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Statistical learning methods have been used in developing filters for predicting inhibitors of two P450
isoenzymes, CYP3A4 and CYP2D6. This work explores the use of different statistical learning methods for
predicting inhibitors of these enzymes and an additional P450 enzyme, CYP2C9, and the substrates of the
three P450 isoenzymes. Two consensus support vector machine (CSVM) methods, “positive majority” (PM-
CSVM) and “positive probability” (PP-CSVM), were used in this work. These methods were first tested for
the prediction of inhibitors of CYP3A4 and CYP2D6 by using a significantly higher number of inhibitors
and noninhibitors than that used in earlier studies. They were then applied to the prediction of inhibitors of
CYP2C9 and substrates of the three enzymes. Both methods predict inhibitors of CYP3A4 and CYP2D6 at
a similar level of accuracy as those of earlier studies. For classification of inhibitors of CYP2C9, the best
CSVM method gives an accuracy of 88.9% for inhibitors and 96.3% for noninhibitors. The accuracies for
classification of substrates and nonsubstrates of CYP3A4, CYP2D6, and CYP2C9 are 98.2 and 90.9%, 96.6
and 94.4%, and 85.7 and 98.8%, respectively. Both CSVM methods are potentially useful as filters for
predicting inhibitors and substrates of P450 isoenzymes. These methods generally give better accuracies
than single SVM classification systems, and the performance of the PP-CSVM method is slightly better
than that of the PM-CSVM method.

INTRODUCTION phase Il enzymes responsible for drug conjugation of the

N . .. . phase | metabolite with a water-solubilizing endogenous
Drug metabolism is a process whereby a drug is modified moiety® The cytochrome P450 isoenzymes are responsible

by a metabolizing enzyme, and these processes playimpor—for mdst of the phase | metabolism proces&syith

tant roles in pharmacokinetics and therapeutic actions of CYP3A4, CYP2D6, and CYP2C9 mediating the metabolism

drugs? For instance, lipophilic drugs need to be metabolized of nearI); 70% of ,aII phase | metabolisth CYP3A4 is

to hydrophilic metabolites so that they can be readily responsible for the metabolism of over 50% of dréigsi?

excreted. Although the primary site of drug metabolism is and its ability to metabolize a wide variety of drug's of

in the liver, metapohsm can also occur in the intestines, varying molecular weights and physicochemical properties
blood, and other tissues. _ _ is attributed to its relatively large active site that facilitates
Profiles of drug metabolism have increasingly become an \yeak hydrophobic interactions with its substr&%CYP2D6
important consideration in early stages ofdrug. developmentig 5 polymorphic enzyme primarily responsible for the
because of the profound effect of metabolism on such metabolism of substrates containing a basic nitrdgerhich
important drug properties as metabolic stability, dréijug  incjudes antiarrhythmics, antidepressants, and beta blotkers.
interactions, and drug toxicity? Lower metabolic stability 5 metabolism activity is, in many cases, facilitated by an
of a drug generally reduces its efficacy as it becomes morejon pajr interaction between an aspartic acid residue at the
difficult to reach an adequate therapeutic concentration at agctive site and a protonated nitrogen atom of the subsftate.
target site, whereas higher metabolic stability of a drug may cypocg is primarily involved in the metabolism of many
lead to harmful effects because of the prolonged halflife. polar drugs that are ionized at physiological pH, such as
A significant portion of adverse drug reactions have been ibuprofen, naproxen, diclofenac, and sulphaphenazdfe.
attributed to drugrdrug interactions that involve the interfer-  \1ost of the substrates of CYP2C9 contain an aromatic group,
ence of the normal metabolism of a drug as a result of the 5q drug-enzyme interaction has been attributed tosther
inhibition or induction of its metabolic enzyme by another interactions between the aromatic groups of the substrate and
drug®® Drug metabolism is also known to produce metabo- the specific residue at the binding fend to hydrogen
lites more toxic than their parent compouhd. bonding?® Therefore, the prediction of inhibitors, substrates,
There are mainly two phases in drug metabolism processesand inducers of these P450 isoenzymes is important for the
The first involves phase | enzymes responsible for drug analysis of drug metabolism and for developing efficient tools
oxidation, reduction, or hydrolysis. The second involves for screening drugs of appropriate metabolism profiles.
Several computer prediction systems have been developed
* Corresponding author tel.. 65-6874-6877; fax: 65-6774-6756; by using statistical learning methods for the identification
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a linear partial least-squares-based approach, which gives METHODS

an accuracy of 93% for 29 inhibitors and 86% for 21 o
noninhibitors. Another filter for the prediction of CYP3A4 Datasets Inhibitors and substrates of CYP3A4, CYP2DE,

and CYP2C9 P450 isoenzymes were collected from various
g sources® 2 To ensure that interlaboratory variations in
experimental protocols do not significantly affect the quality

inhibition was developed by Molnar and Kesghy using
neural networks, which gives an accuracy of 91.7% for 3
inhibitors and 88.9% for 36 noninhibitors. A consensus filter

for predicting CYP2D6 inhibitors was developed by Susnow of the data sets, the Most common range of Ki values for
and Dixort* using recursive partitioning, which gives an the compounds investigated in more than one source was

accuracy of 100% for 10 inhibitors and 76% for 41 used to select compounds as inhibitors or.su_bs.,tﬂéfébe
noninhibitors. Ekin et al® also used recursive partitioning generated datasets are composed of 241 inhibitors and 368

to develop filters for predicting CYP3A4 and CYP2D6 substrates for CYP3A4, 180 inhibitors and 198 substrates

