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Minimax Nonparametric Classification—Part I:
Rates of Convergence

Yuhong Yang

Abstract—This paper studies minimax aspects of nonpara- ([16, Ch. 7]). If one knows priori that the target functiorf
metric classification. We first study minimax estimation of the belongs to a nonparametric class of functions, uniform con-
conditional probability of a class label, given the feature variable. vergence rates are possible. A few methods have been shown

This function, say f, is assumed to be in a general nonparametric ¢ nver t certain rates wheris in some nonparametri
class. We show the minimax rate of convergence under squale, t© CONVErge at certain rates whenis in some nonparametric

loss is determined by the massiveness of the class as measured bglass (€.g., [2], [5], [6], [18], [19], and [24]). A general upper

metric entropy. bound on mean error probability for classification is given
The second part of the paper studies minimax classification. jn [16, Ch. 28] in terms of metric entropy. On the other

The loss of interest is the difference between the probability of hand, lower bound results seem to be rare. Optimal rates of

misclassification of a classifier and that of the Bayes decision. As . . . . e
is well known, an upper bound on risk for estimating f gives CONVErgence in probability for classification were identified in

an upper bound on the risk for classification, but the rate is @ related setting for some Lipschitz classes [29]. This paper
known to be suboptimal for the class of monotone functions. This aims to provide a general understanding of the minimax rate

suggests that one does not have to estimate well in order to  of convergence of the risks for general nonparametric function
classify well. However, we show that the two problems are in classes

fact of the same difficulty in terms of rates of convergence under
a sufficient condition, which is satisfied by many function classes
including Besov (Sobolev), Lipschitz, and bounded variation. This A. Minimax Risk for Estimating
is somewhat surprising in view of a result of Devroye, Girfi,

and Lugosi (1996). We measure loss of an estimator pin terms of a square

norm. Let|| - ||7,») denote theL, norm weighted by the

Index Terms—Conditional probability estimation, mean error density of the feature random variah, i.e., for anyg
probability regret, metric entropy, minimax rates of convergence, '

nonparametric classification, neural network classes, sparse ap-

proximation. ||g||L2(h) = </(9($))2h($)ﬂ(d$)>

1/2

|. INTRODUCTION Slmllarly, define thd/q(h) norm (q > 1). Call the Correspond-

N this paper, we study two related problems of minimaxit%1g distancel, (#) distance. Ley/ be an estimator of based

in nonparametric classification. For simplicity, consider th nZ" = (X;,Yi)i,. The risk then is
two-class case with class labélse {0,1}. Direct extensions . 4 o
to cases with multiple classes are straightforward. R(f; fin) = E/(f(ﬂf) — f(@) " h@)p(dz)

We observeZ; = (X;,Y;), ¢ = 1,---,n, which are inde- o ) ]
pendent copies of the random pdir= (X,Y). Let f(z) = where the expectation is taken with respect to the fiugince

P{Y = 1|X =z} be the conditional probability of the event/ IS always betweef and1, the risk(f; fin) is always well-
Y = 1 given the feature variablé& = = € X. Here X defined. LetF be a class of candidate conditional probability

is the feature space, which could be of high dimension. LBtnCtions, i.e., every € F satisfies0 < g(x) < 1 for all
h(z) denote the marginal density of with respect to a- & € <. Then the minimax risk under the squate(h) loss
finite measure:. We are interested in both how well one cafOr estimating a conditional probability it is
estimatef and how well one can classify based on a feature R(F;n) = minmax R(f; 2 n)
value. j fcF

Many results have been obtained for nonparametric classifi- )
cation in the literature (see Devroye, @i, and Lugosi [16] wheref is over all valid estimators based &ff' (here ‘tnin”
for a review). A surprising result is that universally consister@nd ‘max” are understood to beiiif” and “sup,” respectively,
estimators off and classifiers exist (see, e.g., [15], [17], [27]if the minimizer or maximizer does not exist). In this work,

and [32]). However, the convergence could be arbitrarily slod is assumed to be a nonparametric class. The minimax risk
describes how well one can estimateuniformly over the
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As will be shown, it is also the case for the estimation dfee Section V), but(F;n) = O((log n/n)'/?) [16, p. 485],
the function of conditional probability. Our characterizatiomvhich is much smaller thaxy R(F; ). (Here a referee pointed
of the minimax rate of convergence in terms of metric entropyut thatr(F; n) can be shown to be of order /2. The upper
enables one to derive minimax rates of convergence for mamyund part can be derived by empirical risk minimization

function classes. Examples are given in Section V. applying Alexander’s inequality [16, p. 207] with the fact that
the VC dimension of the clas§l(,<.}, a € R} is 1. The
B. Minimax Risk for Classification techniques used in [16, the proof of Theorem 14.5] may be

. . . —1/2 i
For classification (or pattern recognition), the goal is to hay$€d 0 show the rate~/= cannot be improved.)

a classifier which predicts membershipsfaccording to the 1 Nis makes one wonder if this phenomenon s typical for
feature variable:. Formally, a classifie6 based on the training ¢/assical function classes such as Sobolev, Lipschitz, Besov,
dataZ" is a mapping fromt’ x {X x {0,1}}" to {0,1}. As and bounded variation. It turns out the answer is no. We give

is well known, given the true conditional probabilit functiorf® Sufficient condition for the minimax rates of convergence

f(x), an ideal optimal Bayes decision is to predicas clasg for the two prqblems to match. This c_o_ndl'_uon is satlsfle_d

if f(x) > 1/2 and clas® otherwise. This decision minimizesY many function classes. Then classification is no easier
the probability of errorP{Y # 1(X)} over all choices of than estimating the conditional probability in a uniform

classifierr. Let ¢* denote the corresponding error probability.sense' This result is rather surprising when compared with [16,

For a given classifies = §(x; Z") based onZ", the mean Theorem 6.5], which says that for any fixg¢cand a sequence
error probability is of consistent estimator§,, one always has

EP(Y #6§(X; 27| 2™). r(£305,:m)

T L
We will examine 2y R(f; fain)

v(f:6:n) = EPLY # 8(X; Z™)|Z")} — ¢* @ The explanation of th?s phenomenon is that_the above ratio
does not converge uniformly t® over the function classes.
which is the difference between the mean error probability
of 6 and the ideal one*. We call it mean error probability D. Model Selection for Minimax Adaptive Estimationfof
regret (MEPR). For a given clas’ of conditional probability

4 A ’ In the derivation of minimax upper boundsnets are used
functions, let the minimax MEPR be defined as

in the construction of estimators achieving the optimal rates.
r(F;n) = min max r(f; 8 n) These estimators are convenient for theoretic studies, but are

5 feF not practical for applications. The sequel of this paper, “Min-

where the minimization is over all classifiers based#h imax Nonparametric Classification—Part 1l: Model Selection

This risk describes how well one can classifyrelative to the for Adaptation” (see this issue) presents results on minimax

Bayes decision, uniformly ovefF. adaptive estimation of the conditional probabilifyby model
selection over a countable collection of finite-dimensional

C. Is Classification Much Easier Than the Estimation approximating models. There it is shown that using a suitable

of Conditional Probability? model selection criterion, minimax rates of convergence are

automatically achieved (or nearly achieved) simultaneously
over different types of function classes and/or with different
smoothness parameters.

