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ABSTRACT
Motivation: Apoptosis has drawn the attention of researchers
because of its importance in treating some diseases through find-
ing a proper way to block or slow down the apoptosis process.
Having understood that caspase cleavage is the key to apoptosis,
we find novel methods or algorithms are essential for studying the
specificity of caspase cleavage activity and this helps the effect-
ive drug design. As bio-basis function neural networks have proven
to outperform some conventional neural learning algorithms, there
is a motivation, in this study, to investigate the application of bio-
basis function neural networks for the prediction of caspase cleavage
sites.
Results: Thirteen protein sequences with experimentally determined
caspase cleavage sites were downloaded from NCBI. Bayesian bio-
basis function neural networks are investigated and the comparisons
with single-layer perceptrons, multilayer perceptrons, the original bio-
basis function neural networks and support vector machines are given.
The impact of the sliding window size used to generate sub-sequences
for modelling on prediction accuracy is studied. The results show that
the Bayesian bio-basis function neural network with two Gaussian dis-
tributions for model parameters (weights) performed the best and the
highest prediction accuracy is 97.15 ± 1.13%.
Availability: The package of Bayesian bio-basis function neural
network can be obtained by request to the author.
Contact: z.r.yang@ex.ac.uk

INTRODUCTION
Apoptosis (programmed cell death) is a gene-directed mechanism
activated as a suicidal event to eliminate excess, damaged, or infec-
ted cells (Rohn et al., 2004). The function of apoptosis is vital to life
as it serves to regulate and control both cell death and tissue homeo-
stasis during the development and the maturation of cells. It was
reported that ∼100 000 cells die by apoptosis every second for the
purpose of regulating tissues. A family of cysteine proteases called
caspases, that are expressed initially in the cell as proenzymes, is
the key to apoptosis (Rohn et al., 2004). As indicated in Chou et al.
(2000), cell death is also important in optimizing the function in the
immune and central nervous systems. In organisms, cell death and
renewal are important functions for the control of the flux of fresh
cells at a constant level. The importance of apoptosis study is that
many diseases result from apoptosis malfunction. For instance, can-
cer can occur if apoptosis is blocked (Adams and Cory, 1998; Evan
and Littlewood, 1998). Unwanted apoptosis may result in ischemic
damage (Reed and Paternostro, 1999).

The activation of caspases (cysteinyl aspartate-specific proteases)
is the key to apoptosis. Caspases can initiate a cascade of cleavage
activities causing disruption of the components within the cell, as
well as the disabling of critical repair processes. Although structural
information is hard to obtain, homology alignment of the protein
sequences has shown that caspases have highly conserved aspartic
acid residues in the substrates (Chou et al., 2000).

Because apoptosis is critical to some diseases and cell growth,
caspases have been widely studied. For instance, how caspase 7
cleaves tumour necrosis factor receptor-I (TNFR1), to which ligand
binding can promote cell survival, or how it activates the apoptosis
caspase cascade were studied in Ethell et al. (2001). In the study of
Alzheimer’s disease (AD), caspase cleavage has also been paid atten-
tion to. For instance, the identification of caspases that can cleave
presenilin-1 (PS1) and presenilin-2 (PS2) has been done by Van de
Craen et al. (1999), where it has been found that PS1 can be cleaved
by two groups, the group that contains caspases 8, 6 and 11 and the
group that contains caspases 1, 3 and 7, while PS2 can be proteolysed
by caspases 1, 3, 6 and 8. One of the important issues in signalling
pathway research is the regulation of cell survival and programmed
cell death which are closely related to different signalling molecules
(West et al., 2002). A decision between cell survival or death is
made based not only on the levels of activation of these signalling
molecules, but also on the subcellular targeting. As caspase cleavage
can induce subcellular translocation, how subcellular targeting reg-
ulates the function of caspase-activated protein kinases in apoptosis
was studied in Jakobi (2004).

