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Statistical learning methods have been used in developing filters for predicting inhibitors of two P450
isoenzymes, CYP3A4 and CYP2D6. This work explores the use of different statistical learning methods for
predicting inhibitors of these enzymes and an additional P450 enzyme, CYP2C9, and the substrates of the
three P450 isoenzymes. Two consensus support vector machine (CSVM) methods, “positive majority” (PM-
CSVM) and “positive probability” (PP-CSVM), were used in this work. These methods were first tested for
the prediction of inhibitors of CYP3A4 and CYP2D6 by using a significantly higher number of inhibitors
and noninhibitors than that used in earlier studies. They were then applied to the prediction of inhibitors of
CYP2C9 and substrates of the three enzymes. Both methods predict inhibitors of CYP3A4 and CYP2D6 at
a similar level of accuracy as those of earlier studies. For classification of inhibitors of CYP2C9, the best
CSVM method gives an accuracy of 88.9% for inhibitors and 96.3% for noninhibitors. The accuracies for
classification of substrates and nonsubstrates of CYP3A4, CYP2D6, and CYP2C9 are 98.2 and 90.9%, 96.6
and 94.4%, and 85.7 and 98.8%, respectively. Both CSVM methods are potentially useful as filters for
predicting inhibitors and substrates of P450 isoenzymes. These methods generally give better accuracies
than single SVM classification systems, and the performance of the PP-CSVM method is slightly better
than that of the PM-CSVM method.

INTRODUCTION

Drug metabolism is a process whereby a drug is modified
by a metabolizing enzyme, and these processes play impor-
tant roles in pharmacokinetics and therapeutic actions of
drugs.1 For instance, lipophilic drugs need to be metabolized
to hydrophilic metabolites so that they can be readily
excreted.2 Although the primary site of drug metabolism is
in the liver, metabolism can also occur in the intestines,
blood, and other tissues.

Profiles of drug metabolism have increasingly become an
important consideration in early stages of drug development
because of the profound effect of metabolism on such
important drug properties as metabolic stability, drug-drug
interactions, and drug toxicity.1,3 Lower metabolic stability
of a drug generally reduces its efficacy as it becomes more
difficult to reach an adequate therapeutic concentration at a
target site, whereas higher metabolic stability of a drug may
lead to harmful effects because of the prolonged half-life.4

A significant portion of adverse drug reactions have been
attributed to drug-drug interactions that involve the interfer-
ence of the normal metabolism of a drug as a result of the
inhibition or induction of its metabolic enzyme by another
drug.5,6 Drug metabolism is also known to produce metabo-
lites more toxic than their parent compound.7

There are mainly two phases in drug metabolism processes.
The first involves phase I enzymes responsible for drug
oxidation, reduction, or hydrolysis. The second involves

phase II enzymes responsible for drug conjugation of the
phase I metabolite with a water-solubilizing endogenous
moiety.8 The cytochrome P450 isoenzymes are responsible
for most of the phase I metabolism processes,2,9 with
CYP3A4, CYP2D6, and CYP2C9 mediating the metabolism
of nearly 70% of all phase I metabolism.10 CYP3A4 is
responsible for the metabolism of over 50% of drugs,2,11,12

and its ability to metabolize a wide variety of drugs of
varying molecular weights and physicochemical properties
is attributed to its relatively large active site that facilitates
weak hydrophobic interactions with its substrates.2,8,11CYP2D6
is a polymorphic enzyme primarily responsible for the
metabolism of substrates containing a basic nitrogen,13 which
includes antiarrhythmics, antidepressants, and beta blockers.14

Its metabolism activity is, in many cases, facilitated by an
ion pair interaction between an aspartic acid residue at the
active site and a protonated nitrogen atom of the substrate.13

CYP2C9 is primarily involved in the metabolism of many
polar drugs that are ionized at physiological pH, such as
ibuprofen, naproxen, diclofenac, and sulphaphenazole.11,15

Most of the substrates of CYP2C9 contain an aromatic group,
and drug-enzyme interaction has been attributed to theπ-π
interactions between the aromatic groups of the substrate and
the specific residue at the binding site13 and to hydrogen
bonding.9 Therefore, the prediction of inhibitors, substrates,
and inducers of these P450 isoenzymes is important for the
analysis of drug metabolism and for developing efficient tools
for screening drugs of appropriate metabolism profiles.

