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Minimax Nonparametric Classification—Part I:
Rates of Convergence

Yuhong Yang

Abstract—This paper studies minimax aspects of nonpara-
metric classification. We first study minimax estimation of the
conditional probability of a class label, given the feature variable.
This function, sayf , is assumed to be in a general nonparametric
class. We show the minimax rate of convergence under squareL2

loss is determined by the massiveness of the class as measured by
metric entropy.

The second part of the paper studies minimax classification.
The loss of interest is the difference between the probability of
misclassification of a classifier and that of the Bayes decision. As
is well known, an upper bound on risk for estimating f gives
an upper bound on the risk for classification, but the rate is
known to be suboptimal for the class of monotone functions. This
suggests that one does not have to estimatef well in order to
classify well. However, we show that the two problems are in
fact of the same difficulty in terms of rates of convergence under
a sufficient condition, which is satisfied by many function classes
including Besov (Sobolev), Lipschitz, and bounded variation. This
is somewhat surprising in view of a result of Devroye, Gÿorfi,
and Lugosi (1996).

Index Terms—Conditional probability estimation, mean error
probability regret, metric entropy, minimax rates of convergence,
nonparametric classification, neural network classes, sparse ap-
proximation.

I. INTRODUCTION

I N this paper, we study two related problems of minimaxity
in nonparametric classification. For simplicity, consider the

two-class case with class labels Direct extensions
to cases with multiple classes are straightforward.

We observe which are inde-
pendent copies of the random pair Let

be the conditional probability of the event
given the feature variable Here

is the feature space, which could be of high dimension. Let
denote the marginal density of with respect to a -

finite measure We are interested in both how well one can
estimate and how well one can classify based on a feature
value.

Many results have been obtained for nonparametric classifi-
cation in the literature (see Devroye, Györfi, and Lugosi [16]
for a review). A surprising result is that universally consistent
estimators of and classifiers exist (see, e.g., [15], [17], [27],
and [32]). However, the convergence could be arbitrarily slow
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([16, Ch. 7]). If one knowsa priori that the target function
belongs to a nonparametric class of functions, uniform con-
vergence rates are possible. A few methods have been shown
to converge at certain rates whenis in some nonparametric
class (e.g., [2], [5], [6], [18], [19], and [24]). A general upper
bound on mean error probability for classification is given
in [16, Ch. 28] in terms of metric entropy. On the other
hand, lower bound results seem to be rare. Optimal rates of
convergence in probability for classification were identified in
a related setting for some Lipschitz classes [29]. This paper
aims to provide a general understanding of the minimax rate
of convergence of the risks for general nonparametric function
classes.

A. Minimax Risk for Estimating

We measure loss of an estimator ofin terms of a square
norm. Let denote the norm weighted by the
density of the feature random variable, i.e., for any

Similarly, define the norm Call the correspond-
ing distance distance. Let be an estimator of based
on The risk then is

where the expectation is taken with respect to the trueSince
is always between and , the risk is always well-

defined. Let be a class of candidate conditional probability
functions, i.e., every satisfies for all

Then the minimax risk under the square loss
for estimating a conditional probability in is

where is over all valid estimators based on (here “ ”
and “ ” are understood to be “ ” and “ ,” respectively,
if the minimizer or maximizer does not exist). In this work,

is assumed to be a nonparametric class. The minimax risk
describes how well one can estimateuniformly over the
function class

For density estimation and nonparametric regression under
global losses, it is known that rates of convergence of minimax
risks of function classes are determined by Kolmogorov’s
metric entropy of the classes ([7], [21], [36], [38], and others).

0018–9448/99$10.00 1999 IEEE



2272 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

As will be shown, it is also the case for the estimation of
the function of conditional probability. Our characterization
of the minimax rate of convergence in terms of metric entropy
enables one to derive minimax rates of convergence for many
function classes. Examples are given in Section V.