As caspase cleavage is the key to programmed cell death, the
study of caspase inhibitors could represent effective new drugs
against some disease where blocking apoptosis is desirable (Chou
et al., 2000). Without a careful study of caspase cleavage specificity
effective drug design could be difficult.

Neural learning algorithms have been widely applied for the recog-
nition of various functional sites in proteins. For instance, multilayer
perceptrons have been applied for the prediction of HIV and Hep-
atitis C virus protease cleavage sites (Thompson et al., 1995; Cai
and Chou, 1998; Narayanan et al., 2002), phosphorylation site pre-
diction (Blom et al., 1999; Berry et al., 2004), the prediction of
signal peptide cleavage sites (Nielsen et al., 1997) and the predic-
tion of protein–protein interaction sites (Gutteridge et al., 2003).
A self-organizing map has been applied for mining the rules from
HIV protease data (Yang and Chou, 2003). These neural learning
algorithms have to use an encoding method to preprocess amino
acids which are represented using non-numerical letters. Having
understood that the distributed encoding method leads to inefficiency
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in modelling protein sequences, bio-basis function neural networks
were developed for the recognition of functional sites in proteins
with success (Thomson et al., 2003; Yang and Chou, 2004; Berry
et al., 2004).

This study, therefore, investigates the use of bio-basis function
neural networks in the prediction of caspase cleavage sites. The
Bayesian method, in particular, is used to enhance bio-basis function
neural networks for dealing with the priors of the parameter struc-
ture in bio-basis function neural networks. Single layer perceptrons,
multilayer perceptrons, the original bio-basis function neural net-
works and support vector machines are used for comparison.

The simulation is carried out on 13 protein sequences
containing various experimentally determined caspase cleavage
sites. These 13 protein sequences are downloaded from NCBI
(http://www.ncbi.nih.gov). Jackknife simulation is used to assess the
model performance. The impact of the sliding window size on model
performance is also studied.

SYSTEM AND METHODS
The parameter priors were not used in the bio-basis function neural network
proposed in 2003 (Thomson et al., 2003). A recent empirical finding that
is opposed to our belief in the parameter structure (Yang and Chou, 2004)
motivated us to investigate the use of the parameter prior in the Bayesian
framework in this study.

Bio-basis function neural networks
The bio-basis function neural network is composed of three layers, i.e. input,
bio-basis and output layers. The input layer is composed of D neurons corres-
ponding to D residues in a capsase sub-sequence. Each caspase sub-sequence
is obtained by scanning a protein sequence with a fix-sized sliding window.
The residues scanned by the sliding window at a specific position in the
sequence are denoted as a caspase sub-sequence. A caspase sub-sequence
is referred to as a positive one if there is a cleavage site in the middle of it,
otherwise it is considered negative. Each bio-basis is supported by a caspase
sub-sequence with known property, i.e. with or without a cleavage site. The
sub-sequence used by a bio-basis is referred to as a support sub-sequence (SS).
The output neuron is used for decision-making. Each input neuron is used to
accept amino acids from one specified residue in sub-sequences. The input
amino acid is delivered to the relevant residue of each SS. Pairwise homology
alignment is used to calculate the similarity between an input caspase sub-
sequence and an SS. The similarity is then normalized using a specifically
designed bio-basis function (Thomson et al., 2003). All the similarities are
then weighted to produce an output for decision-making.

