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ABSTRACT
Motivation: One of the most important issues in computational
proteomics is to produce a prediction model for the classi-
fication or annotation of biological function of novel protein
sequences. In order to improve the prediction accuracy, much
attention has been paid to the improvement of the perform-
ance of the algorithms used, few is for solving the fundamental
issue, namely, amino acid encoding as most existing pattern
recognition algorithms are unable to recognize amino acids
in protein sequences. Importantly, the most commonly used
amino acid encoding method has the flaw that leads to large
computational cost and recognition bias.
Results: By replacing kernel functions of support vector
machines (SVMs) with amino acid similarity measurement
matrices, we have modified SVMs, a new type of pattern recog-
nition algorithm for analysing protein sequences, particularly
for proteolytic cleavage site prediction. We refer to the mod-
ified SVMs as bio-support vector machine. When applied to
the prediction of HIV protease cleavage sites, the new method
has shown a remarkable advantage in reducing the model
complexity and enhancing the model robustness.
Contact: Z.R.Yang@exeter.ac.uk

INTRODUCTION
Pattern recognition algorithms including artificial neural net-
works (ANNs) have been widely used in analysing biological
sequences. The neural learning algorithms used in analysing
protein sequence data are back-propagation neural networks
(BPNNs), self-organizing maps (SOM), and recurrent neural
networks (RNNs). The application of a BPNN to Human
Immunodeficiency Virus (HIV) protease cleavage sites pre-
diction yielded a prediction accuracy of 90–92% (Cai and
Chou, 1998; Yang, 2001; Narayanan et al., 2002). The use
of BPNNs resulted in about 65–70% of accuracy in second-
ary structure prediction (Reczko, 1993; Baldi et al., 2000
Pollastri et al., 2002), while the use of the RNNs has improved
the prediction accuracy of secondary structure up to 75%

∗To whom correspondence should be addressed.

(Baldi et al., 2000). SOM has also been used to identify
motifs and families in the context of unsupervised learning
(Arrigo et al., 1991). However, the problem with using ANNs
to analyse biological data is that most ANNs cannot recog-
nize non-numerical features such as the biochemical codes of
amino acids. Investigating a proper encoding process prior to
modelling the amino acids is then critical.

The most common encoding of amino acids is the dis-
tributed method, in which 20 binary bits are used to
represent each amino acid (Qian and Sejnowski, 1988).
For instance, ‘Alanine’ is expressed by 0000000000
00000000001, ‘Cysteine’ 0000000000 0000000010 and
‘Aspartate’ 0000000000 0000000100. However, there are the
following three problems with this method. (1) The input
space will be unnecessarily over-expanded, leaving a large
part of the space unused. (2) As a consequence, the ratio of
the sequence number against the space dimension would be
significantly decreased, causing difficulty in neural learning.
(3) The use of Euclidean space has no theoretic foundation
in biology or chemistry and hence might reduce the accur-
acy of a model. According to the numerical assignment in
the distributed method, the distance between any two differ-
ent amino acids is

√
2. This would conflict with the reality in

biology. Actually, different distances for different amino acid
pairs have been defined by various mutation matrices, and val-
idated (Dayhoff et al., 1978; Johnson and Overington, 1993).
There are 15 commonly used mutation matrices, of which
Dayhoff’s is generally superior (Johnson and Overington,
1993). However, they cannot be used for encoding an amino
acid to a unique numerical value directly. The development
of bio-basis function neural network (BBFNN) using amino
acid similarity matrix has improved the time complexity and
robustness of pattern recognition algorithms in analysing bio-
logical sequences. For instance, the use of BBFNNs in a
variety of proteolytic cleavage activity prediction and others
has shown the above advantages. The application of BBFNNs
has covered trypsin protease cleavage activity prediction
(Thomson and Yang, 2002; Thomson et al., 2003), HIV pro-
tease cleavage activity (Thomson et al., 2003), hepatitis C
virus protease cleavage activity (Yang et al., 2003), factor
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Xa protease cleavage activity (Yang et al., 2003) and the
O-linkage site prediction in glycoproteins (Chou, 1995; Yang
and Chou, 2004).