S - . , for CYP2D6, and 167 inhibitors and 144 substrates for
inhibitors, which gives Spearmarpsvalues of 0.48 and 0.61 fCYPZC9. Noninhibitors and nonsubstrates are seldom de-

these methods raises an interest in the exploration of otherscr'bfa.d |n.the literature, anq few of these compounds are
specified in a known chemical database. For instance, a

statistical learning methods that have been used in a variet . . . e
of dlrulg studi e§'7_%2 ycomprehenswe search of the literature soufcésidentified
) A . only seven noninhibitors and six nonsubstrates for CYP3A4,

The aim of this work is to explore the use of support vector pine noninhibitors and eight nonsubstrates for CYP2D6, and
machine (SVM) methods for facilitating the prediction of  gight noninhibitors and seven nonsubstrates for CYP2C9.
substrates and nonsubstrates and inhibitors and noninhibitor§, an earlier study of the prediction of CYP3A4 inhibitérs,
of P450 isoenzymes. SVM has been successfully used in angninhibitors of the enzyme were selected from those well-
wide range of problems mchdmlga p-glycoprotein substrétes, st died agents that are known inhibitors/substrates/agonists
blood-brain barrier penetratiotf;**human intestinal absorp-  of proteins other than that enzyme, and there is no report
tion,?° torsade de pointes predictiéhand protein function  {hat any of these is an inhibitor of that enzy®ie2® Such a
prediction:® The main advantage of SVM over other method is based on the assumption that, as they have been
to data overfitting, even with the use of a large number of e innibitors or substrates of a specific enzyme, it is highly
redundant and overlapping molecular descriptors. This is likely that they are not. In this work, this method was used
principle. However, as _with other statistical learning methods, jsoenzymes. From this procedure, 461 noninhibitors and 334
SVM requires a sufficient number of samples to develop a ponsubstrates for CYP3A4, 522 noninhibitors and 504
classification system, and irrelevant molecular descriptors nonsubstrates for CYP2D6, and 535 noninhibitors and 558
may reduce the prediction accuracies of the SVM classifica- nonsubstrates for CYP2C9 were generated. Substrates and
tion systems. Thus, in this work, a larger number of inhibitors jnhibitors of an isoenzyme were denoted as belonging to the
and noninhibitors of P450 isoenzymes were used to train positive classP-+) of the isoenzyme, and nonsubstrates and
the SVM classification systems than in previous studies. For noninhibitors of the isoenzyme were denoted as belonging
the same reason, a larger number of substrates and nonsulip the negative clas®() of the isoenzyme.
strates were used to train the respective SVM systems. Representative training and validation sets were con-

A genetic-algorithm-based descriptor selection methtfd  structed from the datasets according to their distribution in
is used to select relevant molecular descriptors for SVM the chemical space. Here, chemical space is defined by the
classification of the substrates and inhibitors of P450 1607 structural and chemical descriptors used to represent a
isoenzymes. Because of the high number of redundant andcompound. Each compound occupies a particular location
overlapping descriptors, many sets of descriptors, which in this chemical space. All possible pairs of these compounds
describe similar overall physicochemical properties but are were generated, and a similarity score was computed for each
derived from slightly different algorithms and parameters, pair. These pairs were then ranked in terms of their similarity
can be selected by this genetic algorithm with a different scores, based on which compounds of similar structural and
random seed. The consensus modeling strategy has beephemical features were evenly assigned into separate datasets.
introduced for developing prediction systems based on For those compounds without enough structurally and
multiple descriptor set¥. In this work, this strategy was  chemically similar counterparts, they were assigned to the
applied to the development of consensus SVM (CSVM) training set. The training and validation sets for the inhibitors
classification systems for the prediction of inhibitors and or substrates of each of these enzymes are given in Table 1.
substrates of P450 isoenzymes by using multiple descriptorThe list of compounds in these six datasets and their
sets generated from genetic algorithms of different seeds.allocation into the training and validation sets is provided

Our method was first applied to the prediction of the in the Supporting Information.
inhibitors of CYP3A4 and CYP2D6 by using a substantially ~ Prediction accuracy of statistical learning systems is known
higher number of inhibitors and noninhibitors than in earlier to be strongly affected by the diversity of samples used in
studies*?14which serves as a test of the capability of our the training set®3! Independent validation sets have fre-
method. It was then used for the prediction of the inhibitors quently been used for evaluating the predictive performance
of CYP2C9 and the substrates of CYP3A4, CYP2D6, and of these classification systems, and these need also to be
CYP2C9. The relevance of the selected descriptors by thediverse and representative of the samples studied in order
CSVM methods to drug interactions with P450 isoenzymes to accurately assess the capabilities of the prediction
is discussed. systems?31 The diversity of these datasets can be determined
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Table 1. Number of Compounds in the Training, Independent Validation, Modeling Training, and Modeling Testing Sets for the Inhibitors/
Substrates of Different Cytochrome P450 Isoenzymes

training set validation set modeling training set modeling testing set
dataset CYP pP+2 p-b p+a p—b p+2 p—b p+2 p—>
inhibitors/ 3A4 216 386 25 75 196 306 20 80
noninhibitors 2D6 160 442 20 80 143 359 17 83
2C9 149 453 18 82 134 368 15 85
substrates/ 3A4 312 290 56 44 256 246 56 44
nonsubstrates 2D6 169 433 29 71 149 353 20 80
2C9 130 472 14 86 121 381 9 91

anhibitors or substrate$.Noninhibitors or nonsubstrates.

by calculating the diversity index (DI), which is the average MoRSE descriptor®} 64 BCUT descriptoré! 99 WHIM

value of the similarity between all the pairs of compounds descriptors? 21 Galvez topological charge indic&s197

in a dataset? GETAWAY descriptors}* 96 2D autocorrelations, 121
functional groups, 14 charge descriptors, 120 atom-centered