Based on an estima}of of f, one can define a plug-in
classifieréf pretendingf is the true conditional probability,

ie.,
U This paper is organized as follows. In Section I, minimax
dp(x) = { L !f fz) 2 1/2 rates for estimating are given,; in Section Ill, minimax MEPR
0, if fz)<1/2. is given under a sufficient condition; in Section IV, we present
Then it is well known that (see, e.g., [16, p. 93]) some results on the relationship between approximation and
X classification; in Section V, examples are given as direct appli-
r(fi6pm) < 2E/h(a:)|f(a:) — f(2)|p(dx) cations of the main results in Sections Il and IlI; in Section VI,
12 Wedg_;fi_ved a silrlnple resul_t on rlnir!imax Latesdf_or sorne_cla_ls_ﬁes
2 \\2 modified to allow some irregularity such as discontinuity. The
s28 </ M)(f(@) = 1)) de)) proofs of the results are given in Section VII.
<2y R(fi fin). Il. MINIMAX RATES FOR ESTIMATING
As a consequence, THE CONDITIONAL PROBABILITY

r(F;n) < 2¢/ R(Fin). A. Metric Entropy

Thus a minimax upper bound for estimatigfigimmediately A finite subset/V, is called ane-packing set inF under
gives an upper bound on the minimax classification risk MEPR distanced if d(w,v)>e¢ for any u, v € N. with u # v.
over F. But how good is this upper bound? L&tbe the class Let My(e) = Ms(e; F) be the maximal logarithm of the
of monotone functions. Ther/R(F;n) is of ordern='/3 cardinality of anye-packing set inF under Lo(h) distance.
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The asymptotic behavior a¥/z(¢) whene — 0 reflects how  Remarks:

massive the clasg$ is (under the chosen distance). We call 1) For the upper bound part, Assumption 1 is not needed.
Mj(e) the packinge-entropy or simply the metric entropy of  2) When M,(c; F) in (3) and (4) is replaced by an upper
F. Similarly, defineM,(¢) under the distancé,(h). A lot of bound and a lower bound, respectively, the resulting
results have been obtained on the orders of metric entropy for pounds in Lemma 1 are valid.

the classical function classes and many more under various, | emma 1. for the upper bounH,is assumed to be known.
norms (see, e.g., [9], [23], [25], [26], and [34]). This rather restrictive condition is used for the purpose that an
. AssumeMg(c) < oc for everye > 0 (otherwise, the minimax __ ot can be constructed (theoretically) &t under La(h)

risk typically does not converges to zero) ahll(c) — o0 85  gistance as needed in the proof. In practical problems, of

¢ — 0 (which excludes the trivial case whefiis finite). For . rse 1 is not known. To get the right rate of convergence, it
most function classes, the metric entropies are known only Uptices to be able to construct amet with log-cardinality of

to orders. For that reason, we assume Mét) is an available e same order. The following assumption will be used instead.
nonincreasing right-continuous function known to be of order

M>(e). We call a classF rich in Ly(h) distance if for some
constant0 <7 <1,

Assumption 2:For each (small}, without knowingh ex-
actly, one can construct annet of 7 under L,(h) distance
with log-cardinality of orderd (e).

Whenh is unknown but known to be in a clagg, it is also

appropriate to study minimax risk ovét as well as over the
This condition is characteristic of usual nonparametric classgiass of conditional probabilityF. Let

(see [36]), for which the metric entropy is often of order
c~*log(1/¢)? for somea >0 and3 € R, see Section V.

lilerijélf M(re)/M(e)> 1. 2

R(F;H;n) = H;in e max B, f|f - 2.
B. Minimax Risk Bounds

We need some conditions for our minimax risk bounds basedassumption 2 For each (smally, one can construct an
on metric entropy. net for 7 under theL,(h) distance simultaneously ovire H

Assumption 1:The classF is convex and contains at least¥ith log-cardinality of orderd(c) for some right-continuous
one memberf* that is bounded away froandl, i.e., there function. In addition, the packing entropy of is of order
exist constant® < ¢ < <1 such that: < f* < ¢. M {e) under Lo (h) distance for at least onk € H.

A couple of quantities will appear in our minimax risk satisfaction of Assumption 2 or'2equires some knowledge
bounds. Choose,, such that of k. See Section V for examples that satisfy these conditions.
Now we give results on minimax rates based on Lemma 1.

N _ 2
M(2€n;F) = ne,. Let ¢, satisfy

(3)

Let ¢, be chosen to satisfy M(e,) = ne2.
Theorem 1: Assume Assumptions 1 and 2 are satisfied and
that F is rich in Lay(h) distance.

(Since the packing entropy is right-continuous, under thel) For the squard.(h) risk, we have
assumptionMz(e) — oo, bothe, andg, are well-defined.) R(Fin) = 2.

Similarly, definec,, , with Mx(c; 7) replaced byM,(c; 7). 2) If M,(¢) andMa(c) are of the same order as— 0, then
The notationa,, < b,, will be used to mean

Ms(2¢,; F) = 2<1 + )nc;i +2log2.  (4)

4
1—-7)

minmax E||f — f||,1 X €.
lim sup(an/b,) < oo. §oier
. 3) Under Assumption 2 we have
Whenga, <X b, andb, =< (s 185 O, and b,, are of the R(F; Hn) = 2
same order, we use expressiop =< b,. If a, andb, are '

()

asymptotically equivalent, i.elimm(a,, /b,) = 1, then we write
an ~ b,.

Lemma 1: Assume Assumption 1 is satisfied. For dny0,
we have the following minimax lower bound dn,(h) (¢ > 1)
risk for estimatingf:

. _ L L+l
m}nl}lca}_(EHf f||Lq(h) 2 /27

For upper bound, i#. is known, then we have

inmax E||f — fII2 ., < 10262,
111}111}13}_( I1Lf = fllz, 0 < 1026,

Remarks:

1) Instead of Assumption 1, it suffices to assume tRat
contains a subsef; that is uniformly bounded away
from 0 and1, andF, has the same order metric entropy
as F.

2) The exact risk bounds may sometimes be of interest. Let
M(¢) be the log-cardinality of the-net that one can
construct under Assumption 2. L&t be determined by
M(2¢,) = né2. Then we have

/8 < R(F;n) < 1028
Similar bounds hold foR(F; H;n).
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The condition that the packing entropies underand L, belongs toF. Also g. satisfies||gc||oo < ¢ and pf|ge| >

are of the same order are satisfied in case of many familidfe) > Asv. for some constantd < 4;, A; <1 with

nonparametric classes (see [26]). w(I) = wv.. Furthermore, there exists a nonincreasing right-
The following corollary is obtained under some simpleontinuous functionM (¢) with M (¢) — oo ase — 0 such
sufficient conditions for Assumption’2 that v, < A3/M(e), 0< Ay < rv. < 1 for some constants
Az and Ay.

Corollary 1: Suppose that Assumption 1 is satisfied. As-
sume there exists a density and a constanf’ > 0 such that
for everyh € H, h/h* < C, and thatF is rich in La(h*)
distance with metric entropy of ordéd *(¢). In addition, there
exists at least oné € H such that thel.;(k) metric entropy
of F is of order M*(¢). Then

Assumption 3 is verified in [7], [11], and others for many
function classes (see Section V).