This paper is devoted to further investigate the use of amino
acid similarity measurement matrices in a more general pat-
tern recognition algorithm, namely support vector machines
(SVMs). SVMs is recently of increasing interest due to its
promising empirical performance compared with other learn-
ing techniques (Vapnik, 1995, 1998; Scholkopf et al., 1997).
Instead of using empirical risk minimization (ERM), which
is commonly used in statistical learning, SVM is founded on
structural risk minimization (SRM). ERM only minimizes the
error occurred to training data whilst SRM minimizes an upper
bound on the generalization error. This enables SVM to gen-
eralize well. The basic principle of SVM is to map the input
space to a high-dimensional feature space using kernel tech-
niques. A linear discriminant analysis is then formulated in the
feature space to maximize the margin between two classes so
as to maximize the generalization ability. Moreover, a discrim-
inant analysis process is conducted based on a set of support
vectors which are selected automatically from training data.

SVMs have been already used to deal with many biolo-
gical problems, such as the analysis of microarray gene data
(Brown et al., 2000), glycoprotein linakge site prediction (Cai
et al., 2002a,b), predicting rRNA-, RNA-, and DNA-binding
proteins (Cai and Lin, 2003), predicting protein subcellu-
lar location (Cai et al., 2000, 2003c; Chou and Cai, 2002),
the prediction of protein domain structural class (Cai et al.,
2002a,b, 2003a), the prediction of protein signal sequences
and their cleavage sites (Cai et al., 2003b), DNA expression
profiling (Rahman and Miles, 2001), and secondary structure
prediction (Hua and Sun, 2001). Except for the use of chem-
ical descriptors (Cai and Lin, 2003), all the others encoded
amino acids using the distributed encoding method (Qian and
Sejnowski, 1988).

The algorithm presented in this paper is referred to as
bio-support vector machines (bSVM). The basic principle of
bSVM is the replacement of kernel functions of SVMs with
amino acid similarity matrices. We have applied bSVM to
a specific problem, the prediction of HIV protease cleavage
sites in proteins. The overall success rate is about 91%.

SYSTEM AND METHOD
Suppose we have N input patterns, xi ∈ �d be the i-th input
pattern, where d is the number of the input variables, and yi

be the corresponding label of xi . Each label is either 1 or −1.
A SVM classifier based on the support vectors found through
learning is defined as

f (x) = sign

(
N∑

i=1

αiyiK(x, xi ) + b

)
, (1)

where, K(x, xi ) is called a kernel function. In this study,
x and xi are protein sequences or oligopeptides, which

contain non-numerical attributes, namely amino acids. We
refer to x as a novel sequence while xi as a support sequence
(corresponding to a support vector). A major revision is then
made to determine the kernel function using amino acid simil-
arity matrices (Dayhoff et al., 1978; Johnson and Overington,
1993; Henikoff and Henikoff, 1993) for recognizing non-
numerical attributes. The kernel function of the i-th sequence
is defined as

K(x, xi ) = exp

(
α

s(x, xi ) − bi

bi

)
, (2)

where s(x, xi ) is a pair-wise similarity measurement between
x and xi , bi is the maximum similarity measurement associ-
ated with the i-th support sequence and α is a constant. It
can be seen that [s(x, xi ) − bi]/bi is in general negative. In
this study, we have revised SVMlight (Joachims, 1999) for
bio-SVM.