Suppose a caspase sub-sequence is referred to as sm and its target ym ∈
{0, 1}, where ‘1’ means that sm has a cleavage site and ‘0’, not a math-
ematical description of a bio-basis function neural network classifier, for
predicting if there is a caspase cleavage site in sm, is defined as (Thomson
et al., 2003)

ŷm =
K∑

k=1

wkf (sm, zk) = ym − em, (1)

where ŷm is the prediction for sm, wk the weight connecting the k-th
bio-basis function (supported by zk) to the output unit, em the error,
f (sm, zk) the bio-basis function, which quantifies the normalized similar-
ity between sm and zk , is defined in Thomson et al. (2003). A feature
matrix F has M rows for M outputs and K columns for K bio-bases,
where the entry in the m-th row and k-th column means the output
from the k-th bio-basis for the m-th input. We denote the target vec-
tor as y = (y1, y2, . . . , yM)t , the error vector as e = (e1, e2, . . . , eM)t

and the parameter vector as w = (w1, w2, . . . , wK)t and a vector–
matrix notation of a linear classifier in the feature space formed by F is

defined as
y = Fw + e. (2)

Bayesian method for bio-basis function neural
networks
In the system defined in Equation (2), both the errors and the weights are
assumed to follow certain probability density functions. These functions
are generally not known and regarded as priors. As the errors are generally
assumed to follow a Gaussian, em ∼ N(0, σe = 1/

√
ρe) (ρe ∼ N(0, 1) is the

hyperparameter), this paper investigates three priors for the weights. They
are of uniform distribution, single Gaussian and two Gaussians. The prior
of a uniform distribution has been widely used in linear systems. The prior
of a single Gaussian has been used in Bayesian neural networks (Nabney,
2003). The prior of two Gaussians is motivated by the empirical finding in
the earlier study (Yang and Chou, 2004), where the weights are distributed
in two distinct probability density functions for a discriminant task. When
dealing with multiple classification problems, the prior of two Gaussians can
be easily extended to the prior of multiple Gaussians.

We use ϑ to refer to the hyperparameters governing the error structure prior
and weight structure prior. The Bayes formula of the posterior probability is
shown as follows

p(w, ϑ |y) = p(y|w, ϑ)p(w, ϑ)

p(y)
. (3)

Note that p(w, ϑ |y) is the posterior, p(y|w, ϑ) the conditional probability,
p(y) the normalization factor and p(w, ϑ) = p(w|ϑ)p(ϑ), where p(w|ϑ)

is the probability of the weights given the hyperparameters and p(ϑ) the a
priori probability of the hyperparameters. The posterior probability is then

L = p(w, ϑ |y) = p(y|w, ϑ)p(w, ϑ)

p(y)
∝ p(y|w, ϑ)p(w, ϑ)

= p(y|w, ϑ)p(w|ϑ)p(ϑ). (4)

The method called MAP (maximum a posteriori) can be used for the parameter
estimation.

Uniform distribution of parameters
If the weights are assumed to follow a uniform distribution andρe is a constant,
applying negative log on L leads to

L̃ = − ln L = C1||e||2 + C2, (5)

where C1 and C2 are the two constants and e = y − Fw. Maximizing L is
equivalent to the least squares function and the pseudoinverse (Duda et al.,
2002) can be used to estimate the weights

w = (FtF)−1Fty, (6)

where Ft means the transpose of F and (FtF)−1 the inverse matrix of FtF. We
refer to this system as BBF0 which has been used in Thomson et al. (2003).

Single Gaussian of parameters
If the weights are assumed to follow a single Gaussian, wk ∼ N(uw , σw =
1/

√
ρw), where the hyperparameters that control the weight distribution are

assumed to follow Gaussians, i.e. uw ∼ N(0, 1) and ρw ∼ N(0, 1). Applying
negative log of L leads to

L̃ = − ln L = 1

2
[ρe||e||2 + ρw||w − uw||2 − M ln ρe

− K ln ρw + ut
wuw + ρ2

e + ρ2
w + C], (7)

where C is a constant and uw = uw iK . Note that ir = (1, 1, . . . , 1︸ ︷︷ ︸
r

)t is an

r-order identity vector. Letting the partial derivative of L̃ with respect to ρe

be zero leads to

ρe = −||e||2 + √||e||4 + 8M

4
. (8)

Note that there should be two solutions to the quadratic equation 2ρ2
e +

||e||2ρe − M = 0. Because ρe > 0 and ||e||2 > 0, we only consider the
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positive solution. Letting the partial derivative of L̃ with respect to ρw be
zero leads to