B. Minimax Risk for Classification

For classification (or pattern recognition), the goal is to have
a classifier which predicts membership ofaccording to the
feature variable Formally, a classifier based on the training
data is a mapping from to As
is well known, given the true conditional probabilit function

, an ideal optimal Bayes decision is to predictas class
if and class otherwise. This decision minimizes
the probability of error over all choices of
classifier Let denote the corresponding error probability.
For a given classifier based on , the mean
error probability is

We will examine

(1)

which is the difference between the mean error probability
of and the ideal one We call it mean error probability
regret (MEPR). For a given class of conditional probability
functions, let the minimax MEPR be defined as

where the minimization is over all classifiers based on
This risk describes how well one can classifyrelative to the
Bayes decision, uniformly over

C. Is Classification Much Easier Than the Estimation
of Conditional Probability?

Based on an estimator of , one can define a plug-in
classifier pretending is the true conditional probability,
i.e.,

if
if .

Then it is well known that (see, e.g., [16, p. 93])

As a consequence,

Thus a minimax upper bound for estimatingimmediately
gives an upper bound on the minimax classification risk MEPR
over But how good is this upper bound? Letbe the class
of monotone functions. Then is of order

(see Section V), but [16, p. 485],
which is much smaller than (Here a referee pointed
out that can be shown to be of order The upper
bound part can be derived by empirical risk minimization
applying Alexander’s inequality [16, p. 207] with the fact that
the VC dimension of the class is . The
techniques used in [16, the proof of Theorem 14.5] may be
used to show the rate cannot be improved.)

This makes one wonder if this phenomenon is typical for
classical function classes such as Sobolev, Lipschitz, Besov,
and bounded variation. It turns out the answer is no. We give
a sufficient condition for the minimax rates of convergence
for the two problems to match. This condition is satisfied
by many function classes. Then classification is no easier
than estimating the conditional probability in a uniform
sense. This result is rather surprising when compared with [16,
Theorem 6.5], which says that for any fixedand a sequence
of consistent estimators one always has

The explanation of this phenomenon is that the above ratio
does not converge uniformly to over the function classes.

D. Model Selection for Minimax Adaptive Estimation of

In the derivation of minimax upper bounds,-nets are used
in the construction of estimators achieving the optimal rates.
These estimators are convenient for theoretic studies, but are
not practical for applications. The sequel of this paper, “Min-
imax Nonparametric Classification—Part II: Model Selection
for Adaptation” (see this issue) presents results on minimax
adaptive estimation of the conditional probabilityby model
selection over a countable collection of finite-dimensional
approximating models. There it is shown that using a suitable
model selection criterion, minimax rates of convergence are
automatically achieved (or nearly achieved) simultaneously
over different types of function classes and/or with different
smoothness parameters.

This paper is organized as follows. In Section II, minimax
rates for estimating are given; in Section III, minimax MEPR
is given under a sufficient condition; in Section IV, we present
some results on the relationship between approximation and
classification; in Section V, examples are given as direct appli-
cations of the main results in Sections II and III; in Section VI,
we give a simple result on minimax rates for some classes
modified to allow some irregularity such as discontinuity. The
proofs of the results are given in Section VII.

II. M INIMAX RATES FOR ESTIMATING

THE CONDITIONAL PROBABILITY

A. Metric Entropy

A finite subset is called an -packing set in under
a distance if for any with
Let ; be the maximal logarithm of the
cardinality of any -packing set in under distance.
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The asymptotic behavior of when reflects how
massive the class is (under the chosen distance). We call

the packing -entropy or simply the metric entropy of
Similarly, define under the distance A lot of

results have been obtained on the orders of metric entropy for
the classical function classes and many more under various
norms (see, e.g., [9], [23], [25], [26], and [34]).

Assume for every (otherwise, the minimax
risk typically does not converges to zero) and as

(which excludes the trivial case when is finite). For
most function classes, the metric entropies are known only up
to orders. For that reason, we assume that is an available
nonincreasing right-continuous function known to be of order

We call a class rich in distance if for some
constant

(2)

This condition is characteristic of usual nonparametric classes
(see [36]), for which the metric entropy is often of order

for some and see Section V.

B. Minimax Risk Bounds

We need some conditions for our minimax risk bounds based
on metric entropy.