NN descriptors, 4 aromaticity indicé33 empirical descriptors,
Zl_ Z _S'vaJ) 41 Randic molecular profile$,and 3 molecular properties.
Dl = I L) Moreover, an additional set of 105 electrotopological state
N(N — 1) descriptor§’ and 5 linear solvation energy relationship

descriptor®® were computed by using our own developed
where simi;j) is a measure of the similarity between code. Our code has been tested on a number of compounds
compoundd andj and N is the number of compounds in  used in earlier studies to ensure the accuracy of the computed
the dataset. The diversity of a dataset increases withdescriptors.

decreasing DI. The similarity between two compoundsd Descriptor Selection. A genetic algorithm (GAY was
j is commonly described by the Tanimoto coefficiéat* used to remove descriptors irrelevant to the prediction of
CYP450 inhibitors and substrates. The retained descriptors
: from this process were used for representing the compounds
dZxdixdj studied in this work. All of the descriptors in the training
sim(,j) = - ) set were fi_rst normalized in the range-ofl to +1 by using
[ [ [ the following formula to ensure that none of them had a
;l(xdi)z + CZL(de)Z - ;lxdixdj biased influence on a classification system by virtue of its
= = = absolute valué&®
wherel is the number of descriptors of the compounds in 20X — X, i)
the dataset. The mean Tanimoto coefficient of the compounds i = v mn_ ()
in datasets A and B can be used as a representativeness index Xj,max~ %,min

(RI) to measure the level of representativeness of dataset A
by dataset B. Dataset B is more representative of dataset AwhereX'; is the scaled value for descriptpof compound
if the RI value between datasets A and B is higher. The DIs i andX;min andX maxare the minimum and maximum values
of the six training sets and the six validation sets are in the of descriptorj, respectively. An initial population of 50
ranges between 0.001 and 0.005 and between 0.002 andandomly selected descriptor subsets was generated and
0.020, respectively. The low DI values of tie- and P— screened for 100 generations. In each generation, the
compounds for all of the training and validation sets suggest descriptor subsets were first ranked by their fitness value.
that these datasets are sufficiently diverse. The RI value The higher ranked descriptor subsets were given a higher
between each of the training sets and its correspondingprobability of being chosen for reproduction. The top 40
validation set is in the range between 0.446 and 0.511, whichselected descriptor subsets were then used to replace the 40
suggests that these validation sets are representative of theilowest ranking descriptor subsets in the population. These
corresponding training sets and these validation sets are40 new descriptor subsets, together with the 10 highest
suitable for assessing the systems developed in this work.ranked descriptor subsets in the current generation, form a
Molecular Structures and Descriptors. The 2D structures ~ new generation of descriptor subsets. The 40 new descriptor
of each of the compounds studied were generated by usingsubsets were subsequently subjected to a one-point crossover
DS ViewerPro 5.8 and were subsequently converted into and mutation to increase the diversity of the population. In
3D structure by using CONCOR®.The 3D structure of  the mutation process, descriptors might be randomly added
each compound was manually inspected to ensure that theo or deleted from a descriptor subset. At the end of 100
chirality of each chiral agent was properly represented. By generations, the highest ranked descriptor subset was used
using DRAGON Web version 3.3,we derived a total of  to construct the final SVM classification system.
1497 1D, 2D, and 3D molecular descriptors from the 3D  In the descriptor selection process, ranking of the different
structure of each compound. These descriptors can be dividediescriptor subsets can be determined by using either 10-fold
into 18 classes including 47 constitutional descriptors, 70 cross-validation, 5-fold cross-validation, or a modeling testing
geometrical descriptors, 266 topological descriptors, 150 set. Our analysis of the 30 P450 isoenzyme SVM classifica-
RDF descriptor$® 21 molecular walk count®¥, 160 3D- tion systems derived from each of these cross validation
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methods showed that the modeling testing method gives the
best performance, and thus, this validation method was used Pr(S"|P)) = — " — "
in all of the descriptor selection processes in this study. The (1—a) t (0 T o5 —1) x Pr§54IP_y)
modeling testing set was derived by dividing the original 9)
training set into a modeling training set and modeling testing here Prg"|P) is the posterior probability that a com-
set of 502 and 100 compounds, respectively, using the same
procedure as that for dividing a dataset into the training and
validation sets described in the previous section. The PrS'|P) =
modeling training and modeling testing sets for the inhibitors
_Io_rhsubstrat'es of ?‘?Ch of these enzymes are given in Table l'pound is P+ given the classification result from SVM

e modeling training set was used for constructing the SVM e . + _
classification systems in the genetic algorithm. The Matthews cIasgﬂc_atmn system _and where a_n_d o are the
correlation coefficient@)>! was used as the fitness function sensmv]ty and spgc;njuty of SVM.C.IaSS'f'Cat'On systam .
for genetic algorithm optimization: r_espectlvely._Sensmwty and speC|f|C|ty represent t_he predic-

tion accuracies oP+ andP—, respectively. Equation 9 or

10 was used when SVM classification systerolassified

o TP x TN — FN x FP
- the compound aB+ or P—, respectively. In the absence of
*/(TPJF FN)(TP+ FP)(TN+ FN)(TN + FP) the knowledge about the ratio &+ to P— compounds in

where TP is the number of true positives, TN is the number the population, the prior probability of a compound to be

of true negatives, FP is the number of false positives, and P+ was tentatively set at 0.5. Sensitivity and specificity of
FN is the number of false negatives. SVM classification systenm were estimated by using the

Pr(S",IP._)o;

Pr§-IP )1 — o)
o — (ai+ +o; —1)x Pr(stl“:,i—l)

(10)

4

SVM Algorithm. The theory of SVM has been exten-
sively described? 54 Thus, only a brief description is given
here. SVM is based on the structural risk minimization
principle from statistical learning theoPy SVM constructs

validation method of the descriptor selection process.