Several computer prediction systems have been developed
by using statistical learning methods for the identification
of inhibitors of specific P450 isoenzymes. Zuegge et al.12

developed a filter for predicting CYP3A4 inhibition by using
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a linear partial least-squares-based approach, which gives
an accuracy of 93% for 29 inhibitors and 86% for 21
noninhibitors. Another filter for the prediction of CYP3A4
inhibition was developed by Molnar and Keseru6 by using
neural networks, which gives an accuracy of 91.7% for 36
inhibitors and 88.9% for 36 noninhibitors. A consensus filter
for predicting CYP2D6 inhibitors was developed by Susnow
and Dixon14 using recursive partitioning, which gives an
accuracy of 100% for 10 inhibitors and 76% for 41
noninhibitors. Ekin et al.16 also used recursive partitioning
to develop filters for predicting CYP3A4 and CYP2D6
inhibitors, which gives Spearman’sF values of 0.48 and 0.61
for a test set of 98 compounds, respectively. The success of
these methods raises an interest in the exploration of other
statistical learning methods that have been used in a variety
of drug studies.17-22

The aim of this work is to explore the use of support vector
machine (SVM) methods for facilitating the prediction of
substrates and nonsubstrates and inhibitors and noninhibitors
of P450 isoenzymes. SVM has been successfully used in a
wide range of problems including p-glycoprotein substrates,21

blood-brain barrier penetration,17,18human intestinal absorp-
tion,20 torsade de pointes prediction,22 and protein function
prediction.19 The main advantage of SVM over other
statistical learning methods is its relatively low sensitivity
to data overfitting, even with the use of a large number of
redundant and overlapping molecular descriptors. This is
because SVM is based on the structural risk minimization
principle. However, as with other statistical learning methods,
SVM requires a sufficient number of samples to develop a
classification system, and irrelevant molecular descriptors
may reduce the prediction accuracies of the SVM classifica-
tion systems. Thus, in this work, a larger number of inhibitors
and noninhibitors of P450 isoenzymes were used to train
the SVM classification systems than in previous studies. For
the same reason, a larger number of substrates and nonsub-
strates were used to train the respective SVM systems.

A genetic-algorithm-based descriptor selection method23,24

is used to select relevant molecular descriptors for SVM
classification of the substrates and inhibitors of P450
isoenzymes. Because of the high number of redundant and
overlapping descriptors, many sets of descriptors, which
describe similar overall physicochemical properties but are
derived from slightly different algorithms and parameters,
can be selected by this genetic algorithm with a different
random seed. The consensus modeling strategy has been
introduced for developing prediction systems based on
multiple descriptor sets.25 In this work, this strategy was
applied to the development of consensus SVM (CSVM)
classification systems for the prediction of inhibitors and
substrates of P450 isoenzymes by using multiple descriptor
sets generated from genetic algorithms of different seeds.

Our method was first applied to the prediction of the
inhibitors of CYP3A4 and CYP2D6 by using a substantially
higher number of inhibitors and noninhibitors than in earlier
studies,6,12,14which serves as a test of the capability of our
method. It was then used for the prediction of the inhibitors
of CYP2C9 and the substrates of CYP3A4, CYP2D6, and
CYP2C9. The relevance of the selected descriptors by the
CSVM methods to drug interactions with P450 isoenzymes
is discussed.

METHODS

Datasets.Inhibitors and substrates of CYP3A4, CYP2D6,
and CYP2C9 P450 isoenzymes were collected from various
sources.26-29 To ensure that interlaboratory variations in
experimental protocols do not significantly affect the quality
of the data sets, the most common range of Ki values for
the compounds investigated in more than one source was
used to select compounds as inhibitors or substrates.14 The
generated datasets are composed of 241 inhibitors and 368
substrates for CYP3A4, 180 inhibitors and 198 substrates
for CYP2D6, and 167 inhibitors and 144 substrates for
CYP2C9. Noninhibitors and nonsubstrates are seldom de-
scribed in the literature, and few of these compounds are
specified in a known chemical database. For instance, a
comprehensive search of the literature sources26-29 identified
only seven noninhibitors and six nonsubstrates for CYP3A4,
nine noninhibitors and eight nonsubstrates for CYP2D6, and
eight noninhibitors and seven nonsubstrates for CYP2C9.
In an earlier study of the prediction of CYP3A4 inhibitors,6