Assumption 1:The class is convex and contains at least
one member that is bounded away from and , i.e., there
exist constants such that

A couple of quantities will appear in our minimax risk
bounds. Choose such that

(3)

Let be chosen to satisfy

(4)

(Since the packing entropy is right-continuous, under the
assumption , both and are well-defined.)
Similarly, define with replaced by

The notation will be used to mean

When and , i.e., and are of the
same order, we use expression If and are
asymptotically equivalent, i.e., , then we write

Lemma 1: Assume Assumption 1 is satisfied. For any ,
we have the following minimax lower bound on
risk for estimating :

For upper bound, if is known, then we have

Remarks:

1) For the upper bound part, Assumption 1 is not needed.
2) When in (3) and (4) is replaced by an upper

bound and a lower bound, respectively, the resulting
bounds in Lemma 1 are valid.

In Lemma 1, for the upper bound,is assumed to be known.
This rather restrictive condition is used for the purpose that an
-net can be constructed (theoretically) for under

distance as needed in the proof. In practical problems, of
course, is not known. To get the right rate of convergence, it
suffices to be able to construct an-net with log-cardinality of
the same order. The following assumption will be used instead.

Assumption 2:For each (small) , without knowing ex-
actly, one can construct an-net of under distance
with log-cardinality of order

When is unknown but known to be in a class, it is also
appropriate to study minimax risk over as well as over the
class of conditional probability Let

Assumption 2: For each (small) , one can construct an-
net for under the distance simultaneously over
with log-cardinality of order for some right-continuous
function In addition, the packing entropy of is of order

under distance for at least one

Satisfaction of Assumption 2 or 2requires some knowledge
of See Section V for examples that satisfy these conditions.

Now we give results on minimax rates based on Lemma 1.
Let satisfy

Theorem 1: Assume Assumptions 1 and 2 are satisfied and
that is rich in distance.

1) For the square risk, we have

2) If and are of the same order as , then

3) Under Assumption 2, we have

(5)

Remarks:

1) Instead of Assumption 1, it suffices to assume that
contains a subset that is uniformly bounded away
from and , and has the same order metric entropy
as

2) The exact risk bounds may sometimes be of interest. Let
be the log-cardinality of the-net that one can

construct under Assumption 2. Let be determined by
Then we have

Similar bounds hold for
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The condition that the packing entropies underand
are of the same order are satisfied in case of many familiar
nonparametric classes (see [26]).

The following corollary is obtained under some simple
sufficient conditions for Assumption 2.

Corollary 1: Suppose that Assumption 1 is satisfied. As-
sume there exists a density and a constant such that
for every , , and that is rich in
distance with metric entropy of order In addition, there
exists at least one such that the metric entropy
of is of order Then

where is determined by
In particular, if there exists a such that

(i.e., is uniformly bounded above and away from zero),
and is rich in distance, then

where is determined as above.

III. M INIMAX RATES OF CONVERGENCE

OF ERROR PROBABILITY

From the upper-bound rate on in Theorem 1,
we know the minimax MEPR is upper-bounded by
order A similar upper bound in terms of metric entropy
was obtained in [16, Ch. 28] using an argument directly for
MEPR. However, as mentioned in Section I, may
converge much faster than The interest is then
on lower-bounding One difficulty is that the loss

(which yields risk when averaged with respect to
) is not a metric in (it is not symmetric and there is

no triangle-like inequality). It makes the notions of covering
and packing (as used for estimating) very tricky and hard
to compute even if they make sense. The next result takes
advantage of the observation that for many function classes,
on a subclass (hypercubes) constructed from a suitable pertur-
bation, the loss does behave like a metric and, therefore, the
previous lower-bounding technique for risk to estimate

also works. The following setup of a hypercube class is in
[8], [11], and others used for density estimation.

We assume is upper-bounded by a known constant
on

Assumption 3:For any , there exist some function
with support on , and disjoint translates

such that the hypercube family

belongs to Also satisfies and
for some constants , with

Furthermore, there exists a nonincreasing right-
continuous function with as such
that for some constants

and
Assumption 3 is verified in [7], [11], and others for many

function classes (see Section V).
The subclass of hypercubes is intended to capture the

difficulty of classification for the whole class The subset is
very simple and easy to handle. Note that the perturbations are
around . When is of the same order as the

metric entropy of , classification on alone has
difficulty already matching that of estimating , resulting
in the determination of rate of as in the following
theorem.