To determine an appropriate number of SVM classification
systems for the CSVM methods, the descriptor selection
process was repeated 101 times, producing a pool of SVM

a hyperplane, which separates the two classes of vectors witiflassification systems. SVM classification systems were

a maximum margin. Each instance is represented by a vectofandomly selected, with replacement, from the pool of SVM
Xi, which is its molecular descriptors_ The hyperp|ane can classification SyStemS to form nine classes of CSVMS, each

be represented by
|
f09 = sign[y aiyiK(xx) + b (5)
1=

wherey; is the class index{(xi, X;) is a kernel function that

maps the vectors into a high dimensional feature space, and’

the coefficientsa? andb are determined by maximizing the
following Langrangian expression:

[ 1! !
Zlai - _lelaiajyiyj K(x;.x)) (6)
1= 2|= =

under the following conditions:

O0<a=C (7

where C is a penalty for training errors. A positive or

|
oy; =0

©)

negative value from eq 5 indicates that the vegtbelongs
to the positive or negative class, respectively.

CSVM Methods. Two types of CSVM methods were
used. The first is a “positive majority” CSVM classification
system (PM-CSVM), which classifies a compoundrasif
the majority of its SVM classification systems classify the
compound a$+.5 A PM-CSVM requires an odd number
of SVM classification systems to prevent ambiguity in its
prediction. The second is a “positive probability” CSVM
classification system (PP-CSVM), which explicitly computes
the probability for a compound to Bt using the following
formulas®

containing 11, 21, 31, 41, 51, 61, 71, 81, or 91 SVM
classification systems. This random selection of SVM
classification systems from the pool of SVM classification
systems and construction of CSVMs were repeated 1000
times. Our analysis of these nine CSVM classes showed that
the best accuracies for the two types of CSVM methods were
btained when at least 81 SVM classification systems were
used to develop CSVMs, and the accuracies roughly level
off at higher numbers of SVM classification systems. Thus,
81 SVM classification systems appear to be the optimum
number of systems for constructing CSVMs, which are used
for developing CSVMs for all of the datasets in this work.

RESULTS

The SVM classification system with the best cross-
validation accuracies was selected from the 81 SVM clas-
sification systems as the “best-trained” single SVM classi-
fication system. This selection method has been used by
several studies that used GA as the descriptor selection
method®”°8 The prediction accuracies of this system were
determined by using the independent validation set described
in the Methods section. A PM-CSVM and a PP-CSVM were
constructed by using the 81 SVM classification systems. The
prediction accuracies of these three systems were determined
by using the independent validation set and are given in Table
2. Itis found that both CSVM methods give better accuracies
than the “best-trained” single SVM classification system.
Moreover, PP-CSVM gives similar sensitivities and slightly
better specificities and PM-CSVM gives slightly lower
sensitivities and slightly better specificities than those of
earlier classification systems for the prediction of inhibitors
CYP3A%'2and CYP2D6* Thus, PP-CSVM appears to be
more useful than PM-CSVM for predicting inhibitors and
substrates of P450 isoenzymes.
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Table 2. Accuracies of the “Best-Trained” Single SVM Classification Systems, PM-CSVM, and PP-CSVM for the Prediction of CYP3A4 and
CYP2D6 Inhibitors/Noninhibitors by Using the Independent Validation Sets

Matthews
classification sensitivity specificity concordance correlation
CYP system TP FN TN FP (%) (%) (%) coefficient
3A4 “best-trained” 20 5 72 3 80.0 96.0 92.0 0.782
single SVM
classification
system
PM-CSVM 21 4 75 0 84.0 100.0 96.0 0.893
PP-CSVM 23 2 73 2 92.0 97.3 96.0 0.893
2D6 “best-trained” 15 5 77 3 75.0 96.3 92.0 0.742
single SVM
classification
system
PM-CSVM 16 4 78 2 80.0 97.5 94.0 0.807
PP-CSVM 18 2 76 4 90.0 95.0 94.0 0.821

Table 3. Accuracies of PP-CSVM for the Prediction of CYP2C9 Inhibitors/Noninhibitors and CYP3A4, CYP2D6, and CYP2C9 Substrates/
Nonsubstrates by Using the Independent Validation Sets

Matthews

sensitivity specificity concordance correlation

dataset CYP TP FN TN FP (%) (%) (%) coefficient

inhibitors/ 2C9 16 2 79 3 88.9 96.3 95.0 0.835

noninhibitors

substrates/ 3A4 55 1 40 4 98.2 90.9 95.0 0.899
nonsubstrates 2D6 28 1 67 4 96.6 94.4 95.0 0.884

2C9 12 2 85 1 85.7 98.8 97.0 0.872

The accuracies of PP-CSVM for the prediction of inhibi- datasets used in this work contain at least 130 compounds
tors of CYP2C9 and substrates of CYP3A4, CYP2D6, and of each class in the training set, and thus, the unbalanced
CYP2C9 are given in Table 3. The prediction accuracies of dataset is not expected to significantly affect the predictive
these CSVMs are at a similar level as those of the inhibitors ability of the SVM classification systems.
of CYP3A4 and CYP2D6, which suggests that these CSVM  gyajuation of Prediction Performance. The results of
methods, particularly PP-CSVM, are generally useful for our syM systems were compared with those of several
predicting both the inhibitors and the substrates of different gagistical learning methods including multiple linear regres-
P450 isoenzymes. sion, partial least squares, logistic regression, C4.5 decision

tree, andk-nearest neighbors. GA was used to determine the
DISCUSSION optimum descriptor subsets for each of these classification