ρw = −||w − uw||2 + √||w − uw||4 + 8K

4
. (9)

Note that only the positive solution is used again. Letting the partial derivative
of L̃ with respect to uw be zero leads to

uw = ρw

1 + Kρw

wt iK . (10)

Letting the partial derivative of L̃ with respect to w be zero leads to

�w = υ, (11)

where � = ρeFtF + ρwI and υ = ρeFty + ρwIuw . The estimations of the
weights is w = �−1υ as � is a squared matrix. We refer to this system
as BBF1.

Multiple Gaussians of parameters
We then consider the situation that the weights follow two Gaussians. We
use α and β to refer to non-cleaved and cleaved caspase sub-sequences,
respectively. The weights connecting the bio-bases supported by non-cleaved
sub-sequences follow one Gaussian wαk ∼ N(uα , σα = 1/

√
ρα) and the

weights connecting the bio-bases supported by cleaved sub-sequences, the
other Gaussian wβk ∼ N(uβ , σβ = 1/

√
ρβ). The hyperparameters ρe , uα ,

ρα , uβ and ρβ are also assumed to follow Gaussians; ρe ∼ N(0, 1), uα ∼
N(0, 1), ρα ∼ N(0, 1), uβ ∼ N(0, 1) and ρβ ∼ N(0, 1). As each bio-
basis has an associated class label, the feature matrix can be expressed as
F = Fα

⋃
Fβ , where

Fα =




f (s1, z1) f (s1, z2) · · · f (s1, zKα )

f (s2, Z1) f (s2, z2) · · · f (s2, zKα )

...
...

...
...

f (sM , z1) f (sM , z2) · · · f (sM , zKα )


 ,

Fβ =




f (s1, z1) f (s1, z2) · · · f (s1, zKβ
)

f (s2, Z1) f (s2, z2) · · · f (s2, zKβ
)

...
...

...
...

f (sM , z1) f (sM , z2) · · · f (sM , zKβ
)


 ,

(12)

where Kα and Kβ are the numbers of non-cleaved and cleaved sub-sequences,
respectively. Correspondingly, we have w = wα

⋃
wβ , y = yα

⋃
yβ and

e = eα

⋃
eβ . Applying negative log on L leads to

L̃ = − ln L = 1

2
[ρe||e||2 + ρα ||wα − uα ||2 + ρβ ||wβ − uβ ||2

−M ln ρe − Kα ln ρα − Kβ ln ρβ + ut
αuα

+ ut
βuβ + ρ2

e + ρ2
α + ρ2

β + C], (13)

where C is a constant, uα = µα iKα and uβ = µβ iKβ
. Letting the partial

derivative of L̃ with respect to ρe be zero leads to the same result as above
Equation (8). We use ξ to represent α and β. Letting the partial derivative of
L̃ with respect to ρα or ρβ be zero leads to

ρξ = −||wξ − uξ ||2 + √||wξ − uξ ||4 + 8Kξ

4
. (14)

Letting the partial derivative of L̃ with respect to uα or uβ be zero leads to

uξ = ρξ

1 + Kξρξ

wt
ξ iKξ

. (15)

Letting the partial derivative of L̃ with respect to wα or wβ be zero leads to

ρeFt
ξ Fξ w + ρξ wξ = ρeFt

ξ yξ + ρξ uξ (16)

or
(ρeFtF + ρζ I)w = ρeFty + ρζ Iu, (17)

where ρζ I is defined as follows, the first α diagonal elements are assigned
value of ρα and the last β diagonal elements are assigned value of ρβ

ρζ I =




ρα 0 · · · 0 0 0 · · · 0
0 ρα · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · ρα 0 0 · · · 0
0 0 · · · 0 ρβ 0 · · · 0
0 0 · · · 0 0 ρβ · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · ρβ




. (18)

Suppose � = ρeFtF + ρζ I and υ = ρeFty + ρζ Iu, Equation (17) can be
rewritten as

�w = υ. (19)

The estimation of the weights is w = �−1υ. We refer to this system as BBF2.