noninhibitors of the enzyme were selected from those well-
studied agents that are known inhibitors/substrates/agonists
of proteins other than that enzyme, and there is no report
that any of these is an inhibitor of that enzyme.26-29 Such a
method is based on the assumption that, as they have been
well studied, if these compounds have not been reported to
be inhibitors or substrates of a specific enzyme, it is highly
likely that they are not. In this work, this method was used
to generate noninhibitors or nonsubstrates of the P450
isoenzymes. From this procedure, 461 noninhibitors and 334
nonsubstrates for CYP3A4, 522 noninhibitors and 504
nonsubstrates for CYP2D6, and 535 noninhibitors and 558
nonsubstrates for CYP2C9 were generated. Substrates and
inhibitors of an isoenzyme were denoted as belonging to the
positive class (P+) of the isoenzyme, and nonsubstrates and
noninhibitors of the isoenzyme were denoted as belonging
to the negative class (P-) of the isoenzyme.

Representative training and validation sets were con-
structed from the datasets according to their distribution in
the chemical space. Here, chemical space is defined by the
1607 structural and chemical descriptors used to represent a
compound. Each compound occupies a particular location
in this chemical space. All possible pairs of these compounds
were generated, and a similarity score was computed for each
pair. These pairs were then ranked in terms of their similarity
scores, based on which compounds of similar structural and
chemical features were evenly assigned into separate datasets.
For those compounds without enough structurally and
chemically similar counterparts, they were assigned to the
training set. The training and validation sets for the inhibitors
or substrates of each of these enzymes are given in Table 1.
The list of compounds in these six datasets and their
allocation into the training and validation sets is provided
in the Supporting Information.

Prediction accuracy of statistical learning systems is known
to be strongly affected by the diversity of samples used in
the training set.30,31 Independent validation sets have fre-
quently been used for evaluating the predictive performance
of these classification systems, and these need also to be
diverse and representative of the samples studied in order
to accurately assess the capabilities of the prediction
systems.30,31The diversity of these datasets can be determined
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by calculating the diversity index (DI), which is the average
value of the similarity between all the pairs of compounds
in a dataset:32

where sim(i,j) is a measure of the similarity between
compoundsi and j and N is the number of compounds in
the dataset. The diversity of a dataset increases with
decreasing DI. The similarity between two compoundsi and
j is commonly described by the Tanimoto coefficient:6,33,34

where l is the number of descriptors of the compounds in
the dataset. The mean Tanimoto coefficient of the compounds
in datasets A and B can be used as a representativeness index
(RI) to measure the level of representativeness of dataset A
by dataset B. Dataset B is more representative of dataset A
if the RI value between datasets A and B is higher. The DIs
of the six training sets and the six validation sets are in the
ranges between 0.001 and 0.005 and between 0.002 and
0.020, respectively. The low DI values of theP+ andP-
compounds for all of the training and validation sets suggest
that these datasets are sufficiently diverse. The RI value
between each of the training sets and its corresponding
validation set is in the range between 0.446 and 0.511, which
suggests that these validation sets are representative of their
corresponding training sets and these validation sets are
suitable for assessing the systems developed in this work.

Molecular Structures and Descriptors.The 2D structures
of each of the compounds studied were generated by using
DS ViewerPro 5.035 and were subsequently converted into
3D structure by using CONCORD.36 The 3D structure of
each compound was manually inspected to ensure that the
chirality of each chiral agent was properly represented. By
using DRAGON Web version 3.0,37 we derived a total of
1497 1D, 2D, and 3D molecular descriptors from the 3D
structure of each compound. These descriptors can be divided
into 18 classes including 47 constitutional descriptors, 70
geometrical descriptors, 266 topological descriptors, 150
RDF descriptors,38 21 molecular walk counts,39 160 3D-