Overall Prediction Accuracies. The difference between ~Methods by using 30 different random seeds, from which
the specificities of the current CSVMs and those of clas- 30 separate classification models were generated for each
sification systems from earlier studies may be due to the method. The predlc.tlon accuracies (_)f these cIaSS|f|_cat|_on
difference in the number d#— compounds used for training models were det.ermlned by using the independent validation
the classification systems. In our work, the numbePef ~ Set. Table 4 gives the results for CYP3A4 substrates/
compounds in the training set ranges from 290 to 472, Nonsubstrates. The accuracies for the other P450 isoenzymes
whereas earlier classification systems were developed bydatasets are similar and, thus, are not given here. Itis found
using 41-145P— compounds. Statistical learning methods that the SVM classification systems give the highest predic-
require a large number of compounds for the developmenttion accuracies when compared with those of other methods.
of classification systems. Therefore, it is not surprising that  To determine whether the selected descriptors of the SVM
the methods of the current work, which uses a larger numberclassification systems include those irrelevant for the predic-
of P— compounds, give higher specificities than those of tion of the inhibitors or substrates of the respective enzymes,
earlier studies. Another possible reason for the improved 10 groups of classification systems were generated by using
specificities is the use of SVM, which has been found to be the GA-based descriptor selection method. These groups are
consistently superior to other classification methods in most SVMig5 SVMags, SVMago, SVMage, SVMsoe, SVMsas, SVMygg,

classification problem%’-61 SVMgoo, SVMoos, and SVMogo in which the subscript
For all of the datasets, with the exception of the CYP3A4 denotes the number of descriptors used. Each group contains
substrates/nonsubstrates dataset, the numb&—otom- 30 SVM classification systems. The prediction accuracies

pounds is always higher than the numbePédf compounds. of these SVM classification systems were determined by
This may create a bias of the SVM classification systems to using the independent validation sets. Table 5 gives the
predict unknown compounds &-, resulting in a higher  results for the CYP3A4 substrates/nonsubstrates, which
number of false negatives. However, previous studies suggesshows that prediction accuracies begin to decrease when
that SVMs are not significantly affected by unbalanced more than 400 descriptors are used in a SVM classification
dataset$?5? especially if there are more than 8000 system. This suggests that the maximum number of relevant
compounds of each class in the training %eAll of the descriptors for the CYP3A4 substrates/nonsubstrates dataset
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Table 4. Average Accuracies of Different Statistical Learning Classification Systems for the Prediction of CYP3A4 Substrates/Nonsubstrates
by Using Independent Validation Sets

Matthews correlation

classification method sensitivity (%) specificity (%} concordance (%) coefficient
multiple linear regression 86.1 (3.9) 71.4 (4.4) 79.6 (2.9) 0.586 (0.060)
logistic regression 83.8 (3.9) 71.0 (5.1) 78.1(3.0) 0.555 (0.063)
partial least squares 79.9 (5.8) 72.5(5.2) 76.7 (3.7) 0.528 (0.073)
C4.5 decision tree 75.5 (6.8) 66.4 (6.7) 71.5 (4.3) 0.423 (0.087)
k-nearest neighbor 92.4 (2.0) 82.6 (3.4) 88.1(1.7) 0.759 (0.034)
SVM 98.0 (1.4) 85.3(3.1) 92.4 (1.2) 0.849 (0.024)

aNumbers in parentheses are the standard deviations.

Table 5. Average Accuracies of 10 Groups of SVM Classification Systems for the Prediction of CYP3A4 Substrates/Nonsubstrates by Using
Independent Validation Sets

number of Matthews correlation
descriptors sensitivity (%) specificity (%} concordance (%) coefficient
100 93.0(3.1) 80.4 (4.4) 87.5(2.7) 0.747 (0.054)
200 96.7 (2.0) 83.0 (3.3) 90.7 (1.9) 0.814 (0.039)
300 98.0 (1.6) 85.6 (3.6) 92.6 (1.9) 0.853 (0.037)
400 98.0 (1.3) 82.4 (3.4) 91.1 (1.6) 0.825 (0.032)
500 98.2 (1.0) 80.9 (3.1) 90.6 (1.4) 0.815 (0.028)
600 98.6 (0.8) 74.5 (3.3) 88.0 (1.5) 0.769 (0.028)
700 99.3(0.9) 66.4 (5.4) 84.8 (2.3) 0.715 (0.040)
800 100.0 (0.0) 51.5(3.1) 78.7 (1.4) 0.611 (0.024)
900 99.9 (0.3) 45.7 (2.4) 76.1(1.0) 0.565 (0.017)
1000 100.0 (0.0) 37.3(3.2) 72.4 (1.4) 0.500 (0.026)

aNumbers in parentheses are the standard deviations.