Theorem 2: Assume Assumptions 2 is satisfied and that
is rich in distance with metric entropy of order
Suppose Assumption 3 is satisfied with of the same
order as and that there exists a constant such that

on the translates for each (small) Then the
minimax mean error probability regret of has rate

where is determined by If instead of
Assumption 2, Assumption 2 is satisfied for a class of
densities with and containing at least one
member with on and on

for each (small) , then

IV. A PPROXIMATION AND CLASSIFICATION

Many different approximating systems can be used to esti-
mate the function of conditional probability for classifica-
tion. For instance, polynomial, trigonometric, spline, wavelet,
or neural net approximations have different advantages and are
useful in model building for the estimation of It is intuitively
clear that given an approximation system, how well one can
estimate based on a training data is related to how well the
function can be approximated by the system. In this section, we
establish formal conclusions on relationships between linear
approximation, sparse approximation, and minimax rates of
convergence for classification. Similar, but more general and
detailed treatments in the context of density estimation and
regression are in [36]. Let be a known density on We
assume that the true density satisfies

for a known constant . Let be the collections of
all such densities.

A. Linear Approximation and Rates of Convergence

Let be a chosen fundamental
sequence in
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(that is, linear combinations are dense in with
respect to distance). Let for
which as Let , and for

be the th degree of approximation of by the
system Let be all functions in with the
approximation errors bounded by, i.e.,

They are called full approximation sets of functions. Some
classical function classes (e.g., Sobolev, general ellipsoidal)
are essentially of this type.

Assume satisfies a condition that there exist
such that

(6)

as is true for , , Lorentz
gives order of the metric entropy and shows that

is rich [25, Theorem 4]. Then determined by
balances the approximation error

bound and the dimension over sample size [36].
Assume that the functions in are uniformly

bounded (see [36] on satisfaction of this condition). Let
be all the functions in that are nonnegative

and bounded above by. It can be shown that the
metric entropies of and are of the same
order (see Lemma 4 in Section VII). By Corollary 1, we have
the following result.

Corollary 2: Let be determined by Then the
minimax rates for classification satisfy

Remark: The condition that is uniformly bounded
is not needed for the upper bound rate on minimax MEPR.

An illustration of this result is as follows. For a system
(e.g., polynomial, trigonometric, or wavelet), consider the

functions that can be approximated with polynomially decreas-
ing approximation error , . When is not too
small, is often bounded. Then solving
gives order Thus

Note that for the classification risk , the
rate is not shown to be optimal in general. However,
for some choices of smooth approximating systems such as
polynomials or trigonometric functions, Assumption 3 is still
satisfied, and the rate is optimal for classification
for such cases.

From Corollary 2, the optimal convergence rate in the full
approximation setting for estimating is of the same order

as which represents the familiar
bias-squared plus variance tradeoff for mean-squared error.
Of course, in applications, one does not know how well
the underlying function can be approximated by the chosen
system, which makes it impossible to know the optimal size

This suggests the need of a good model selection criterion
to choose a suitable size model to balance the two kinds of
errors automatically based on data. Results on model selection
for classification are in the sequel of this paper.

B. Sparse Approximations and Minimax Rates

Full approximation utilizes all the basis terms up to certain
orders. For slowly converging sequences, such as arise
especially in high-dimensional function approximation, very
large (e.g., exponential in dimension) is needed to get a good
accuracy. It becomes of interest to examine approximation
using a manageable-size subset of terms. This subset is sparse
in comparison to the total that would be needed with full
approximation.

Let and be as in the previous section. Let
be a given sequence of integers satisfying

and let
Denote by

the th degree of sparse approximation of by
the system (for a fixed choice of Note here
that roughly the terms used to approximateare allowed to
be from basis functions. Let be
the set of all functions in with sparse approximation
errors bounded by , i.e.,

We call it a sparse approximation set of functions. Large’s
provide considerable more freedom of approximation.