The subclass of hypercubes is intended to capture the
difficulty of classification for the whole clas&. The subset is
very simple and easy to handle. Note that the perturbations are
aroundf*(z) = 1/2. When M (e) is of the same order as the
R(F;H;n) < L»(h) metric entropy ofF, classification onF,,. alone has
difficulty already matching that of estimatinge 7, resulting
in the determination of rate of(F;n) as in the following
theorem.

wheree,, is determined byM*(e,,) = ne2.
In particular, if there exists &* such that

Theorem 2: Assume Assumptions 2 is satisfied and that
: i is rich in Lo(h) distance with metric entropy of ordéd (¢).
(|.ed., h/.h .IShU.nlf‘C[)/rm}lL):/k bgpnded abr:)ve and away from Zero)Suppose Assumption 3 is satisfied wilif(¢) of the same
and 7 is rich in L(h) distance, then order asM (¢) and that there exists a constant> 0 such that
R(F;H;n) < h > ¢, on ther. translated + x; for each (smallk. Then the
minimax mean error probability regret ¢f has rate

r(Fin) X ey

sup |[log(h/h")l[ec < o0
heH

wheree, is determined as above.

I1l. MINIMAX RATES OF CONVERGENCE

where ¢,, i rmin M(e,) = ne2. If in f
OF ERROR PROBABILITY ere e, is determined byM(e,) ne: stead o

Assumption 2, Assumption ‘2is satisfied for a class of
From the upper-bound rai on R(F;n) in Theorem 1, densitiesH with M (e) =< M(e) and containing at least one

we know the minimax MEPR-(F;n) is upper-bounded by member# with 7 < & <oo on X and h > ¢ >0 on

order ¢,. A similar upper bound in terms of metric entropyu; <, <, {I + z;} for each (small), then

was obtained in [16, Ch. 28] using an argument directly for

MEPR. However, as mentioned in Sectionr{F;n) may r(FiHin) = lnc,h“,?é%l}?}”(f?é?”) = en.

converge much faster thagyy R(F;n). The interest is then

on lower-bounding-(F;n). One difficulty is that the loss IV. APPROXIMATION AND CLASSIFICATION
I(f;6)=PY #£6(X;2™)|2™) — ¢* Many different approximating systems can be used to esti-

hich vields riskr( : : h d with mate the function of conditional probability for classifica-
(which yields risk(f;é;n) when averaged with respect _totion. For instance, polynomial, trigonometric, spline, wavelet,

Z") IS not a m_etrlc |n§ (it is not Symmetn_c and there 'S or neural net approximations have different advantages and are
no tnangl_e-llke inequality). It T“a"?s the notions Of COVering ety in model building for the estimation ¢f It is intuitively

and packing (as u;ed for estimatigg very tricky and hard clear that given an approximation system, how well one can
to compute even if they make sense. The next result takes;ater hased on a training data is related to how well the

advantage of the observation that for many function Class?l?mction can be approximated by the system. In this section, we

on _asubclass (hypercubes) CODStrUCtEd f_rom a suitable per fablish formal conclusions on relationships between linear
bation, the loss does behave like a metric and, therefore,

: | boundi hni t6 () risk ) roximation, sparse approximation, and minimax rates of
previous lower-bounding technique i (#) risk to estimate convergence for classification. Similar, but more general and

f also works. The following setup of a hypercube class is tetailed treatments in the context of density estimation and

[8], [11], and o.thers used for density estimation. regression are in [36]. Let* be a known density oit’. We
We assumé is upper-bounded by a known constant co assume that the true density satisfies

on X&.
. . . h/h" < A
Assumption 3:For anye € (0, 1), there exist some function WS

ge With support on/ C X, andr = r. disjoint translateg +xz; for a known constanti > 1. Let H(A) be the collections of

such that the hypercube family all such densities.
Feube = {f.r(x) =1/2+ Z Tige(x — x;): A. Linear Approximation and Rates of Convergence
=1 Let® = {¢1 = 1,---, ¢, --} be a chosen fundamental

sequence in

r= () {}}
LX) = {g: 19l po ) < o0}
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(that is, linear combinations are dense IR (X;h*) with ask,/n x min,(yi + k/n), which represents the familiar
respect toL,(h*) distance). Letl' = {vo,---,v,---} for bias-squared plus variance tradeoff for mean-squared error.

which v | 0 ask — oo. Let no(g9) = ||9llz,(n+), and for Of course, in applications, one does not know how well
E>1 the underlying function can be approximated by the chosen
L system, which makes it impossible to know the optimal size
me(g) = I[nh}ng _ Z aidil| Lo kr. This suggests the need of a good model selection criterion

i = to choose a suitable size model to balance the two kinds of
errors automatically based on data. Results on model selection

be thekth degree of approximation of € L*(X; 1) by the ¢o ¢jassification are in the sequel of this paper.

system®. Let (T, ) be all functions inL2(X’; h*) with the

approximation errors bounded Hy i.e., B. Sparse Approximations and Minimax Rates

F(L,@) = {g € L*(X;0"): m(g) < mo b =0,1,--}. Full approximation utilizes all the basis terms up to certain
m%rders. For slowly converging sequencgs such as arise
pecially in high-dimensional function approximation, very
afgek (e.g., exponential in dimension) is needed to get a good
accuracy. It becomes of interest to examine approximation
using a manageable-size subset of terms. This subset is sparse
in comparison to the total that would be needed with full
v < yan < o (6) approximation.
) _(y s Let & andI" be as in the previous section. L&{ > k,
as is true fory, ~ k~*(logk)”, a>0, 5 € R. Lorentz ;- | po a given sequence of integers satisfying
gives order of theL,(h*) metric entropy and shows thatliminffk/k — oo and letZ, = {1,2,---,I;} (Iy = 0)
F(L',®) is rich [25, Theorem 4]. Then, determined by panote by

They are called full approximation sets of functions. So
classical function classes (e.g., Sobolev, general ellipsoid
are essentially of this type.

Assumel” satisfies a condition that there extist. ¢ < c< 1
such that

M(e,; F(T',®)) = ne balances the approximation error
bound~; and the dimension over sample sizén [36]. k

Assume that the functions inF(I',®) are uniformly n(g) = EIU{{i'I}EI'?;i_I}}||g—ZGi¢li Ly (h*)
bounded (see [36] on satisfaction of this condition). Let P i=1

F(L', @) be all the functions inF (L', ) that are nonnegative {ha 1th degree of sparse approximation ot L2(X;h*) by
and bounded above by. It can be shown that thé:(h*) he systemd (for a fixed choice of{I;, I», - -}). Note here
metric entropies of#(I', ®) and F(I', #) are of the same ¢ roughly thek terms used to approximateare allowed to
order (seg Lemma 4 in Section VII). By Corollary 1, we havgg from I, basis functions. LeS(I', ) = S(I', &, {1,,}) be
the following resuit. the set of all functions i.2(X’; h*) with sparse approximation

Corollary 2: Let k,, be determined by < k/n. Then the errors bounded by, i.e.,

minimax rates for classification satis .
b S(T, @) = {g € L*(A;h7): ii(g) < ok = 0,1, ).
R(F(L,®); H(A);n) <kn/n
i ) ) — We call it a sparse approximation set of functions. Lafgs
r(F(E 2)H(A)sn) 3 Vkn/n. provide considerable more freedom of approximation.