MoRSE descriptors,40 64 BCUT descriptors,41 99 WHIM
descriptors,42 21 Galvez topological charge indices,43 197
GETAWAY descriptors,44 96 2D autocorrelations, 121
functional groups, 14 charge descriptors, 120 atom-centered
descriptors, 4 aromaticity indices,45 3 empirical descriptors,
41 Randic molecular profiles,46 and 3 molecular properties.
Moreover, an additional set of 105 electrotopological state
descriptors47 and 5 linear solvation energy relationship
descriptors48 were computed by using our own developed
code. Our code has been tested on a number of compounds
used in earlier studies to ensure the accuracy of the computed
descriptors.

Descriptor Selection.A genetic algorithm (GA)49 was
used to remove descriptors irrelevant to the prediction of
CYP450 inhibitors and substrates. The retained descriptors
from this process were used for representing the compounds
studied in this work. All of the descriptors in the training
set were first normalized in the range of-1 to +1 by using
the following formula to ensure that none of them had a
biased influence on a classification system by virtue of its
absolute value:50

whereX′ij is the scaled value for descriptorj of compound
i andXj,min andXj,max are the minimum and maximum values
of descriptor j, respectively. An initial population of 50
randomly selected descriptor subsets was generated and
screened for 100 generations. In each generation, the
descriptor subsets were first ranked by their fitness value.
The higher ranked descriptor subsets were given a higher
probability of being chosen for reproduction. The top 40
selected descriptor subsets were then used to replace the 40
lowest ranking descriptor subsets in the population. These
40 new descriptor subsets, together with the 10 highest
ranked descriptor subsets in the current generation, form a
new generation of descriptor subsets. The 40 new descriptor
subsets were subsequently subjected to a one-point crossover
and mutation to increase the diversity of the population. In
the mutation process, descriptors might be randomly added
to or deleted from a descriptor subset. At the end of 100
generations, the highest ranked descriptor subset was used
to construct the final SVM classification system.

In the descriptor selection process, ranking of the different
descriptor subsets can be determined by using either 10-fold
cross-validation, 5-fold cross-validation, or a modeling testing
set. Our analysis of the 30 P450 isoenzyme SVM classifica-
tion systems derived from each of these cross validation

Table 1. Number of Compounds in the Training, Independent Validation, Modeling Training, and Modeling Testing Sets for the Inhibitors/
Substrates of Different Cytochrome P450 Isoenzymes

training set validation set modeling training set modeling testing set

dataset CYP P+a P-b P+a P-b P+a P-b P+a P-b

inhibitors/ 3A4 216 386 25 75 196 306 20 80
noninhibitors 2D6 160 442 20 80 143 359 17 83

2C9 149 453 18 82 134 368 15 85
substrates/ 3A4 312 290 56 44 256 246 56 44

nonsubstrates 2D6 169 433 29 71 149 353 20 80
2C9 130 472 14 86 121 381 9 91

a Inhibitors or substrates.b Noninhibitors or nonsubstrates.
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methods showed that the modeling testing method gives the
best performance, and thus, this validation method was used
in all of the descriptor selection processes in this study. The
modeling testing set was derived by dividing the original
training set into a modeling training set and modeling testing
set of 502 and 100 compounds, respectively, using the same
procedure as that for dividing a dataset into the training and
validation sets described in the previous section. The
modeling training and modeling testing sets for the inhibitors
or substrates of each of these enzymes are given in Table 1.
The modeling training set was used for constructing the SVM
classification systems in the genetic algorithm. The Matthews
correlation coefficient (C)51 was used as the fitness function
for genetic algorithm optimization:

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives.

SVM Algorithm. The theory of SVM has been exten-
sively described.52-54 Thus, only a brief description is given
here. SVM is based on the structural risk minimization
principle from statistical learning theory.52 SVM constructs
a hyperplane, which separates the two classes of vectors with
a maximum margin. Each instance is represented by a vector
xi, which is its molecular descriptors. The hyperplane can
be represented by

whereyi is the class index,K(xi, xj) is a kernel function that
maps the vectors into a high dimensional feature space, and
the coefficientsRi

0 andb are determined by maximizing the
following Langrangian expression:

under the following conditions:

where C is a penalty for training errors. A positive or

negative value from eq 5 indicates that the vectorx belongs
to the positive or negative class, respectively.