The -entropy of satisfies [36]

under the assumption for some possibly large constant
. Note that the upper and lower bounds differ in a

logarithmic factor. (We tend to believe that is
of higher order than and the ratio might be
right at order or a similar logarithmic factor (e.g.,

Suppose the functions in are uniformly bounded.
Let be the set of all valid conditional probability
functions in Let satisfy

(7)

Then based on Lemma 1 and Theorem 2, we have the follow-
ing corollary. For simplicity, we assume that determined
above satisfies for some arbitrarily small positive
, as is true for , ,
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Corollary 3: For the sparse approximation set , if
for some , then

For minimax MEPR, we have

As a special case, if , , then

The upper and lower bound rates differ only in a logarithmic
factor (we tend to believe that an extra logarithmic factor is
necessary here for

Sparse approximation provides much more flexibility yet
does not give up much linearity. To achieve the same degree
of approximation for all functions in a sparse approximation
set, full approximation has to use many more terms. This has
an implication for statistical estimation using the nested mod-
els corresponding to full approximation compared to subset
models corresponding to sparse approximation. Since many
more coefficients need to be estimated for the nested models,
the variance of the final estimator is much bigger in general,
resulting in a worse rate of convergence. For example, if

and , then under some conditions, it
can be shown (see [37]) that the rate for estimatingin
the sparse approximation set based on the subset models is

, whereas the rate based on nested models
is no faster than Results on subset selection for
classification are presented in the sequel of this paper [37].

We finally mention that from [25, Theorem 9], a full
approximation set cannot be better approximated
beyond a constant factor with any other choices of basis
The same conclusion carries over to a sparse approximation
set

V. EXAMPLES

A. Function Classes

We consider a few function classes including classical ones
(ellipsoidal, Besov, etc.) and some other relatively new ones
(e.g., neural network classes). For results on metric entropy
orders of various function classes, see [26] and references
cited there.

1) Ellipsoidal classes in : Let be
a complete orthonormal system in For an
increasing sequence of constantswith , define
an ellipsoidal class

We here only consider the special case with
, for which the metric entropy is of order

[30]. General treatment is similar to that in [36]. When
and , the functions in

are uniformly bounded.

2) Monotone, bounded variation, and Lipschitz classes: The
function class consists of all functions on

satisfying and

where the supremum is taken over all finite sequences
in . For , let

Lip

and

be a Lipschitz class (similar results hold when the Lips-
chitz condition applies to a derivative). When

, , the metric entropy is of order
[9]. For , with suitable modification of the value
assigned at discontinuity points as in [14, Ch. 2], one has

Lip Lip

So the metric entropy of is also of order
Let be the set of all nondecreasing functions

on such that Using the fact that
a function with bounded variation can be expressed
as a difference between two monotone nondecreasing
functions, it is easy to show that has metric
entropy also of order

3) Besov classes: Let

Then the th modulus of smoothness of
or of if is defined by

Let , , and

for
for

Then the Besov norm is defined as

(see e.g., [14]). For definitions and characterizations of
Besov classes in the-dimensional case, see [35]. These
classes and similarly defined-classes (which can be
handled the same way as Besov classes) include many
well-known function spaces such as Hölder–Zygmund
spaces, Sobolev spaces, fractional Sobolev spaces or
Bessel potential spaces, and inhomogeneous Hardy
spaces [35]. By [9], [12], and [34], for ,

, and , the metric entropy
of is of order for .

4) Classes of functions with moduli of continuity of
derivatives bounded by fixed functions: Consider general
bounds on the moduli of continuity of derivatives.
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Let be the collection
of all functions on which have all partial
derivatives , ,
and the modulus of continuity in norm of each
th derivative is bounded by Here is any given

modulus of continuity (for definition, see [14, p. 41].
Let be defined by equation Then
if , from [25], the metric entropy of is
of order

5) Classes of functions with different moduli of smoothness
with respect to different variables: Let be
positive integers and , Let

and Let
be the collection of all functions on with

and , where
is the th difference with step in variable As
stated in [25, p. 921], from the metric entropy results
on full approximation sets together with polynomial
approximation results in [33, Sec. V-C], the metric

entropy order of is

6) Classes and : Let and
be the collection of periodic functions

on with

where if and Similarly, define
with the constraint

The functions in and are uniformly
bounded if and , respectively. From [31],
the metric entropies of and are of
order

and

respectively.