. ) i The e-entropy of S(T", @) satisfies [36]
Remark: The condition thatF(I", ®) is uniformly bounded

is not needed for the upper bound rate on minimax MEPR. M(gFT,®)) <M(ST,®))
An illustration _of thl_s result is as follows. For a _system < M(e; F(T, ®)) log (¢7)
® (e.g., polynomial, trigonometric, or wavelet), consider the
functions that can be approximated with polynomially decreasnder the assumptioh, < £ for some possibly large constant
ing approximation erroty;, ~ k=%, a>0. Whena is not too 7>1. Note that the upper and lower bounds differ in a
small, F(I', @) is often bounded. Then solving < k/n logarithmic factor. (We tend to believe thaf(¢; S(I', ®)) is
gives ordern—22/(2a+1) Thus of higher order thanM (¢; F(I', )) and the ratio might be
ROF(T, @) H(A);n) = n—2e/(1420) {Lg’;g?t/;ziolr)(j)?rlog(e—l) or a similar logarithmic factor (e.g.,
r(F(L, ®); H(A);n) Sn=/(1F22), Suppose the functions iF (I, ) are uniformly bounded.
Note that for the classification risk (1", ®); H(A); n), the Let ‘?(F"I?) be the set of all yalid conditional probability
. ) . functions inS(T", ). Let k,, satisfy
rate \/k,/n is not shown to be optimal in general. However,
for some choices of smooth approximating systems such as Ep/n<~2 . )
polynomials or trigonometric functions, Assumption 3 is still "
satisfied, and the rate—*/(1+2) s optimal for classification Then based on Lemma 1 and Theorem 2, we have the follow-
for such cases. ing corollary. For simplicity, we assume théj, determined
From Corollary 2, the optimal convergence rate in the fullbove satisfieg,, < n'~" for some arbitrarily small positive
approximation setting for estimating is of the same order 7, as is true fory, ~ k=(log k)?, >0, 3 € R.
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Corollary 3: For the sparse approximation sé¢1“,<1>), if
I;; < k7 for somer > 1, then

kn/n < R(S(F, Q); H(A);n) = kn/1ogn) logn/n.

2)

For minimax MEPR, we have
7(5(F7 (P)? H(A)7 7’L) = \/kLn/ logn ] IOg 71/71
As a special case, iy, ~ k=%, a >0, then

71720(/(1—'—20() jR(S(F,(I)),TL) < (n/logn)72a/(l+2a)'

The upper and lower bound rates differ only in a logarithmic
factor (we tend to believe that an extra logarithmic factor is
necessary here faR(S(I', ®); 7).

Sparse approximation provides much more flexibility yet
does not give up much linearity. To achieve the same degree
of approximation for all functions in a sparse approximation
set, full approximation has to use many more terms. This has
an implication for statistical estimation using the nested mod-
els corresponding to full approximation compared to subset
models corresponding to sparse approximation. Since many
more coefficients need to be estimated for the nested models,
the variance of the final estimator is much bigger in general,
resulting in a worse rate of convergence. For example, if
I k? and v, ~ k!, then under some conditions, it
can be shown (see [37]) that the rate for estimatjhdgn
the sparse approximation set based on the subset models i

O(n/log n)~2/3, whereas the rate based on nested models
is no faster thann—1/2, Results on subset selection for
classification are presented in the sequel of this paper [37].

We finally mention that from [25, Theorem 9], a full
approximation setF(I',®) cannot be better approximated
beyond a constant factor with any other choices of bésis
The same conclusion carries over to a sparse approximation
set S(I', @).

V. EXAMPLES
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Monotone, bounded variation, and Lipschitz clasSdse
function classBV (C') consists of all functiong(x) on
[0, 1] satisfying||g||.c < C and

V(g):=sup Z lg(zis1) — glas)| < C

where the supremum is taken over all finite sequences
X1 <Ta< - <Zpyin [0, 1]. Foro<a <1, let

Lip, ,(C)
={g: llg(z+h)—g(x)|| <Ch* and||g]|, < C}

be a Lipschitz class (similar results hold when the Lips-
chitz condition applies to a derivative). Whan> (1/q—
1/2)*, ¢ > 1, the L, metric entropy is of ordee—!/«

[9]. For BV (C"), with suitable modification of the value
assigned at discontinuity points as in [14, Ch. 2], one has

Lip, ..(C) € BV(C) C Lip, ,(C).

So theL, metric entropy ofBV (C) is also of orded /.

Let MI(C) be the set of all nondecreasing functions
g on [0, 1] such that||g|| < C. Using the fact that

a function with bounded variation can be expressed
as a difference between two monotone nondecreasing
functions, it is easy to show tha¥ I(C') has L, metric

entropy also of ordet /e.

) Besov classed et

r

)= 3 (1)1 Fate + k).

k=0

Then therth modulus of smoothness @f € L,[0,1]
(0<g<oo)orofge C[o, 1] if ¢ = oo is defined by

wrig:t)e = sup [[A0(g:)lle-
(S

Let >0, r = [o] + 1, and

|g|B?,q = ||w7(gv ')||a,o’

A. Function Classes

We consider a few function classes including classical ones
(ellipsoidal, Besov, etc.) and some other relatively new ones
(e.g., neural network classes). For results on metric entropy
orders of various function classes, see [26] and references
cited there.

1) Ellipsoidal classes inLs: Let {¢1,¢2, -, ¢r, -} be
a complete orthonormal system ih?[0,1]. For an
increasing sequence of constalsvith i, — oo, define
an ellipsoidal class

£({ta}, C) = {g =) G Y G < o}.
=1 =1

We here only consider the special case with= k¢

(> 0), for which the metric entropy is of order !/«

[30]. General treatment is similar to that in [36]. When 4)
a>1/2 and supgs1 ||¢r|lc <00, the functions in
E({k>},C) are uniformly bounded.

= { (fooo(t_awr(gv t)q)o%)l/o, for0< o<
SUPyso t w9, 1), for o = .

Then the Besov norm is defined as

gllns,, = llglls + 19l B2,

(see e.g., [14]). For definitions and characterizations of
Besov classes in thédimensional case, see [35]. These
classes and similarly defineH-classes (which can be
handled the same way as Besov classes) include many
well-known function spaces such a®lder—Zygmund
spaces, Sobolev spaces, fractional Sobolev spaces or
Bessel potential spaces, and inhomogeneous Hardy
spaces [35]. By [9], [12], and [34], fot < ¢ < 0,

1< ¢ < o0, ande/d>1/q—1/2, the L, metric entropy

of B2, (C) is of ordere=#/ for 1 < p < 2.

Classes of functions with moduli of continuity of
derivatives bounded by fixed functio@onsider general
bounds on the moduli of continuity of derivatives.
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Let A%2 = Ad2(Cy,Cy,--+,C,) be the collection
of all functions g on [0,1]¢ which have all partial
derivatives || D¥g|l. < Ci, |k| = k = 0,1,---,7,
and the modulus of continuity irL, norm of each
rth derivative is bounded by. Here w is any given
modulus of continuity (for definition, see [14, p. 41].
Let 6 = &(¢) be defined by equatiof"w(6) = ¢. Then

if » > 1, from [25], the L, metric entropy ofA%2 is
of order (§(¢))~¢.