Table 6. Comparison of the Average Accuracies of SVM Classification Systems for the Prediction of Inhibitors/Substrates of Different P450
Isoenzymes by Using Modeling Testing Sets and Independent Validation Sets

modeling testing sét independent validation et
Matthews Matthews
sensitivity  specificity concordance correlation  sensitivity specificity concordance correlation
dataset CYP (%) (%) (%) coefficient (%) (%) (%) coefficient
inhibitors/ 3A4 76.5(6.2) 98.8(1.3) 94.3(0.8) 0.817 (0.026) 82.1(4.5) 97.9(1.5) 93.9(1.3) 0.835 (0.036)

noninhibitors  2D6  79.1(7.3) 98.5(1.4)  95.2(0.8) 0.828(0.028) 79.3(5.4) 96.7(1.6) 93.2(1.7)  0.783(0.054)
2C9 81.9(47) 98.8(1.0) 96.3(0.6) 0.851(0.025) 86.4(5.0) 97.3(1.3) 953(11)  0.842(0.039)
substrates/ 3A4 96.3(15) 86.7(27) 92.1(0.8) 0.841(0.015) 98.0(1.3) 852(3.0) 92.4(1.3)  0.849 (0.026)
nonsubstrates  2D6  84.6(5.0) 98.9(1.3) 96.0(0.6) 0.874(0.018) 86.9(4.7) 96.9(15)  94.0(L7)  0.852(0.043)
2C9 77.0(8.2) 98.9(1.0) 97.0(0.8) 0.810(0.047) 72.3(7.9) 99.2(0.9) 95.4(1.1)  0.801 (0.051)

aValues in parentheses are the standard deviations.

is around 400. Because the original 81 SVM classification ficient of these scrambled SVM classification systems
systems for the CYP3A4 substrates/nonsubstrates dataseterived by using the independent validation sets was found
contains 214402 descriptors, our results seem to suggest to be in the range between 0.189 and 0.288, which is
that the original 81 SVM classification systems are unlikely significantly lower than those of the original SVM clas-
to contain irrelevant descriptors. Similar conclusions are also sification systems, which are in the range between 0.783 and
made for the rest of the P450 isoenzymes datasets on thé.852. This suggests that the original SVM classification
basis of our computational studies. systems are relevant and unlikely to arise as a result of chance
It has been shown that chance correlations may occurcorrelation.

during descriptor selection, especially if the number of A frequently used method for checking whether a predic-
descriptors available for selection is laf§é®y randomiza- tion system is overfitted is to compare the prediction
tion has been frequently used to determine the probability accuracies determined by using cross-validation methods with
of chance correlation during descriptor selection pro- those determined by using independent validation %ets.
cesse$®57In y randomization, a portion d?+ compounds Because descriptor selection was performed by using the
in the training set was randomly selected and converted tomodeling testing sets as the cross-validation method, an
P— compounds. Another portion & compounds was also  overfitted classification system is expected to have a much
randomly selected and converted Rs- compounds. The  higher prediction accuracy for the modeling testing sets than
ratios of P+ to P— compounds were kept unchanged during for the independent validation sets. As shown in Table 6,
y randomization. The scrambled training set was then usedthe prediction accuracies of the SVM systems based on the
for the descriptor selection process. The process of scram-modeling testing sets and those based on independent
bling the training set and descriptor selection process wasvalidation sets are similar. This suggests that the SVM
repeated 81 times. The average Matthews correlation coef-classification systems in this work are unlikely to overfit.
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Table 7. Important Descriptor Classes Selected for the Prediction of Inhibitors/Substrates of Different P450 Isoenzymes

electrostatic hydrogen bond hydrogen bond hydrophobic shape size
dataset CYP (%) acceptors (%) donors (%) (%) (%) (%)
inhibitors/ 3A4 20.4 3.6 3.3 8.8 56.8 7.1
noninhibitors 2D6 20.5 24 25 10.0 57.1 7.5
2C9 20.1 2.0 2.9 8.8 59.0 7.2
substrates/ 3A4 21.0 2.8 1.9 9.5 57.2 7.5
nonsubstrates 2D6 18.9 3.1 3.5 8.5 59.7 6.3
2C9 19.1 35 3.0 9.4 58.2 6.8

Table 8. Differences in the Values of Descriptors Important for

The Selected DescriptorsThe majority of the selected Distinguishing betweef-+ andP— Compounds

descriptors in our SVM classification systems are composite
descriptors, which can be divided into three groups: 3D-

average value

MoRSE, RDF, and Randic molecular profiles. 3D-MoRSE dataset CYP  descriptor P+ P—
descriptors, which are representations of the 3D structure of inhibitors/ 3A4 S 2.56 (1.24) 2.36(1.12)
a molecule and encode features such as molecular weight, noninhibitors nHAcc 6.47 (4.05)  4.59 (2.64)
van der Waals volume, electronegativities, and polarizabili- L‘,l'ﬂ'gg?, fé; 8'333 %'Sg (%'gg))
ties, have been used for the classification of dopamine D1 MW 417 (185) 313 (116)
and D2 agonists and modeling the binding of steroids to SPH 0.77(0.13) 0.77 (0.13)
corticosteroid binding globulif? RDF descriptors provide 2D6 S 2.17/(1.00)  2.52(1.20)
information about bond lengths, ring types, planar and nHAcc 457 (2.70) 5.47(3.48)
I tems, atom types, and molecular weight and nribon 157(1.81)  1.59(1.92)
nonplanar sys , ypes, an welg MLogP ~ 2.54(1.76) 1.70(2.09)
have been used for pharmacokinetic stué¥eRandic mo- MW 355(125) 346 (159)
lecular profiles measure interactions between atoms in a SPH 0.78(0.13) 0.77(0.13)
molecule and encode information on molecular shape, which 2C9 S 256(1.21)  2.39(1.1%)
i i factor in ligandenzyme interactions nHAcc 5:31(2.6% 521 (3.50)
IS an important g y : : nHDon  1.49(152) 1.62(1.99)
Because shape and chemical complementarity between a MLogP 1.78 (2.11) 1.96 (2.02)
ligand and an enzyme are important for ligarehzyme MW 351(123) 348 (159)
inding. it i i SPH 0.76 (0.13)  0.78 (0.13)
glndmgi it is nr(])_t rs]urpns_ljlng_tf;at thet‘_se threﬁ glasshesb_of_t3D substrates/ a4 S 286(115) 229 (117)
escriptors, which provide information on nydrophobiCity, — nqng pstrates nHAcc  5.53(3.45) 4.91(3.14)
electronegativities, polarizabilities, and the shape of a nHDon 1.72(1.99) 1.44 (1.75)
molecule, are frequently selected by the descriptor selection MLogP 2.20(1.99) 1.60 (2.06)
process. MW 379 (157)  315(137)
) ) , , SPH 0.76 (0.13)  0.78 (0.13)
Because composite descriptors encode multiple physico- 2D6 S 2.19 (1.08) 2.53(1.18)
chemical and structural aspects of the molecule, it is difficult nHAcc 4.10 (2.13) 5.68(3.58)
to extract from these descriptors information about which RA"I'_DOS %éf %342,) i-gg (g-ﬂ)
specific molecular characteristics are important for the MV\(/)g 320 (io'o)) 360 (£6'6))
inhibitors and substrates of these P450 isoenzymes. Nonethe- SPH 0.78 (0.14)  0.77 (0.13)
less, it is possible to infer some information from noncom- 2C9 S 2.52(1.26) 2.41(1.14)
posite descriptors. As many descriptors are overlapping and nHAcc 4.69(2.52) 5.38(3.48)
some of them are redundant, it is more appropriate to group nHDon  1.03(1.14)  1.73(2.01)
. . - X MLogP  2.05(2.04) 1.88(2.05)
them into classes of descriptors of similar properties and MW 326 (112) 354 (160)
discuss their contribution to the inhibitors/substrates pre- SPH 0.75(0.14) 0.78(0.13)