Expectation–maximization algorithm for the estimation
of the parameters in BBF1 and BBF2
As the partial derivatives of L̃ with respect to some parameters are not in the
closed forms, the learning of the parameters in BBF1 and BBF2 including
hyperparameters can be implemented using the principle of the expectation–
maximization (EM) algorithm. Each parameter is assigned a random value at
the beginning. In the t-th learning cycle of the E-step, hyperparameters are
estimated as follows

ρe(t + 1) = −||e(t)||2 + √||e(t)||4 + 8M

4
.

ρ�(t + 1) = −||w�(t) − u�(t)||2 + √||w�(t) − u�(t)||4 + 8K�

4
,

u�(t + 1) = ρ�(t + 1)

1 + K�ρ�(t + 1)
wt

�
(t)iK�

,

(20)

where ϑ(t + 1) is the newly estimated value for ϑ at t-th learning cycle. In
the t-th cycle of the M-step, network parameters are estimated as follows

�(t + 1) = ρe(t + 1)Ft(t + 1)F(t + 1) + ρ�I(t + 1),

υ(t + 1) = ρe(t + 1)Ft(t + 1)y + ρ�I(t + 1)u(t + 1), (21)

w(t + 1) = �(t + 1)−1υ(t + 1).

Note that � means α and β in BBF2 while w in BBF1.
The learning algorithm is designed as follows

Step 1. Randomize the parameters and the hyperparameters.

Step 2. Input the training sub-sequences to the model using the existing
parameters to estimate the model error.

Step 3. Estimate the hyperparameters.

Step 4. Estimate the parameters using the new values assigned to the
hyperparameters.

Step 5. Check if the stop criterion is satisfied. If so, stop; otherwise, go to
Step 2.

Stop criterion
From Equation (8), we can determine the stop criterion. When the error is
approaching zero, ρe will be approaching a limit as follows

lim||e||→0
ρe =

√
M

2
. (22)

As the error will never be zero,
√

M/2 will be the maximum value for ρe or
the stop criterion could be any value of ρe which satisfies∣∣∣∣∣ρe −

√
M

2

∣∣∣∣∣ < ε, (23)
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where ε is a small positive number. In practice, ε may vary with the value
of M even for the same task. We normalize the equation by the number of
training caspase sub-sequences∣∣∣∣ ρe

M
− 1√

2

∣∣∣∣ < ε′. (24)

In the algorithm we choose ε′ = 0.1.

Sub-sequence selection
In this study, the total number of non-cleaved sub-sequences is about 36 453,
but the number of the cleaved sub-sequences is only 18. In order to see whether
matched training data matters, the same number of non-cleaved training sub-
sequences as the cleaved training sub-sequences are selected for modelling.
Note that each selected non-cleaved training sub-sequence has the highest
matching rate with a cleaved training sub-sequence and for each cleaved train-
ing sub-sequence, only one non-cleaved training sub-sequence is selected.
Unfortunately, the prediction accuracy turned to the cleaved sub-sequences
with zero specificity.

On the other hand, using all 36 453 sub-sequences certainly makes it diffi-
cult, in modelling, in terms of the computer memory. A trial-and-error method
is used and it has been found when the ratio of the non-cleaved sub-sequences
over the cleaved sub-sequences is ∼450, the computer program can be run in
our current operating systems (512 MB RAM). Therefore, one non-cleaved
training sub-sequence is randomly selected from among every five available
non-cleaved ones leading to about 8200 non-cleaved training sub-sequences
for modelling.

Modelling procedure
Step 1. Select the first sequence for testing.

Step 2. Scan the remaining 12 sequences for obtaining training sub-
sequences.

Step 3. Divide the training sub-sequences into 10 subsets.