Classes of functions with different moduli of smoothne
with respect to different variabled.et kq,---,ky be
positive integers and<j3; < k;, 1 < ¢ < d. Let
k= (ki, - ,kq)andg = (p1,---,04). Let V(k,B,C)
be the collection of all functiongy on [0,1]¢ with
llgllee < C andsupyy,<, ||AF, gll2 < Ct%, where A,

is the k;th difference with steph in variable z;. As
stated in [25, p. 921], from the metric entropy result
on full approximation sets together with polynomia
approximation results in [33, Sec. V-C], tHg metric

entropy order ofV (k, 8,C) is (1/€)Ed o

B
Classes=;*(C) andG5(C): Let ES™*(C)(a>1/2 and
k > 0) be the collection of periodic functions

<aml,...,md cos < )
d

+ by ooy SIN < E 2rm,;x;

=1

5)

6)

g(‘Tlv"'v‘Td)
+oo

>

My, ,Mg=—00

d

Z 27Tm7j$7j

=1

)

< C(my - -ma)”*(log" (M - - ma) + 1)

on [0,1]¢ with

v

wherem = m if m # 0 and0 = 1. Similarly, define
G4(C) (> 0) with the constraint

a2

2
MLy, Mg + brnl,---,rnd
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ando(t) — 0 ast — —oo. It is further required that
o is either the step functiom*(¢) = 1 for ¢ > 0,
and o*(t) = 0 for t<0, or satisfies the Lipschitz
requirementyo(¢) — o(¢')| < Ci|t — ¢| for someCy,
and|o(t) — o*(t)] < Coft|Y for someCs, and~ >0,
for all ¢ #£ 0. From [4] and [28], one knows that thie,
metric entropy of N(C) satisfies
(/) G/2HYD < M (e) 3 (1) /4G Jog(1/c).
SS Note that the exponents df/¢ in the upper and lower
bounds are different. For botti = 1 (in which case,
N(C) is a subset of a bounded variation class) drd 2
(see [28]), the exponent in the upper bound cannot be
improved. It remains to be seen if this is the case for
d>2.

ﬁ. Minimax Rates for the Examples

For classification, the conditional probabilifyis betweer)
and1. So the classes of interest are the corresponding subsets
of the above function classes. For convenience, we will not
use another symbol for each of them. Similarly to Lemma 4
in Section VII, it can be shown that the restriction does not
change metric entropy orders for the examples.

1) Assumptions:We assume that the true densibyfx)
of the feature variableX belongs toH(A), which consists
of all densities on[0, 1]¢ that are upper-bounded hyt > 1.
Assumption 1 is clearly satisfied for each of the function
classes in the previous subsection. Note that except for the
neural network classes (for which the metric entropy order
is not exactly identified), each of those classes is rich in
L, distance, and Assumption’ 2s satisfied forH(A). Thus
Theorem 1 (or Corollary 1) is applicable.

2) Rates for estimating: The following table summarizes
the rates of convergence for estimationfofThe rates are for
R(F;H(A);n).

Z (my - - 'md)m(afm,...,md + ernl,m,rnd) < C2. Classes Rate Condition
; E{k},C —2a/(2a41) 1/2
The functions inEg”“(C) and G§(C') are uniformly B(é 0}7 ) ”_2/3 a>1/
bounded ifa > 1 and« > 1/2, respectively. From [31], (@) ”_2/3
the L, metric entropies of2;"*(C) and G5(C) are of MI(O) n
order Llpa,q(c) n—?a/(?a-l—l) o> (1/(] — 1/2)+
4 _ _ B2 (CY) n—2a/(2a4d) afd>1/qg—1/2
1 1/(a—1/2)1 (2k+2a(d—1))/(2a—1) 1 o,.q
(/) = are A2 (8(c0))~ = ne2
and V(E,B,0) =20/ (2041) ol — Z(‘i—lﬁ‘_l
(1/e)*log* " (1/¢) ok —a—1/2)/a 1 T
E;H(C) n o=
respectively. (log n)tkFald=1))/a
7) Neural network classed.et N(C) be the closure in 20/ (204 1)
L,[0,1]¢ of the set of all functiong;: R¢ — R of the Gi(©) pRe/t2a a>1/2
form .(1Ogn)2a(d—l)/(2a+1)
g(z) =co+ Z cio(v; - x +b;)
i Based on Lemma 1, for the neural network cla&s™), the
with |eo| + 3 |e;] < C, and |v;] = 1, whereo is a minimax rateR(N(C); H(A);n) is between

fixed sigmoidal function witho(t) — 1 ast — oo

= (142 41/d) (100 )= (1 /D) (142/)/ 2+1/d)
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e case of Besov), together with the upper bound for estimating
(n/logn)~ AHL/D/C+1/d) f, we obtain

The exponential terms in the upper and lower rates do not n~ WHH /A D= < (N(O); H(A);m)
match exactly because the metric entropy order is not identi- = (n/logn)~(F1/d/(+2/d)
fied. Believing the upper bound on the metric entropyVgt”)
given earlier to be tight, one would expect the above upp@here~’ in the lower bound rate can be arbitrarily close to
rate to be the right rate of convergence (possibly ignorirfgfo- We conjecture that the upper rate (probably without the
a logarithmic factor). For large (that is where the neural logarithmic factor) is in fact the optimal rate of convergence,
network models are of main interest), they are very close & least ford = 1 andd = 2. Whend is large, the upper and
each other. Note thaR(N(C); H(A);n) = o(n~1/?). lower rates of convergence are roughly*/*,

Using Theorem 1, conclusions can also be madepr

loss (1 < p<2) for some of the classes. For example, for the v/|. RATES OF CONVERGENCE FORFUNCTION CLASSES

Besov classe®; (C) with a/d > (1/g — 1/2)*, we have MODIFIED TO ALLOW SOME IRREGULARITY
min  max E||f—f||L ) = p—o/Qatl) Included in the previous section are some smoothness
ForeBs(©) ! classes. In some applications, the target functjfors not

3) Satisfaction of Assumption Based on previous work smooth, but not so only at a few change points of unknown
of others on density estimation, we know Assumption 3 jgcations. Here we show that such a small modification of a
satisfied withA (<) of the same order as the metric entropy ofonparametric class gfdoes not change rates of convergence.
the class (as required for Theorem 2) for the following classes?e result is applicable to the following example.

E({k*}, C) (a>1/2) with trigonometric basish, = 1,62 = Example. Functions of, 1] with a piecewise property_et

sin (2mix), p2ip1 = cos (2mix) for i > 1[7]; Lip, () [7], s be an original nonparametric class of nonnegative functions
also Lip, ,(C)(q = 1), and BV(C) (because they containpner-hounded by. Let

Lip,, o.(C) and Lip, . (C) with the same order metric entropy

respectively); B ,(C) [22]; A%2 with w being a concave kot
function [7]; V(k,B,C) [7]. F= {f(w) = s(z) - Z bi+1l{a, <o<ais ) S €S,
4) Rates for classificationApplying Theorem 2, we have =0
the following rates forr(F; H(A);n). 0=ao<ay<az<---<ap =1,
ogbi§1,1§igk}.
Classes Rate Condition Herek is a positive integer. If the functions $are continuous
E{Kk*}, C) n—o/(2a+1) a>1/2 with (or differentiable), then the functions itF are piecewise
trigonometric basis continuous (or differentiable).
BV(C) n—1/3 Let S and G be two classes of nonnegative functions on
MI(C) O(n/ logn)~1/2 [0, 1]¢ upper-bounded by. Consider a new class of functions
Lip 4 (C) pm /o) a>(1/q—1/2)*
a, f‘ = = M S S, c g .
B2 (O)) o/ okd) afd>1/qg—1/2 Ule) = s(x)glz): s € 5,9 € G}
A2 €n (6(e,)) ¢ = ne? Then it can be easily shown that & contains the constant
andw concave function 1, the L, metric entropies of these classes have the
Vik,B,0C) n—/(2a+1) al = Eq_lfgfl following relationship:

My(e;8) < Ma(e; F) < Ma(e/V2;8) + Ma(e/V?2;G).
The rateO(n/logn) /% for MI(C) is obtained in [16] 2(65) S Mol F) < Male/ ) e/ )
as mentioned before. It is interesting to observe the diffeks a consequence, i has the same or a smaller order

ence between estimating the conditional probabilftyand metric entropy compared to a rich nonparametric cl&ss
classification for bounded variation classes and monotone n@ien M,(¢; ) < Ms(c;S), which is the case for the above

decreasing classes. In terms of metric entropy oréf(C) example.

and M1(C) are equally massive, resulting in the same rate . .
of convergence for estimating. However, metric entropy Corollary 4: Supposeg contains the constant function
order is not sufficient to determine the rate of convergence f8pd M2(¢; §) is of the same or a smaller order 81;(¢; S).
classification, for which case what matters most is the freedofen if S satisfies the conditions in Theorem 1, we have

of f around the valué/2 (corresponding to hard classification ROF-H(A:n) = R(S-H(A):n) =
problems). The difference betweddl’ (C') and M I(C) then (Fi H(A)in) < R(S;H(A);n) < €,
shows up drastically. wheree,, is determined by\s(¢,,; S) = ne2. If S satisfies the

The classN(C) with, e.g., step sigmoidal, contains &orresponding conditions in Theorem 2
Sobolev class with smoothness parameies d/2 + 1 + v

for every~ > 0 [3]. Using the lower rate for Sobolev (special r(FyH(A);n) X e,
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VII. PROOFS OF THERESULTS by Fano’s inequality (see, e.g., [13, pp. 39 and 205]), where

The idea for the proof of Lemma 1 is similar to that used iA(©5 2™) is Shannon’s mutual information between the ran-
Yang and Barron [36] on density estimation and nonparametflem paramete® and the samplez™.

regression. This mutual information is equal to the average (with respect
Proof of Lemma 1:For the lower bound result, we consideto the prior) of the K-L divergence between(z") and
a subsetF? of F. A minimax lower bound for7? is clearly wi on n
2" = z N,
a lower bound forF. Let 70 = {f/2+ f*/2: f € F}. Under P f&;: /N,
the convexity assumption af, F° is indeed a subset oF. e

Note that by Assumption 1, the functions &P are uniformly Here the density o™ is
bounded above away fromand below away from zero "

0<e/2< f<(e+1)/2<1 (8) ps(z") = ([[ h(xa) [Jrye @ - fla)—+)

=1
for every f € 7°. The boundedness property will be used imvith respect to the product measue® )", wherev is the
our analysis to relate Kullback—Leibler (K-L) divergence t@ounting measure (fok’). Since the Bayes mixture density
L, distance. It is easy to verify that thie, (2) packing metric () minimizes the average K-L divergence over all choices
entropy of 7° is M(2¢; F) [36]. of densityg(z"), the mutual information is upper-bounded by

Let N, , be ane, ,-packing set with maximum cardinality {ne maximum K-L divergence between(z") and any joint
in 7Y under distancel, = L,(h), and letG,, be ane,-net density ¢(2"), i.e.,

for 7° under distancel, (i.e., for any f; € F°, there exists

f2 € G, such thatds(f1, f) < e,). Since ane-packing set 1(0;2") £ max /pf(z")log pf(zn )
in 7Y with maximum cardinality serves also asanet in F°, feNe, , q(z")
we can choosé&?. to have log-cardinality where the integral is with respect to the product measure
Ma(en: FO) = Ma(26n; F). (uflu)". Now choosew; to be the uniform prior onG,,
and let

For any estimatorf based onZ”, define

A g(z") =p (") = Y pr()/IGe, |

f:argflg\;rigll dy(f, f) jea

€

<n

(if there is more than one minimizer, choose one based BAr anyf € F°, there isf’ € G., such that|f—f'||r, ) <en,
any tie-breaking rule) so thattakes values in the packing se@nd then

N, . Let f be any pAomt me”’j' By the tr~|angle inequality, /pf(z")log qu(ii)) < /pf(z")log (1/|é7f(§p;,(zn)
d(fs ) +do(f, f) = do(f, ) !

which is at leask,, , if f # f since N is a packing set. = log|Ge, | "‘/pf(zn)log 5;((;))'
Thus if f # f, we must havely(f, ) > ¢, /2, and We now bound the K-L divergence
H;in max Pr{d,(f, f) 2 €n.4/2} /pf(zn) log 5;,((21))
min max Pr{d F) > e T
=, P 2l —n [ 1)) tog T+ 1 1o
| ; (@)
2 min max Pr(f # 1) 1— f(x)
=n,q ) . 10g m)ﬂ(dfﬁ)
>min D Pr(f# f)/INe ()2 (@)
P (f(z)=f'(=))” | (f(x)=f(x)) )
TNen g Sn/( f'(x) + 1—f'(z) h(z)p(dz)

= min P"(© # f) 4
; < C(l—fanf—f’H%z(h) (10)

where P; denotes probability undef, and in the last line, = . B

© is randomly drawn according to a discrete uniform prio‘f”here the first inequality follows from the familiar bound on

w on N, and P denotes the Bayes average probabili}-L divergence by chi-square distance, i.e.,

with respect to the priow. Since(d,(, f))é i_s not less than / plog(p/q) < /(p —%/q
(e, ,1/2)51{#);}, taking the expected value it follows that for
all ¢>0 for densitiesp and ¢, and the second inequality follows from

min 1}11}_{ Efdfl(f, f) (8). Together with our choice of, in (3), we have
C

f . Vn 1 R pf(zn) s 4n 62
2 (§n7(1/2)[ Ir?n Pw(@ # f) /pf(7 ) Og q(zn) S M2(2 7f‘) + 2(1 _ E) n
4
> (e, /2) (1 - (927 Flog2 ©) - <1 i m)”g -
- log N, | Thus we have shown tha{®©; Z") < (1 + (4/¢(1 —©)))ne?.



2280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

By our choice ofenq in (4) estimator. The squared, (/) loss of frand is bounded as
1 follows:
(1(©;2") +1log2)/log N, | < 5
The lower bound follows. /h(x)(f(x) — Jrana(@))? dp = /(29(35) — 25(x))*h(z) dps
Now let us derive the upper bound. We will manipulaté
the data in some way for the purpose of relating K-L risk of = 4/( — §)*h(z) dp

density estimation to the risk of interest. o
In addition to the observed independent and identically <dllg - allz, )

distributed (i.i.d.) sampléX,,Y7),---,(X,,Y,), we generate

some random variables. At the observﬁd — 4, value, let To avoid randomization, we may replagg.sa(x) with its
W; be an independently generated Bernoulli random vanalﬂéDeCted value ovely,---, W, andVi,- -, V, to get f(x)
with success probabilityf,(z) = 1/2. Let Y; be ¥; or Wwith
Bemouli2) random variatied; generated ndependenty.  £7+117 = 7100 = Bz~

; generated independently. 2 (1)

Then the conditional probability o¥; taking valuel is < EznEwn ye
g(x) = (f(z) + f.(x))/2. The new conditional probability

f _ E'an 7‘“1 frand| |%2 (h)

f - frand| |%2(h)