CSVM Methods. Two types of CSVM methods were
used. The first is a “positive majority” CSVM classification
system (PM-CSVM), which classifies a compound asP+ if
the majority of its SVM classification systems classify the
compound asP+.55 A PM-CSVM requires an odd number
of SVM classification systems to prevent ambiguity in its
prediction. The second is a “positive probability” CSVM
classification system (PP-CSVM), which explicitly computes
the probability for a compound to beP+ using the following
formulas:56

where Pr(Si
+|Pi) is the posterior probability that a com-

pound is P+ given the classification result from SVM
classification systemi and whereRi

+ and Ri
- are the

sensitivity and specificity of SVM classification systemi,
respectively. Sensitivity and specificity represent the predic-
tion accuracies ofP+ andP-, respectively. Equation 9 or
10 was used when SVM classification systemi classified
the compound asP+ or P-, respectively. In the absence of
the knowledge about the ratio ofP+ to P- compounds in
the population, the prior probability of a compound to be
P+ was tentatively set at 0.5. Sensitivity and specificity of
SVM classification systemi were estimated by using the
validation method of the descriptor selection process.

To determine an appropriate number of SVM classification
systems for the CSVM methods, the descriptor selection
process was repeated 101 times, producing a pool of SVM
classification systems. SVM classification systems were
randomly selected, with replacement, from the pool of SVM
classification systems to form nine classes of CSVMs, each
containing 11, 21, 31, 41, 51, 61, 71, 81, or 91 SVM
classification systems. This random selection of SVM
classification systems from the pool of SVM classification
systems and construction of CSVMs were repeated 1000
times. Our analysis of these nine CSVM classes showed that
the best accuracies for the two types of CSVM methods were
obtained when at least 81 SVM classification systems were
used to develop CSVMs, and the accuracies roughly level
off at higher numbers of SVM classification systems. Thus,
81 SVM classification systems appear to be the optimum
number of systems for constructing CSVMs, which are used
for developing CSVMs for all of the datasets in this work.

RESULTS

The SVM classification system with the best cross-
validation accuracies was selected from the 81 SVM clas-
sification systems as the “best-trained” single SVM classi-
fication system. This selection method has been used by
several studies that used GA as the descriptor selection
method.57,58 The prediction accuracies of this system were
determined by using the independent validation set described
in the Methods section. A PM-CSVM and a PP-CSVM were
constructed by using the 81 SVM classification systems. The
prediction accuracies of these three systems were determined
by using the independent validation set and are given in Table
2. It is found that both CSVM methods give better accuracies
than the “best-trained” single SVM classification system.
Moreover, PP-CSVM gives similar sensitivities and slightly
better specificities and PM-CSVM gives slightly lower
sensitivities and slightly better specificities than those of
earlier classification systems for the prediction of inhibitors
CYP3A46,12 and CYP2D6.14 Thus, PP-CSVM appears to be
more useful than PM-CSVM for predicting inhibitors and
substrates of P450 isoenzymes.
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The accuracies of PP-CSVM for the prediction of inhibi-
tors of CYP2C9 and substrates of CYP3A4, CYP2D6, and
CYP2C9 are given in Table 3. The prediction accuracies of
these CSVMs are at a similar level as those of the inhibitors
of CYP3A4 and CYP2D6, which suggests that these CSVM
methods, particularly PP-CSVM, are generally useful for
predicting both the inhibitors and the substrates of different
P450 isoenzymes.