Step 4. Create 10 models using these 10 subsets. Each model is constructed
using 9 subsets and validated on the remaining subset.

Step 5. Determine the best model in terms of the validation performance.

Step 6. Scan the testing sequence to generate testing sub-sequences.

Step 7. Use the best validation model for testing.

Step 8. Select the next sequence for testing.

Step 9. Repeat the Steps 2–8 till all the sequences are tested.

Measurement
Let TN, TP, FP and FN denote the true negatives (correctly identified
non-cleaved sub-sequences), the true positives (correctly identified cleaved
sub-sequences), the false positives (wrongly identified non-cleaved sub-
sequences) and the false negatives (wrongly identified cleaved sub-sequences)
respectively, and the three indicators used for measurements are:

True negative fraction: TNf = TN/(TN + FP)

True positive fraction: TPf = TP/(TP + FN)

Total accuracy: TA = (TN + TP)/(TN + FP + TP + FN).

(25)

IMPLEMENTATION
The packages are implemented using Java in Linux system with
512 MB RAM and 2 GHz.

RESULTS
The data were downloaded from NCBI (http://www.ncbi.nih.gov).
Shown in Table 1 is the information of the sequences. Each sequence

Table 1. Thirteen proteins which are cleaved by caspase

Proteins Gene Length Cleavage sites

O00273 DFFA 331 117(C3), 224(C3)
Q07817 BCL2L1 233 61(C1)
P11862 GAS2 314 279(C1)
P08592 APP 770 672(C6)
P05067 APP 770 672(C6), 739(C3 or C6 or C8 or C9)
Q9JJV8 BCL2 236 64(C3 and C9)
P10415 BCL2 239 34(C3)
O43903 GAS2 313 278(C)a

Q12772 SREBF2 1141 468(C3 and C7)
Q13546 RIPK1 671 324(C8)
Q08378 GOLGA3 1498 59(C2), 139(C3), 311(C7)
O60216 RAD21 631 279(C3 or C7)
O95155 UBE4B 1302 109(C3 or C7), 123(C6)

C2, Capsase 2; C3, Capsase 3; C7, Capsase 7; C6, Capsase 6; C8, Capsase 8; C9,
Capsase 9.
aNo further information is provided in NCBI.

Table 2. Algorithms for the investigation

Notation Algorithm

SLP Single layer perceptron
bSLP Bayesian single layer perceptron
MLP Multilayer perceptron
SVM Support vector machines
BBF0 bio-basis function neural networks using a uniform distribution

of weights
BBF1 Bayesian bio-basis function neural network using a single

Gaussian of weights
BBF2 Bayesian bio-basis function neural network using two Gaussians

of weights

is composed of a couple of experimentally determined cleavage sites.
Jackknife simulation is used. In each simulation run, one protein
is ruled out and the remaining proteins are used for constructing a
classifier. The constructed classifier is used to test the singled-out
protein. The mean prediction accuracy and the standard deviation of
the measurements are calculated. Each protein sequence was scanned
by a sliding window with a fixed size, which varies from 10 to 20 with
a gap of 2 in this study to investigate its impact on model performance.

Algorithms
Seven algorithms are used for the investigation (Table 2). When
using SLP, bSLP, MLP (Duda et al., 2002) and SVM (Vapnik, 1995)
each sub-sequence is encoded using the distributed encoding method
(Qian and Sejnowski, 1988). SLP and bSLP are used for comparison
because they are linear machines in the encoding space and bio-
basis function neural networks are also linear machines in the space
spanned by the bio-bases. MLP had totally biased prediction accur-
acy towards non-cleaved sub-sequences no matter how the number of
hidden neurons vary. This is not surprising as this phenomenon has
been investigated in the earlier study in Wilson and Sharda (1994),
where the prediction accuracy was always biased towards the class
with the majority of the inputs.
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Fig. 1. The performance comparison for window size of 10. The horizontal
axis denotes the three measurements and the vertical axis, the performance.