— - _F 2
g is bounded between/4 and 3/4 as in (8), whereas the =Ez. |/ JirandHLz(h)
family of the original densities need not be. Let = Bz ||f = franallZ, )
~112
Fo={g:9=(f+f)/2, f € F} <4Ez|lg— dllz,m)
be the new class of conditional probability far® = where the first inequality is by convexity and the second and

(X;,Y;)",. The next lemma relates the risk of estimatinghird identities are becauge.,a depends o™, Y™, we, v
f € F to that of estimating € F,. See [36] for an analogous Only throughZ™, which has the same distribution &S . Thus

result in density estimation. -
max Ez»||f — < 4max F—»
max Ez If = .0y < nax Lz

— e 2
Lemma 2: The minimaxZL»(h) risks of the two classe& 9= 9l

and F° have the following relationship: . . , N
Taking the minimum over all estimatogscompletes the proof

R(F;n) < 4R(Fo;n). of Lemma 2.
. Thus the minimax risk of the original problem is upper-
Proof of Lemma 2:Let g(x;Z ) be any estimator of hounded by a multiple of the minimax risk oF,. Moreover,
g € JFo based on an iid. sampl@ with density the c-entropies are related. Indeed, since
h(x)g(z)¥(1—g(z))t Y. Let g(x) = §(x; Z ) be the function

that minimizes||s — g||7,,,, over functions in the set N+ £0/2 = (P2 + £ /2 ey = 2N = Foll iy
S§={s:1/4<s<3/4} for the new classFy, the e-packing entropy undet.,(h)
distance isMs(e; Fo) = Ma(2¢; F).
Now we derive an upper bound on the minimax risk for the
new classF.
g = allZ, 00 < g = 317,00 Consider ane,-net G., with log-cardinality My(2e,,; F)
for Fy (just asG., for F° used in the proof of the minimax
Now we construct an estimator fof. Since Z" and the lower bound in Lemma 1) and the uniform prias; on
constructed sampl@" have the same distribution, replacmg’}e Since we assume thdt is known, thee-net can be
Z" by Z™ in §, we get an estimator of(z) = (f+ f«)/2 constructed, theoretically speaking. Let the Bayes predictive

Since g is the projection ofg into S which containsg, it is
not hard to show (see [36, Lemma 9]) that

based onz™. From f(z) = 2g(z) — f., let density estimators op(z) = h(z)f(z)¥(1 — f(z))'~¥ be
. o pi(z) = p(Zi111Z") evaluated atZ; 11 = z, which equal the
Jrana(w) = 29(2; 2%) = fu. expression at the bottom of this page for 0 and

Then fmd(a:) is a valid estimator off and depends on R w ~
Xi,---,X,, Y1, ---,Y, and the outcomes of the coin flips pi(z) = p*(2) = (1/|Ge, ) Z ps(2)
Vi,---,V, as well asW,---,W,. So it is a randomized feGe,

3 < H R(X:) F(X;)Yi(1— f(Xf,))l—Yf> h(z) f(x)? (1 = f(x)v

P (20, 2) 9 (2) = LG

%

> TR F(X)Y (1 = fXG)Y
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for « = 0. Let

[T ACX) FX) Y (1 — F(X))Y

1

Br(Z') =—

[T h(X:)a(X)¥ (1 — (X))

9€Ge,, j=1
76 (1= )P
2 Wi g(Xa)h (1 = g(Xa)ir

9CGc,

Then
P2, 2) /P (ZY)
=h(x)- Y Br(Z) @) (L — flx)t Y

feé.,

= h(z) - ( > m(zi)f(x))

Jcé.,

-(1— 3 /sf<zi>f<x>> .

feé.,

Let
fim)= > Bi(Z)f(=).

fed..,

It is an estimator of the conditional probability &F taking 1
given X = z based onZ‘. Note that f;(x) is betweenl /4
and 3/4 and does not depend dnexcept through the-net
Gen. As in Barron [1] and [36], by the chain rule of relative

entropy, for anyf € F

Zz+1) ps(Z")
FEl =Fl
Z Og z z—l—l) Og w2 (Zn)

< Moy(2¢,; F) + 1606
=17Tnée2,

2281

where d2.(f(x),g(z)) is the Hellinger distance between
F@)¥(1 — f(x)=¥ and g(z)?(1 — g(z))'=¥ with respect
to 4 at a givenz, i.e.,
di- (f(2), 9(x ))

= (VIG) = Vo@) + (V1= f(w) = V1= ()

For f and g between1/4 and 3/4, this distance is bounded
below by

(VI ~ V@) + (T @)~ VI~ 9@y
> 2 (V@) + V(@) (V@) — Va(x))?

3 (VI=T@ + VI g@)
(VI @) - VI= )

> 1 () ~ gla))
£3 (1= f@) ~ (1 - g@))?
= 2 () - g@))".

As a consequence, we have
/h(@d%(f@),fi<x>>u<dx>
> (2/3) / W) () — i) u(de)

= @/3)f = fill, )
and

n—1
maX ZEHf f7||r2(h) < (51/2)ne
Let
n—1
1 -
= n Zfi(x)
7=0

be the final estimator of. Then by convexity, we have

where the inequality is as in (11). Since the squared Hellinger B 13 2
guatyisasin(th “ 9 e BIIf = FI, 0 < max - 3" BIS = Flf0

distance satisfies

dir(p1, p2) I/(Pi/Q—Pé/Q)Q S/Pllog(Pl/P2)

for two densitiesp; andp2, and observing that

Elog(ps(Zit1)/Di(Zis1))

—E / p(2) og(p(2)/pi(2)) (n @ v)(d2)

from above, we have

n—1
Inax ZEdH pf,pf) < 17né2.

Note that

Bi(pspy) = / W) (F(z), 9(2)) i ()

< (51/2).

The conclusion on upper bound in Lemma 1 then follows
based on Lemma 2. This completes the proof of Lemma 1.

Proof of Theorem 1:In the derivation of the upper bound
in Lemma 1, we needed to know the densify) of X only
in the construction of the-net G, . When A is not known,
we cannot construct-nets for F under thel,(h) distance.
Assume that Assumption 2 is satisfied with log-cardinality of
the ¢-net bounded byM,(¢). Following the same argument
for the upper bound in the proof of Lemma 1, we have

R(F;n) < 1028
whereé,, is determined by
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Under the richness assumption & it can be easily shown ¢*(x) = 1if f(z) > 1/2 andg*(x) =0 if f(z)<1/2 be a
(see [36]) thatt,, and¢,, given in (4) are of the same orderBayes decision, then

as¢/, determined byM (¢, ; F) = n(c!,)? if Ma(c) and M N .
asc, determined byM(c,; 7) = nien)” If Ma(e) and Mc) I(f19) = P(Y # g(X)) - P(Y £ ¢"(X))

For the second claim, under the assumption Hate) and = /h(a:)(P(Y #£ g(z)| X =)
Ms(e) are of the same order and the richness assumption,
¢, , as determined in (4) is of the same ordereasThus by — P(Y # g"(2)|X = x))p(dx).
Lemma 1 Note
Ir?n%ﬂgEfo = Hlegm = € PY # g(x)|X =z) = P(Y # g"(z)| X =)
PY=1X=2)—PY =0/X =2z),
The upper bound rate follows from the fact that fog ¢ < 2 wheng(z) = 0 andg*(z) = 1
=¢ PY =0X=2)-PY =1X =2x),
Efllf = fll,o < Bollf =l < EAS = 2, 00 wheng(z) = 1 andg"(z) =0
0, otherwise
The third claim follows similarly as above together with that 2f(x) —1, wheng(z)<1/2 < f(x)
the upper bound02¢2 on R(F;n) is uniform overh € H =4 1—-2f(x), whenf(z)<1/2 < g(x)
and that the estimator does not dependhofThis completes 0, otherwise.

the proof of Theorem 1. Thusi(f: g) = d(f: ) as claimed.