7) Neural network classes: Let be the closure in
of the set of all functions of the

form

with , and , where is a

fixed sigmoidal function with as

and as It is further required that
is either the step function for ,

and for , or satisfies the Lipschitz
requirements for some ,
and for some , and ,
for all From [4] and [28], one knows that the
metric entropy of satisfies

Note that the exponents of in the upper and lower
bounds are different. For both (in which case,

is a subset of a bounded variation class) and
(see [28]), the exponent in the upper bound cannot be
improved. It remains to be seen if this is the case for

B. Minimax Rates for the Examples

For classification, the conditional probabilityis between
and . So the classes of interest are the corresponding subsets
of the above function classes. For convenience, we will not
use another symbol for each of them. Similarly to Lemma 4
in Section VII, it can be shown that the restriction does not
change metric entropy orders for the examples.

1) Assumptions:We assume that the true density
of the feature variable belongs to , which consists
of all densities on that are upper-bounded by .
Assumption 1 is clearly satisfied for each of the function
classes in the previous subsection. Note that except for the
neural network classes (for which the metric entropy order
is not exactly identified), each of those classes is rich in

distance, and Assumption 2is satisfied for Thus
Theorem 1 (or Corollary 1) is applicable.

2) Rates for estimating: The following table summarizes
the rates of convergence for estimation ofThe rates are for

Classes Rate Condition

Lip

Based on Lemma 1, for the neural network class , the
minimax rate is between
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and

The exponential terms in the upper and lower rates do not
match exactly because the metric entropy order is not identi-
fied. Believing the upper bound on the metric entropy of
given earlier to be tight, one would expect the above upper
rate to be the right rate of convergence (possibly ignoring
a logarithmic factor). For large (that is where the neural
network models are of main interest), they are very close to
each other. Note that

Using Theorem 1, conclusions can also be made for
loss for some of the classes. For example, for the
Besov classes with , we have

3) Satisfaction of Assumption 3:Based on previous work
of others on density estimation, we know Assumption 3 is
satisfied with of the same order as the metric entropy of
the class (as required for Theorem 2) for the following classes:

with trigonometric basis ,
, for [7]; Lip [7],

also Lip , and (because they contain
Lip and Lip with the same order metric entropy
respectively); [22]; with being a concave
function [7]; [7].

4) Rates for classification:Applying Theorem 2, we have
the following rates for

Classes Rate Condition

with
trigonometric basis

Lip

and concave

The rate for is obtained in [16]
as mentioned before. It is interesting to observe the differ-
ence between estimating the conditional probabilityand
classification for bounded variation classes and monotone non-
decreasing classes. In terms of metric entropy order,
and are equally massive, resulting in the same rate
of convergence for estimating However, metric entropy
order is not sufficient to determine the rate of convergence for
classification, for which case what matters most is the freedom
of around the value (corresponding to hard classification
problems). The difference between and then
shows up drastically.

The class with, e.g., step sigmoidal, contains a
Sobolev class with smoothness parameter
for every [3]. Using the lower rate for Sobolev (special

case of Besov), together with the upper bound for estimating
, we obtain

where in the lower bound rate can be arbitrarily close to
zero. We conjecture that the upper rate (probably without the
logarithmic factor) is in fact the optimal rate of convergence,
at least for and When is large, the upper and
lower rates of convergence are roughly

VI. RATES OF CONVERGENCE FORFUNCTION CLASSES

MODIFIED TO ALLOW SOME IRREGULARITY

Included in the previous section are some smoothness
classes. In some applications, the target functionis not
smooth, but not so only at a few change points of unknown
locations. Here we show that such a small modification of a
nonparametric class ofdoes not change rates of convergence.
The result is applicable to the following example.

Example. Functions on with a piecewise property: Let
be an original nonparametric class of nonnegative functions

upper-bounded by . Let

Here is a positive integer. If the functions inare continuous
(or differentiable), then the functions in are piecewise
continuous (or differentiable).

Let and be two classes of nonnegative functions on
upper-bounded by. Consider a new class of functions

Then it can be easily shown that if contains the constant
function , the metric entropies of these classes have the
following relationship:

As a consequence, if has the same or a smaller order
metric entropy compared to a rich nonparametric class,
then , which is the case for the above
example.

Corollary 4: Suppose contains the constant function,
and is of the same or a smaller order of
Then if satisfies the conditions in Theorem 1, we have

where is determined by If satisfies the
corresponding conditions in Theorem 2
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VII. PROOFS OF THERESULTS

The idea for the proof of Lemma 1 is similar to that used in
Yang and Barron [36] on density estimation and nonparametric
regression.