DISCUSSION

Overall Prediction Accuracies.The difference between
the specificities of the current CSVMs and those of clas-
sification systems from earlier studies may be due to the
difference in the number ofP- compounds used for training
the classification systems. In our work, the number ofP-
compounds in the training set ranges from 290 to 472,
whereas earlier classification systems were developed by
using 41-145P- compounds. Statistical learning methods
require a large number of compounds for the development
of classification systems. Therefore, it is not surprising that
the methods of the current work, which uses a larger number
of P- compounds, give higher specificities than those of
earlier studies. Another possible reason for the improved
specificities is the use of SVM, which has been found to be
consistently superior to other classification methods in most
classification problems.59-61

For all of the datasets, with the exception of the CYP3A4
substrates/nonsubstrates dataset, the number ofP- com-
pounds is always higher than the number ofP+ compounds.
This may create a bias of the SVM classification systems to
predict unknown compounds asP-, resulting in a higher
number of false negatives. However, previous studies suggest
that SVMs are not significantly affected by unbalanced
datasets,19,62 especially if there are more than 80-100
compounds of each class in the training set.63 All of the

datasets used in this work contain at least 130 compounds
of each class in the training set, and thus, the unbalanced
dataset is not expected to significantly affect the predictive
ability of the SVM classification systems.

Evaluation of Prediction Performance. The results of
our SVM systems were compared with those of several
statistical learning methods including multiple linear regres-
sion, partial least squares, logistic regression, C4.5 decision
tree, andk-nearest neighbors. GA was used to determine the
optimum descriptor subsets for each of these classification
methods by using 30 different random seeds, from which
30 separate classification models were generated for each
method. The prediction accuracies of these classification
models were determined by using the independent validation
set. Table 4 gives the results for CYP3A4 substrates/
nonsubstrates. The accuracies for the other P450 isoenzymes
datasets are similar and, thus, are not given here. It is found
that the SVM classification systems give the highest predic-
tion accuracies when compared with those of other methods.

To determine whether the selected descriptors of the SVM
classification systems include those irrelevant for the predic-
tion of the inhibitors or substrates of the respective enzymes,
10 groups of classification systems were generated by using
the GA-based descriptor selection method. These groups are
SVM100, SVM200, SVM300, SVM400, SVM500, SVM600, SVM700,
SVM800, SVM900, and SVM1000, in which the subscript
denotes the number of descriptors used. Each group contains
30 SVM classification systems. The prediction accuracies
of these SVM classification systems were determined by
using the independent validation sets. Table 5 gives the
results for the CYP3A4 substrates/nonsubstrates, which
shows that prediction accuracies begin to decrease when
more than 400 descriptors are used in a SVM classification
system. This suggests that the maximum number of relevant
descriptors for the CYP3A4 substrates/nonsubstrates dataset

Table 2. Accuracies of the “Best-Trained” Single SVM Classification Systems, PM-CSVM, and PP-CSVM for the Prediction of CYP3A4 and
CYP2D6 Inhibitors/Noninhibitors by Using the Independent Validation Sets

CYP
classification

system TP FN TN FP
sensitivity

(%)
specificity

(%)
concordance

(%)

Matthews
correlation
coefficient

3A4 “best-trained”
single SVM
classification
system

20 5 72 3 80.0 96.0 92.0 0.782

PM-CSVM 21 4 75 0 84.0 100.0 96.0 0.893
PP-CSVM 23 2 73 2 92.0 97.3 96.0 0.893

2D6 “best-trained”
single SVM
classification
system

15 5 77 3 75.0 96.3 92.0 0.742

PM-CSVM 16 4 78 2 80.0 97.5 94.0 0.807
PP-CSVM 18 2 76 4 90.0 95.0 94.0 0.821

Table 3. Accuracies of PP-CSVM for the Prediction of CYP2C9 Inhibitors/Noninhibitors and CYP3A4, CYP2D6, and CYP2C9 Substrates/
Nonsubstrates by Using the Independent Validation Sets

dataset CYP TP FN TN FP
sensitivity

(%)
specificity

(%)
concordance

(%)

Matthews
correlation
coefficient

inhibitors/
noninhibitors

2C9 16 2 79 3 88.9 96.3 95.0 0.835

substrates/ 3A4 55 1 40 4 98.2 90.9 95.0 0.899
nonsubstrates 2D6 28 1 67 4 96.6 94.4 95.0 0.884

2C9 12 2 85 1 85.7 98.8 97.0 0.872
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is around 400. Because the original 81 SVM classification
systems for the CYP3A4 substrates/nonsubstrates dataset
contains 214-402 descriptors, our results seem to suggest
that the original 81 SVM classification systems are unlikely
to contain irrelevant descriptors. Similar conclusions are also
made for the rest of the P450 isoenzymes datasets on the
basis of our computational studies.

