediction accuracy
of the method. Moreover, other sorts of genomic data can
be integrated, as long as kernels can be derived from them.
As the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.

A drawback of our method is that in its current form, it is
limited to the prediction of undirected interactions between
proteins, which might be insufficient for example in the case
of gene regulatory networks. The incorporation of directional
information is a topic we are currently investigating, through
which we expect to bring about more biologically interesting
findings.
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