Fig. 2. The performance comparison for window size of 12. The horizontal
axis denotes the three measurements and the vertical axis, the performance.

In the simulation, we limit the learning cycles to 1000 unless
the stopping criterion or the steady state of the mean parameters
is satisfied when estimating parameters for BBF1, BBF2 and bSLP.
For SLP, the learning rate was 0.1 and the momentum factor was
0.08. Blosum62 matrix (Henikoff and Henikoff, 1992) was used for
pairwise homology alignment calculation (Thomson et al., 2003).
When using SVM, linear and non-linear kernels (radial basis func-
tion, polynomial function and sigmoid function) were used for
comparison. All non-linear function produced similar results as MLP
while linear kernel worked the best with the C value as 100 for trad-
ing off between training error and regularization ability. The package
SVMlight (Joachims, 1999, http://svmlight.joachims.org/) was used.

Figure 1 shows the performance comparison for window size 10. It
can be seen that although BBF0 demonstrated higher total accuracy
than BBF2, it demonstrated a very low true positive fraction. The
two best models are BBF2 and SVM. Their TNfs are 96 and 94%,
their TPfs are 92 and 90% and their total accuracies are 96 and 93%.
The P -values of the t-test on TNf, TPf and total accuracy between
BBF2 and SVM are 0.0001, 0.8181 and 0.0002, respectively. The
hypotheses that BBF2 shows similar TNf and total accuracy as
SVM have been denied. At the same time the hypothesis that BBF2
shows similar TPf as SVM cannot be denied because the P -value
is approaching one (0.8181). This means that BBF2 outperformed
SVM in reducing the false cleaved sub-sequences significantly,
while maintaining a similar performance in recognizing the cleaved
sub-sequences.

In Figure 2, the pattern shown in Figure 1 still holds, where BBF2
and SVM are the best models. The P -values of the t-test on TNf, TPf
and total accuracy are 7.0×10−6, 0.4367 and 5.0×10−6, respectively.
Compared with the models using window size of 10, it can be seen

Fig. 3. The trend of the P -value of the t-test for comparing BBF2 with SVM.

Fig. 4. The comparison among all the models using TNf and TPf.

that the hypotheses that BBF2 shows similar TNf and total accuracy
as SVM have been strongly denied.

When the window size increased to 20, BBF2 and SVM were still
the best models. Figure 3 shows the P -values of the t-tests with a
log scale. It can be seen that the trend shows that BBF2 outperforms
SVM increasingly when the window size increases.

Figure 4 shows a comparison among all models using two meas-
urements, TNf and TPf. The best model should be located at the
top right corner. A failed model would be located at the left bot-
tom corner. In terms of this, it can be seen that the BBF2 models
outperformed all the other models because they are the closest to the
top right corner.

DISCUSSION
This paper has presented a method of using Bayesian bio-basis func-
tion neural networks for the prediction of caspase cleavage sites in
proteins. The experiments showed that BBF2 performed the best.
Table 3 shows the prediction summary using BBF2.
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Table 3. Prediction summary for BBF2

10 (%) 12 (%) 14 (%) 16 (%) 18 (%) 20 (%)

TNf 95.86 ± 1.11 96.82 ± 1.64 96.57 ± 1.31 97.06 ± 1.69 97.18 ± 1.18 96.99 ± 1.68
TPf 92.31 ± 2.66 92.31 ± 2.66 84.62 ± 3.61 84.62 ± 3.61 84.62 ± 3.61 84.62 ± 3.61
Total 95.83 ± 1.10 96.79 ± 1.61 96.54 ± 1.25 97.03 ± 1.66 97.15 ± 1.13 96.96 ± 1.64

Table 4. Eighteen cleaved sub-sequences

Proteins Gene Cleavage expression (10-residue)