Most real applications involve how to minimize the prob-
ability of misclassification using the Bayes rule, by which
the selection of the optimal threshold for making decisions
depends on the prior knowledge P(k) (Duda and Hart, 2002)

P(k|x) = P(x|k)P (k)

P (x)
. (3)

P(x|k) is independent from a trained model and domin-
ates a decision process after a classifier has been built. In
other words, different prior knowledge may lead to differ-
ent decision outcomes. If the prior probability of class A is
larger than that of class B, i.e. P(A) > P(B), the sensit-
ivity and specificity rates will be changed. A model with a
small change is preferred as it shows robustness. The receiver
operating characteristic (ROC) curve can be used to assess
this robustness (Metz, 1978). In a ROC curve, the true pos-
itive fraction (TPf ) is used as the vertical axis and the false
positive fraction (FPf ) the horizontal one. For a fixed FPf,
a model with a higher TPf will be preferred. Therefore, the
larger the area under the ROC curve, the better the perform-
ance a classifier has. TPf is TPf = Tp/(Tp + Fn) and FPf
FPf = Fp/(T n + Fp). Suppose the sensitivity is defined as
(Olsson and Laurio, 2002)†

Sensitivity = Tp

Tp + Fp
. (4)

The relationship between TPf, FPf and sensitivity is then

Sensitivity = TPf

TPf + FPf(Nn/Np)

Nn=Np−−−−→ 1

1 + FPf/TPf
,

(5)

† Note that there are different definitions of sensitivity. The definition of
Olsson and Laurio is shown in Equation (4). While the other definition of
sensitivity is Sen = Tp/(Tp + Fn) (Zhang et al., 2002). Our explanation
of sensitivity is the likelihood that a prediction is true positive if the model’s
output is positive. We therefore adopt the definition of Olsson and Laurio in
this study.
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Fig. 1. Schematic representation of substrate bound to HIV protease based on an analysis of protease-inhibitor crystal structures. The active
site of enzyme is composed of eight extended ‘subsites’, S4, S3, S2, S1, S1′ , S2′ , S3′ , S4′ , and their counterparts in a substrate extend to
an octapeptide region, sequentially symbolized by R4, R3, R2, R1, R1′ , R2′ , R3′ , R4′ , respectively. The scissile bond is located between the
subsites R1 and R1′ . Reproduced with permission from Figure 3 of Chou,K.C. (Anal. Biochem., 1996, 233, 1–14).

where Nn and Np represent the numbers of negative and
positive patterns, respectively. It can be seen that maximizing
the area under a ROC curve implies maximizing the sensitivity
value. This results from the fact that either maximizing TPf for
a given FPf or minimizing FPf for a given TPf can maximize
the area under a ROC curve.

IMPLEMENTATION
This method was encoded in java on a PC containing a
500 MHz Pentium and Linux operating system.

DISCUSSION
In this session, we discuss the application of the method
described above for the prediction of HIV protease cleavage
sites in proteins. Since the initial clinical reports in 1981,
AIDS (acquired immunodeficiency syndrome) has become
a synonym of terror to human beings. Threatened by such
a severe disease, scientists in all areas are facing a signi-
ficant challenge, i.e. how to provide useful knowledge and
technology that will lead to effective method for designing
drugs against AIDS. A key step in fighting against AIDS is
how to effectively suppress HIV, the primary culprit of AIDS
(Barre-Sinoussi et al., 1983; Gallo et al., 1984; Chou, 1996).
Because a specific enzyme called HIV protease is indispens-
able for processing the viral gag and gag/pol polyproteins
which takes place during the final maturation step of the viral
life cycle (Kohl et al., 1988; Hellen et al., 1989; Navia et al.,
1989; Wlodawer et al., 1989), blocking of HIV protease action

by inhibitors (Ashorn et al., 1990; McQuade et al., 1990;
Meek et al., 1990; Roberts et al., 1990; Chou, 1993c) or
by mutagenesis (Kohl et al., 1988) results in production of
immature, non-infectious viral particles so as to stop the rep-
lication of HIV. Discovering inhibitors of the HIV protease
with antiviral activity has therefore been a critical issue over
the last decade (Henderson et al., 1988; Hellen et al., 1989;
Putney, 1992). In order to ensure effective inhibitors design
against HIV protease, knowledge about the specificity or a
successful prediction of what kind of peptides can be cleaved
by HIV protease and what kind cannot is particularly useful,
and this is the most important step.