dictions at the class level. Table 7 gives the classes of non-
composite descriptors selected by our computations. It is
found that shape is the dominant factor involved in ligand
P450 isoenzyme interaction. This is not surprising becauserespectively. S is the combined dipolarity/polarizability,
shape complementarity is important for ligararotein nHAcc and nHDon are the number of acceptor and donor
interactions. In addition to the shape descriptors, electrostaticatoms for hydrogen bonds, respectively, MLOGP is the
and hydrophobic interactions are found to be the dominant Moriguchi Log P7° MW is the molecular weight, and SPH
forces involved in liganeP450 isoenzyme interactions. is the spherosity. The average values of these four descriptors
Descriptors that describe hydrogen bonding also appear tofor P+ andP— compounds of all of the various datasets are
be important for the ligandP450 isoenzyme interactions, given in Table 8. Substrates of CYP3A4 are generally larger
which is consistent with the findings that hydrogen bonds in size, less spherical in shape, more hydrophobic, and have
are involved in the ligandP450 isoenzyme interactiofs.  more hydrogen bonding sites than nonsubstrates. Inhibitors
It is also possible to roughly distinguish betweeh and of CYP3A4 are generally less hydrophobic than substrates
P— compounds and to roughly distinguish between inhibitors but are larger in size and contain more hydrogen bond donors
and substrates from the values of six selected descriptorsand acceptors. Substrates of CYP2D6 are generally smaller
S, nHAcc, nHDon, MLOGP, MW, and SPH. These descrip- in size, more hydrophobic than nonsubstrates, and contain
tors are representative of the four dominant interaction forces,one hydrogen bond donor. There are only minor differences
electrostatic, hydrogen bond acceptor, hydrogen bond donorbetween inhibitors and substrates of CYP2D6, which sug-
and hydrophobicity, and size and shape of the compounds,gests that there is considerable overlap between the inhibitors

aValues in parentheses are the standard deviations.
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and substrates of CYP2D6. Substrates of CYP2C9 generallyTable 9. List of Misclassified Compounds in This Wark

are more hydrophobic than inhibitors of CYP2_C9 but are dataset CYP misclassified compounds

smaller in size and haye lesser hydr.ogen. bonding c'a.pacny. inhibitors/ 3A4 pilocarpineR+)
CYP3A4 has a relatively large active site that facilitates noninhibitors stiripentolR+)

weak hydrophobic interactions with its substratét A olanzapine®+)

pharmacophoric model of the substrates suggests that there D6 fyg'cl’PhOSBrham'dﬂﬂ

are four important features: two hydrogen bond acceptors, obeline b-+)

. - propafenoneR+)
one hydrogen bond donor, and one hydrophobic reéion. reboxetine P+)
Some of the descriptor classes frequently selected by the sulconazoleR-+)
SVM classification systems for the prediction of substrates doxepin PIJF)
and nonsubstrates of CYP3A4 are related to the hydropho- 2C9 Igt(i)rcigggtzo? EE)_)
bicity and hydrogen bpnding ability c_)f the molecule_. sulconazoleR+)
Examples of descriptors in these classes include ARR, which isoconazoleR—)
is the aromatic ratio; aaCH and aasC, which are electroto- ~ substrates/ 3A4 chlorphenamirfe+)
pological descriptors for carbons in aromatic rings; nHAcc; nonsubstrates irgggng’ﬂ%gﬂ—)
and nHDon. The differences in the distribution of intermo- oxomemazineR—)
lecular forces between inhibitors and substrates of CYP3A4 pargyline P—)
suggest that the inhibitors have less electrostatic and Pelr_lt?jzocli:ne)Ff—)

P H H sulindac P—
h'ydr.opho'blc interactions and more hydrogen bonding at the D6 carbamazepin®()
binding site than the substrates. cinnarizine P-+)