Proof of Lemma 1:For the lower bound result, we consider
a subset of A minimax lower bound for is clearly
a lower bound for Let Under
the convexity assumption on, is indeed a subset of
Note that by Assumption 1, the functions in are uniformly
bounded above away fromand below away from zero

(8)

for every The boundedness property will be used in
our analysis to relate Kullback–Leibler (K-L) divergence to

distance. It is easy to verify that the packing metric
entropy of is [36].

Let be an -packing set with maximum cardinality
in under distance , and let be an -net
for under distance (i.e., for any , there exists

such that Since an -packing set
in with maximum cardinality serves also as an-net in ,
we can choose to have log-cardinality

For any estimator based on , define

(if there is more than one minimizer, choose one based on
any tie-breaking rule) so that takes values in the packing set

Let be any point in By the triangle inequality,

which is at least if since is a packing set.

Thus if , we must have and

where denotes probability under, and in the last line,
is randomly drawn according to a discrete uniform prior
on , and denotes the Bayes average probability

with respect to the prior Since is not less than
, taking the expected value it follows that for

all

(9)

by Fano’s inequality (see, e.g., [13, pp. 39 and 205]), where
is Shannon’s mutual information between the ran-

dom parameter and the sample
This mutual information is equal to the average (with respect

to the prior) of the K-L divergence between and

Here the density of is

with respect to the product measure , where is the
counting measure (for ). Since the Bayes mixture density

minimizes the average K-L divergence over all choices
of density , the mutual information is upper-bounded by
the maximum K-L divergence between and any joint
density , i.e.,

where the integral is with respect to the product measure
Now choose to be the uniform prior on

and let

For any , there is such that
and then

We now bound the K-L divergence

(10)

where the first inequality follows from the familiar bound on
K-L divergence by chi-square distance, i.e.,

for densities and , and the second inequality follows from
(8). Together with our choice of in (3), we have

(11)

Thus we have shown that
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By our choice of in (4)

The lower bound follows.
Now let us derive the upper bound. We will manipulate

the data in some way for the purpose of relating K-L risk of
density estimation to the risk of interest.

In addition to the observed independent and identically
distributed (i.i.d.) sample we generate
some random variables. At the observed value, let

be an independently generated Bernoulli random variable
with success probability Let be or

with probability according to the outcome of
Bernoulli random variables generated independently.
Then the conditional probability of taking value is

The new conditional probability
is bounded between and as in (8), whereas the

family of the original densities need not be. Let

be the new class of conditional probability for
The next lemma relates the risk of estimating

to that of estimating See [36] for an analogous
result in density estimation.

Lemma 2: The minimax risks of the two classes
and have the following relationship:

Proof of Lemma 2:Let be any estimator of
based on an i.i.d. sample with density

Let be the function
that minimizes over functions in the set

Since is the projection of into which contains , it is
not hard to show (see [36, Lemma 9]) that

Now we construct an estimator for Since and the
constructed sample have the same distribution, replacing

by in , we get an estimator of
based on From , let

Then is a valid estimator of and depends on
and the outcomes of the coin flips

as well as So it is a randomized

estimator. The squared loss of is bounded as
follows:

To avoid randomization, we may replace with its
expected value over and to get
with

where the first inequality is by convexity and the second and
third identities are because depends on , , ,
only through , which has the same distribution as Thus

Taking the minimum over all estimatorscompletes the proof
of Lemma 2.

Thus the minimax risk of the original problem is upper-
bounded by a multiple of the minimax risk on Moreover,
the -entropies are related. Indeed, since

for the new class , the -packing entropy under
distance is

Now we derive an upper bound on the minimax risk for the
new class

Consider an -net with log-cardinality
for (just as for used in the proof of the minimax
lower bound in Lemma 1) and the uniform prior on

Since we assume that is known, the -net can be
constructed, theoretically speaking. Let the Bayes predictive
density estimators of be

evaluated at , which equal the
expression at the bottom of this page for and
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for Let

Then

Let

It is an estimator of the conditional probability of taking
given based on Note that is between
and and does not depend onexcept through the-net

As in Barron [1] and [36], by the chain rule of relative
entropy, for any

where the inequality is as in (11). Since the squared Hellinger
distance satisfies

for two densities and , and observing that

from above, we have

Note that

where is the Hellinger distance between
and with respect

to at a given , i.e.,

For and between and , this distance is bounded
below by

As a consequence, we have

and

Let

be the final estimator of Then by convexity, we have

The conclusion on upper bound in Lemma 1 then follows
based on Lemma 2. This completes the proof of Lemma 1.