HIV protease belongs to the family of the aspartyl proteases,
which has been well-characterized as proteolytic enzymes.
In HIV protease, the catalytic mechanism is composed of
carboxyl groups from two aspartyl residues situated in both
NH2- and COOH-terminal halves of the enzyme molecule
(Toh et al., 1985; Pearl and Taylor, 1987). Their property
of strongly substrate-selective and cleavage-specific shows
that they can cleave large, virus-specific polypeptides called
polyproteins between a specific pair of amino acid (Hellen
et al., 1989). It has been found that the cleavable sites in a
given protein extend to an octapeptide region (Miller et al.,
1989). The amino acid residues within this octapeptide region
are denoted by eight subsites R4, R3, R2, R1, R1′ , R2′ , R3′ , R4′

in order. The counterparts in the HIV protease are denoted by
S4, S3, S2, S1, S1′ , S2′ , S3′ , S4′ (Chou, 1993c). A diagram of
HIV protease structure is shown in Figure 1. The cleave site
is between R1 and R1′ . The susceptible sites in some proteins
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may contain one subsite less or one subsite more, correspond-
ing to the case of a heptapetide or nonapeptide, respectively.
However, they occur rarely due to the result of a balance
between the following two factors. First, according to the ‘rack
mechanism’ (Chou et al., 1981; Chou, 1988; Martel, 1992),
the active site of HIV protease can be compared to a ‘rack’
during the peptide-cleaving process, meaning that the more
residues that are bound to the rack of enzyme, the more stained
the peptide and hence the more efficient the cleavage pro-
cess. On the other hand, however, according to the dimension
of the active site of an HIV protease, it can hardly accom-
modate more than eight residues. That is why most protease-
susceptible sites in proteins are sequences of octapeptides.

There have been many methods for predicting HIV protease
cleavage site in proteins, for instance, the h function (Poorman
et al., 1991), correlation angle method (Chou, 1993a,b), vec-
tor sequence-coupling model (Chou, 1993c), descriminant
function method (Chou et al., 1996), feed-forward neural
networks with a back-propagation algorithm (Cai and Chou,
1998; Narayanan et al., 2002), binary probabilistic model
(Yang, 2001), decision tree methods (Narayanan et al., 2002),
bio-basis function neural networks (Thomson et al., 2003) and
genetic programming method (Yang et al., 2003).

In this study, 362 HIV octapeptides were collected from
(Poorman et al., 1991; Chou, 1996; Chou et al., 1996; Cai and
Chou, 1998), of which 114 were positive (with cleavage sites)
and 248 negative (without cleavage sites). Here, 300 were
randomly selected for training bSVM models and the rest were
used for testing. This process was repeated 10 times. The final
prediction on the unseen testing (62) sequences was based
on jackknife estimation. As is well known, the independent
data set test, sub-sampling test and jackknife test are often
used for cross-validation to examine the prediction quality.
Among them the jackknife test is deemed as the most effective
and objective one; see, e.g. Chou and Zhang (1995) for a
comprehensive discussion about this, and Mardia et al. (1979)
for the mathematical principle. Jackknife test is particularly
useful for checking the cluster-tolerant capacity, and hence
was often used for the case when the training data sets were far
from complete yet [see, e.g. (Zhou, 1998; Chou, 1999; Zhou
and Assa-Munt, 2001; Zhou and Doctor, 2003; Zhou and Troy,
2003)]. During jackknifing, each sample in the training data
set is in turn singled out as a tested sample and all the rule-
parameters are calculated based on the remaining samples.