Proof of Corollary 1: Sinceh/h* < C, we have For any
1/2 1/2 r
lallaay = ( [ a#hutan)) < Ve ( [ deutan) fr =124 migele =)=/,
=1
=VOllg| L -

f‘r’ = 1/2 + Z Tz‘/ge(x - -Ti)::fQ
Thus ane-net for F under theLo(h*) distance is a/Cle- =
net for F under theL,(h) distance. Together with the otherlet

conditions, Assumption 2is satisfied. The conclusion then B ={fi > 1/24 A1¢}
follows from Theorem 1. Di={f; <1/2— Are}
Before we prove Theorem 2, we give a lemma for lower- E, ={s<1/2< f;}

bounding MEPR. G ={fi<1/2< s}

Lemma 3: Assume Assumption 3 is satisfied and thais for i = 1,2. Then for anys, we have

upper-bounded by on & and lower-bounded by >0 on

Ur<i<r 14 + 2;}. Let ¢, be determined by d(f;,s) > / h(z)(2fi(z) — 1) pu(dz)
512¢ne? + 8log 2 _1 w2 E:NB; o
A M) 2 + [ )= 2@ (de)
Then whenn is large enough 22/ (2fi(x) — Dplde)
Ay AsAyce B
r(Feabei ) 2 T ve | a-2pE)u)
Proof of Lemma 3:The idea of the proof is that under nglgﬁi;Féi N B;) + 2A1cc - (G N D).

Assumption 3, the loss of interest behaves likg distance ) .
on the subseF, ... Then we can again use Fano'’s inequalitf’S @ consequence, by regrouping the events involved above,

to derive a lower bound. we have
For two functionsf and s bounded betweefi and 1, let d(f1,5) +d(f2, s)
> 2A1ce- p((E1 N By) U (G2 N Dy))
Hfre) = /{s<1/2§f} M) (2 () = Dpld) + 2A;¢ce- u((Gy N D) U (E2 N By)).
+/ h(z)(1 = 2f(x))p(dz). Consider sucly that7; # 7/ for a moment. We have
i) U+z; 0B ={I+x;} N Dy, fori #4'.

Note that a decision qf the class membership at eﬁchlt is also true that foi # ¢, in {I+,} N B, eithers < 1/2
corresponds to a function of of two values. For such a_ fi o fr<1/2 < 5. Thus - :

g, d(f,g) is the lossi(f;g) incurred by usingg to classify — “* ¢ -7

Y when the true conditional probability i6 To see that, let {I+z;} N{(E;NB;)U(Gy NDy))={I+z;}NDB;.
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Furthermore, where for the last two inequalities, we assuame€ 1/4 as used

' ' in (15), and use the assumptions on the relationship between
wAl F 2k 0 B+ p({] + 2530 By) the constants involved in Assumption 3. Choosigas in
= ullgel 2 Ar€)) = Agv. (12), whenn is large enoughg,, < 1/4, we have

Now let vV be the number of different signg and f> have in ] A Ay AsAyce,
the hypercube representation, i.87,= #{j:7; # 7/}. Then "(Feuvein) 2 minmax Ed(fr, 85) 2 ———-
from Assumption 3 and above
d(f1, ) +d(f2,5) > 2A1ceN - pf|ge| > Are} > 24, AycNve. Proof of Theorem 2:Under Assumption 2, from Lemma 1,
(13) r(Fin) < VR(F;in) 2 .
In particular, lettings = f», we have By Lemma 3,
A1, f2) 2 241 AzeNve 14) H(Fi0) 2 r(Faein) =

NOV\; let us uppe;bound the chl)_ divergence betwegnand Under the richness assumption and théfe) is of the same
pp, TOr f1, f2 € Fewse @S in (10) order as M(¢), ¢, and ¢, are of the same order. Thus
B 5 PN L S
/pf1 log |2 SE/ f( (1()33)( f2(x)) (d) r(F;n) < e,. The proof of the remaining statement is similar
pfz 2{T

(1= fao(2)) to that for Theorem 1.
< ¢ 4N /gfu(dx) Proof of Corollary 3: The  lower ~ bound rate on
(1/2—¢) I R(S(I", ®); H(A); n) follows from Corollary 2 together with
< 64eNve?, fore<1/4 (15) that F(I',®) is a subset ofS(I', ®). Let
where for the second inequality, we use the assumption k(e) = min{k: v, < ¢/2}.

that |g.| < ¢ and the fact that o/ + z; with ; # 7, . )

|f1(z) — fo(x)| = 2|gc(z — z;)|. Now consider a fraction of Then from [36], the metrlf entropy of(T', ®) is upper-
functions in F.ue, on which Fano’s inequality will be used.Pounded by ordgk(e) log(¢™). ThUQS based on Lerrllma_ 1 and
From [20, p. 256], there exists a subeof {—1,1}" with at Assumption 2, ¢, determined byie;, = k(en)log(e,,”) gives
least[¢"/%] elements so that any two distinct members ha@? UPPer bound rate flor the sparse approximation set. Under
at least[r/4] different coordinates. LeF.y, = {f,: 7 € T'}. the assumptiork,, < n'~7 for somer > 0, it can be shown

Then from (14), for anyfi, fi € Fau,, We have thatlog(c,, *) is of orderlogn, ande, is of the same order as
E|n/1ogn) logn/n with &, defined in (7). This completes the
d(f1, f2) = A1 Ascrve/2. (16)  proof of Corollary 3.

Let © take values inI' with a uniform distribution. The | emma 4: Let (I, ®) and F(I', ®) be as in Section IV.
Shannon mutual information between the random parameﬁarsupgeﬂr ) ll9llee < C <00, then F(T', &) and F(T,®)
© and the observationg™ satisfies have the same order metric entropies.

1(6;27) < nl(@;Zl) < nmaxD(p;_||ps) < 6denrue2 Proof of Lemma 4:Note that for0<7 < 1
7€l '

for any fo € Faun. Fr(l', @) ={rg:g € F(I',®)}

Now for any given classifier, define 35(x) = 0 if s a subset ofF(I', ®) but with the same order metric entropy.
6(z;2") = 0 and 35(x) = 1if 6(z;2") = 1. Let 7 be  Sincegy = min(1,v) € F(I',®) and F(I', &) is convex, we
the minimizer ofd(f,, 55) overr € I' (using any tie-breaking haveg = {g0/2+ g/2:9 € Fr(I',®)} c F(T,®). Again G

rule if necessary). Then if # 7, from (13) and 7, (T, ®) have the same order metric entropies. When
R R Ay Aserve is small enough, under the uniform boundedness assumption,
d(fr,35) + d(f3,55) 2 5 the functions ing are betweei® and1, i.e.,G C F(I', ®). As
Thus a consequence, we knaf(I", &) and F(I", &) have the same
. order metric entropies. This completes the proof of Lemma 4.
. A1 Ascrve
d(f‘f'7 35) Z 4 .
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