Proof of Theorem 1:In the derivation of the upper bound
in Lemma 1, we needed to know the density of only
in the construction of the-net When is not known,
we cannot construct-nets for under the distance.
Assume that Assumption 2 is satisfied with log-cardinality of
the -net bounded by Following the same argument
for the upper bound in the proof of Lemma 1, we have

where is determined by
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Under the richness assumption of, it can be easily shown
(see [36]) that and given in (4) are of the same order
as determined by if and
are of the same order.

For the second claim, under the assumption that and
are of the same order and the richness assumption,

as determined in (4) is of the same order asThus by
Lemma 1

The upper bound rate follows from the fact that for

The third claim follows similarly as above together with that
the upper bound on is uniform over
and that the estimator does not depend onThis completes
the proof of Theorem 1.

Proof of Corollary 1: Since , we have

Thus an -net for under the distance is a -
net for under the distance. Together with the other
conditions, Assumption 2is satisfied. The conclusion then
follows from Theorem 1.

Before we prove Theorem 2, we give a lemma for lower-
bounding MEPR.

Lemma 3: Assume Assumption 3 is satisfied and thatis
upper-bounded by on and lower-bounded by on

Let be determined by

(12)

Then when is large enough

Proof of Lemma 3:The idea of the proof is that under
Assumption 3, the loss of interest behaves like distance
on the subset Then we can again use Fano’s inequality
to derive a lower bound.

For two functions and bounded between and , let

Note that a decision of the class membership at each
corresponds to a function of of two values. For such a
, is the loss incurred by using to classify

when the true conditional probability is To see that, let

if and if be a
Bayes decision, then

Note

when and

when and
otherwise

when
when
otherwise.

Thus as claimed.
For any

let

for . Then for any we have

As a consequence, by regrouping the events involved above,
we have

Consider such that for a moment. We have

for

It is also true that for in either
or Thus
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Furthermore,

Now let be the number of different signs and have in
the hypercube representation, i.e., Then
from Assumption 3 and above

(13)

In particular, letting , we have

(14)

Now let us upper-bound the K-L divergence betweenand
for as in (10)

for (15)

where for the second inequality, we use the assumption
that and the fact that on with ,

Now consider a fraction of
functions in , on which Fano’s inequality will be used.
From [20, p. 256], there exists a subsetof with at
least elements so that any two distinct members have
at least different coordinates. Let
Then from (14), for any , , we have

(16)

Let take values in with a uniform distribution. The
Shannon mutual information between the random parameter

and the observations satisfies

for any
Now for any given classifier , define if

and if Let be
the minimizer of over (using any tie-breaking
rule if necessary). Then if , from (13)

Thus

Proceeding as in (9), we have

where for the last two inequalities, we assume as used
in (15), and use the assumptions on the relationship between
the constants involved in Assumption 3. Choosingas in
(12), when is large enough, , we have

Proof of Theorem 2:Under Assumption 2, from Lemma 1,

By Lemma 3,

Under the richness assumption and that is of the same
order as , and are of the same order. Thus

The proof of the remaining statement is similar
to that for Theorem 1.

Proof of Corollary 3: The lower bound rate on
follows from Corollary 2 together with

that is a subset of Let

Then from [36], the metric entropy of is upper-
bounded by order . Thus based on Lemma 1 and
Assumption 2, determined by gives
an upper bound rate for the sparse approximation set. Under
the assumption for some , it can be shown
that is of order , and is of the same order as

with defined in (7). This completes the
proof of Corollary 3.

Lemma 4: Let and be as in Section IV.
If then and
have the same order metric entropies.

Proof of Lemma 4:Note that for

is a subset of but with the same order metric entropy.
Since and is convex, we
have Again
and have the same order metric entropies. When
is small enough, under the uniform boundedness assumption,
the functions in are between and , i.e., As
a consequence, we know and have the same
order metric entropies. This completes the proof of Lemma 4.
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