Shown in Figure 2 were the prediction results when the
‘C’ values were 1, 10, and 100 on the independent testing
sequences, which were not involved in any process of mod-
elling. The mean total accuracies were 91 ± 3.5, 91.5 ± 3.1,
and 91.9 ± 3.0%. When the ‘C’ value was increased from 100,
the performance was not changed, see Table 1. While a com-
parison among bSVM, decision tree method (C5 program),
BPM (binary probabilistic model), and a feed-forward neural
network with a back-propagation algorithm on the same data
set was given in Table 2. It can be seen that bSVMs not only
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Fig. 2. The performance of bSVM for using different ‘C’ values:
(a) 1; (b) 10; (c) 100. There are three groups of measurements of
the performance, true negative fraction (TNf ), true positive fraction
(TPf ) and total accuracy. TNf is used to measure the prediction accur-
acy for non-cleaved HIV octapeptides. TPf is used to measure the
prediction accuracy for cleaved HIV octapeptides.

outperformed the others in prediction accuracy but also was
superior to the others in model robustness. In decision tree
method, there was no report of CPU time since the licence
expired when we wanted the CPU time. There was also no
report of the number of parameters since C5 did not involve
any parameters in modelling.

Shown in Figure 3 were the ROC curves of the models
when the ‘C’ value was 100. It can be seen that the models
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Table 1. Performance measured by jackknife on 10 models

TNf (%) TPf (%) Sensitivity (%) Total (%)

C = 100 91.1 ± 5.1 87.0 ± 7.6 87.6 ± 6.5 91.1 ± 3.2
C = 101 93.8 ± 4.8 86.5 ± 7.9 88.7 ± 7.0 91.5 ± 3.2
C = 102 94.3 ± 4.8 87.0 ± 7.2 89.7 ± 6.8 91.9 ± 3.1
C = 103 94.3 ± 4.8 87.0 ± 7.2 89.7 ± 6.8 91.9 ± 3.1
C = 104 94.3 ± 4.8 87.0 ± 7.2 89.7 ± 6.8 91.9 ± 3.1
C = 105 94.3 ± 4.8 87.0 ± 7.2 89.7 ± 6.8 91.9 ± 3.1

Table 2. Comparison among decision tree method (C5), BPNN, BPM and
bSVMs

C5 BPNN BPM bSVMs

Mean accuracy 85.5% 90.0% 88.6% 91.2%
Standard deviation 3.3% 8.2% 6.3% 3.0%
Parameters — 12 880 1600 185
CPU (10 models) — 5 h 78 min 19 min
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Fig. 3. ROC curves of bSVM when the ‘C’ value was 100. The
horizontal axis indicates the false positive fraction and the ver-
tical axis means the true positive fraction. Each point in the graph
means a model with a specifically selected threshold for discrim-
ination between two classes, non-cleaved octapeptides and cleaved
HIV octapeptides. This selection of the threshold is determined by a
prior knowledge, which weights a preferred class. If the prediction
accuracy of cleaved HIV octapeptides is more important, the cost
function related with it will be larger than that of non-cleaved HIV
octapeptides.
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Fig. 4. Estimated probability density functions of the model outputs.
The discrimination power is commonly determined by the separab-
ility of the probability density functions of two classes. If they are
far separated, the discrimination power will be large. In this graph,
we can see that two probability density functions are far away.

were robust since the ROC curves were away from the diag-
onal line. The estimated probability density functions of the
two classes (non-cleaved HIV octapeptides and cleaved HIV
octapeptides) were shown in Figure 4. It can be seen that the
two classes were well separated and the discrimination power
of the models for these two classes is large.

This paper has presented a new pattern recognition method,
called the ‘bio-support vector machine’, for analysing protein
sequences. The major principle is to replace kernel functions
of SVMs with amino acid similarity measurement matrices.
The method has been successfully applied to the prediction of
HIV protease cleavage sites in proteins. The mean accuracy is
from 91 ± 3.5 to 91.9 ± 3.0%. The prediction accuracy on the
unseen independent data set is higher than that from BPNN.
The standard deviation of the mean prediction accuracy of
bSVM is smaller than that of BPNN. In this study, we only
presented the result based on the Dayhoff matrix (Dayhoff
et al., 1978; Johnson and Overington, 1993). Further work is
to use more matrices such as Blosum matrices (Henikoff and
Henikoff, 1993).
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