O00273 DFFA VDETDSGAGL (C3), VDAVDTGISR (C3)
Q07817 BCL2L1 WHLADSPAVN (C1)
P11862 GAS2 ISRVDGKTSP (C1)
P08592 APP EVKMDAEFGH (C6)
P05067 APP EVKMDAEFRH (C6), VVEVDAAVTP (C3, C6,

C8 or C9)
Q9JJV8 BCL2 AVHRDMAART (C3 and C9)
P10415 BCL2 WDAGDVGAAP (C3)
O43903 GAS2 ISRVDGKTSP (C)
Q12772 SREBF2 KDEPDSPPVA (C3 and C7)
Q13546 RIPK1 SLQLDCVAVP (C8)
Q08378 GOLGA3 GESPDGPGQG (C2), LCSTDSPLPL (C3),

VSEVDGNDSD (C7)
O60216 RAD21 PDSPDSVDPV (C3 or C7)
O95155 UBE4B SMDIDGVSCE (C3 or C7), QVDVDSGIEN (C6)

This work did not try Bayesian neural networks which use a single
Gaussian prior for the weights. It was expected that Bayesian neural
networks would not show good performance based on two factors.
First, the single Gaussian prior of the weights did not outperform
SLP and bio-basis function neural networks. Second, MLP did not
work for both unmatched and matched training datasets.

The major drawback of this work is the lack of data. It is believed
that the prediction accuracy will be further increased when more data
are available. Nevertheless, this work has established an efficient
computational methodology for the prediction of caspase cleavage
sites.

The next issue is about sub-sequence length for modelling. It
appears that it does not affect the prediction accuracy significantly
although the accuracy varies with the size of the sliding win-
dow. A further investigation of the caspase structures is needed to
determine empirically, the sub-sequence length thereby removing
the trial-and-error process of determining the window size.

The third issue is whether the cleaved sub-sequences have
very conserved patterns or expressions for classification. Eighteen
10-residue cleaved sub-sequences are listed in Table 4. It can be
seen that there is a pattern XXXXD(S/T/G/A/M/V/C)XXXX. The
prediction is then made using these expressions and the result is listed
in Table 5. The maximum window size is limited to 10 as the res-
ult shown above demonstrated that this window size works equally
well with the others. It can be seen that the accuracy of identify-
ing cleaved sub-sequences is very low. For instance, the maximum
averaged predicted cleaved sub-sequences is 2.89 (=52/18). The
mean accuracy of predicting cleaved sub-sequences is then 0.17%
(=2.89/17) for each cleaved expression or pattern.

Table 5. The prediction accuracy of using the cleaved expressions
or patterns

Window Total predicted Averaged predicted
cleaved sub-sequences cleaved sub-sequences

2 52 2.89
4 4 0.22
6 4 0.22
8 2 0.11

10 2 0.11

The last issue is the relationship between the Bayesian bio-basis
function neural networks with the relevance vector machine (RVM)
(Tipping, 2000; Li et al., 2002). The focus of RVM is to search
for a minimum subset of kernels (bases) which can maximize the
generalization ability of a classifier assuming that each weight fol-
lows a single Gaussian. However, the Bayesian bio-basis function
neural networks proposed here recognizes the fact that the positive
(cleaved) sub-sequences are generally not intensively and experi-
mentally determined, hence they are scarcely collected. For instance,
there are only 18 cleaved sub-sequences in this study. In the study
of HIV protease cleavage sites, there are only 114 cleaved sub-
sequences available (Thomson et al., 2003). This scarcity means
that the positive (cleaved) sub-sequences normally do not show great
similarity. A selection procedure on positive (cleaved) sub-sequences
may not be appropriate. The Bayesian bio-basis function neural net-
work aims to explore the most probable prior of the weight structure
so that model performance can be optimized. Nevertheless, the RVM
has also been investigated in this study. However, the algorithm
always collapses when dealing with matrices. This has, in fact, been
observed and analysed in the earlier study (Chen et al., 2003).
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