The pharmacophoric model for substrates of CYP2D6 zuclopenthixol P+)
consists of a basic nitrogen atom and a flat hydrophobic domperidoneR—)
region313Some of the frequently selected descriptor classes ) emedastineR-)
. s C9 cinnarizine P+)
by SVM classification systems for predicting substrates and losartan P+)
nonsubstrates of CYP2D6 match this model. Examples of methadoneR-+)

descriptors in these classes include MAXDP, which is the
maximal electrotopological positive variation topological ~_ “All of the compounds misclassified by more than 50% of the 81
descriptor and is related to the electrophilicity of the Cassification systems are included,
molecule; nN, which is the number of nitrogen atoms; and
BLI, which is the Kier benzene-likeness index. These level of overlapping between noninhibitors of different CYP
descriptor classes are also selected by the SVM classificationsubtypes, between noninhibitors and nonsubstrates of a
systems for predicting inhibitors and noninhibitors of CYP2D6. specific CYP subtype, and between noninhibitors and
However, differences in the distribution of intermolecular substrates of a particular CYP subtype. A potential problem
forces between inhibitors of CYP2D6 suggest that the with this method is that a small number of true inhibitors or
inhibitors may have increased electrostatic and hydrophobic substrates may be selected as noninhibitors or nonsubstrates
interactions at the active site. This is consistent with the (false negatives). The extent of training errors caused by false
findings from pharmacophoric studies of inhibitors of negatives can be roughly estimated by using experimentally
CYP2D6 which suggests that the inhibitors have an ad- confirmed noninhibitors/nonsubstrates. However, there is
ditional region in which functional groups with lone pairs only a limited number of experimentally confirmed nonin-
enhance inhibitory potency and a region for hydrophobic hibitors/nonsubstrates. In the CYP3A4 substrate/nonsubstrate
groups® validation set, only irbesartan is a known nonsubstiale.
Descriptors encoding aromaticity, polarity, and hydrogen the CYP2C9 inhibitor/noninhibitor validation set, only re-
bond donors are frequently selected by SVM classification boxetine is experimentally determined to be a noninhilsftor.
systems for predicting substrates and nonsubstrates ofin the CYP2D6 substrate/nonsubstrate validation set, only
CYP2C9. These include aasC, which is the electrotopological nilvadipine is a known nonsubstraie.In the CYP2D6
state atom index for aromatic carbons; MAXDN, which is inhibitor/noninhibitor validation set, only gatifloxacin is a
the maximal electrotopological negative variation topological known noninhibito® All of these compounds, except
descriptor and is related to the nucleophilicity of the irbesartan, were correctly predicted by the CSVMs to be
molecule; and nHDon. These selected descriptors are con-honinhibitors/nonsubstrates. These results, together with the
sistent with the findings that the substrates of CYP2C9 are reported high accuracies of the SVM classification systems
primarily polar compounds that contain an aromatic group for other systems!’2 suggest that by using soft-margin
and that drug-CYP2C9 interaction is mediated by both SVM,5 the training errors caused by false negatives can be
hydrogen bondintandsz— interactions at the binding sité. kept at a minimum.
The differences in the distribution of intermolecular forces  Table 9 gives the list of compounds misclassified by more
between inhibitors and substrates of CYP2C9 suggest thatthan 50% of the SVM classification systems for each dataset.
the inhibitors have fewer hydrogen bonds but increased A possible reason for the misclassification of some of these
electrostatic interactions at the active site compared to thecompounds is that some descriptor subsets may be inadequate
substrates. to properly describe these compounds. Examples of these
Potential Training Errors and Misclassified Com- compounds are carbamazepine; chlorphenamine; cinnarizine;
pounds.In this work, noninhibitors and nonsubstrates were doxepin; methadone; olanzapine and zuclopenthixol, which
selected from those compounds without a report identifying contain two aromatic rings separated by an atom; and
them as an inhibitor or a substrate. There is also a certainirbesartan and lorsartan, which contain a highly polar
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tetrazole ring. Among the misclassified noninhibitors or may also be improved by the addition of a correction factor
nonsubstrates, only irbesartan is a known nonsubsfrate. to the SVM decision function. The present CSVMs are only
Oxomemazine is a known inducer and flurithromycin is a suitable for distinguishing between inhibitors and noninhibi-
known inhibitor of CYP3A4” Thus, it may be possible that  tors or substrates and nonsubstrates. With the availability of
both oxomemazine and flurithromycin are actually false more detailed experimental data, it is possible to use
negatives, as more than 60% of the CYP3A4 inhibitors in multiclass SVM$? for classification of noninhibitors, weak
the dataset are both CYP3A4 inhibitors and substrates.inhibitors, and strong inhibitors or SVM regressibrior
Similarly, doxepin, which is a known CYP2D6 substréte, quantitative prediction of the Ki values of inhibitors. Our
may also be a false negative, as nearly 50% of the CYP2D6computational results suggest that PP-CSVM is better than
substrates are both CYP2D6 substrates and inhibitors. PM-CSVM for constructing CSVMs for classifying inhibitors
Comparison of the Two CSVM Systems.The results and substrates of various P450 isoenzymes. Thus, CSVMs,
from our studies show that PP-CSVM gives slightly better particularly PP-CSVM, are potentially useful for developing
accuracies than PM-CSVM. This is because individual SVM filters for the prediction of inhibitors and substrates of P450
classification systems in PP-CSVM are ranked according to iSoenzymes.
their accuracies and SVM classification systems with better
accuracies have more influence on the final classification of ACKNOWLEDGMENT
a compound. This is different from PM-CSVM where all
individual SVM classification systems, regardless of their

accuracies, contribute equally to the final classification of a P2 .
' S .~ 04QMX1450, 04DZ14005), and the “973" National Ke
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