It has been shown that chance correlations may occur
during descriptor selection, especially if the number of
descriptors available for selection is large.64,65y randomiza-
tion has been frequently used to determine the probability
of chance correlation during descriptor selection pro-
cesses.66,67 In y randomization, a portion ofP+ compounds
in the training set was randomly selected and converted to
P- compounds. Another portion ofP- compounds was also
randomly selected and converted toP+ compounds. The
ratios ofP+ to P- compounds were kept unchanged during
y randomization. The scrambled training set was then used
for the descriptor selection process. The process of scram-
bling the training set and descriptor selection process was
repeated 81 times. The average Matthews correlation coef-

ficient of these scrambled SVM classification systems
derived by using the independent validation sets was found
to be in the range between 0.189 and 0.288, which is
significantly lower than those of the original SVM clas-
sification systems, which are in the range between 0.783 and
0.852. This suggests that the original SVM classification
systems are relevant and unlikely to arise as a result of chance
correlation.

A frequently used method for checking whether a predic-
tion system is overfitted is to compare the prediction
accuracies determined by using cross-validation methods with
those determined by using independent validation sets.68

Because descriptor selection was performed by using the
modeling testing sets as the cross-validation method, an
overfitted classification system is expected to have a much
higher prediction accuracy for the modeling testing sets than
for the independent validation sets. As shown in Table 6,
the prediction accuracies of the SVM systems based on the
modeling testing sets and those based on independent
validation sets are similar. This suggests that the SVM
classification systems in this work are unlikely to overfit.

Table 4. Average Accuracies of Different Statistical Learning Classification Systems for the Prediction of CYP3A4 Substrates/Nonsubstrates
by Using Independent Validation Sets

classification method sensitivity (%)a specificity (%)a concordance (%)a
Matthews correlation

coefficienta

multiple linear regression 86.1 (3.9) 71.4 (4.4) 79.6 (2.9) 0.586 (0.060)
logistic regression 83.8 (3.9) 71.0 (5.1) 78.1 (3.0) 0.555 (0.063)
partial least squares 79.9 (5.8) 72.5 (5.2) 76.7 (3.7) 0.528 (0.073)
C4.5 decision tree 75.5 (6.8) 66.4 (6.7) 71.5 (4.3) 0.423 (0.087)
k-nearest neighbor 92.4 (2.0) 82.6 (3.4) 88.1 (1.7) 0.759 (0.034)
SVM 98.0 (1.4) 85.3 (3.1) 92.4 (1.2) 0.849 (0.024)

a Numbers in parentheses are the standard deviations.

Table 5. Average Accuracies of 10 Groups of SVM Classification Systems for the Prediction of CYP3A4 Substrates/Nonsubstrates by Using
Independent Validation Sets

number of
descriptors sensitivity (%)a specificity (%)a concordance (%)a

Matthews correlation
coefficient

100 93.0 (3.1) 80.4 (4.4) 87.5 (2.7) 0.747 (0.054)
200 96.7 (2.0) 83.0 (3.3) 90.7 (1.9) 0.814 (0.039)
300 98.0 (1.6) 85.6 (3.6) 92.6 (1.9) 0.853 (0.037)
400 98.0 (1.3) 82.4 (3.4) 91.1 (1.6) 0.825 (0.032)
500 98.2 (1.0) 80.9 (3.1) 90.6 (1.4) 0.815 (0.028)
600 98.6 (0.8) 74.5 (3.3) 88.0 (1.5) 0.769 (0.028)
700 99.3 (0.9) 66.4 (5.4) 84.8 (2.3) 0.715 (0.040)
800 100.0 (0.0) 51.5 (3.1) 78.7 (1.4) 0.611 (0.024)
900 99.9 (0.3) 45.7 (2.4) 76.1 (1.0) 0.565 (0.017)

1000 100.0 (0.0) 37.3 (3.2) 72.4 (1.4) 0.500 (0.026)

a Numbers in parentheses are the standard deviations.

Table 6. Comparison of the Average Accuracies of SVM Classification Systems for the Prediction of Inhibitors/Substrates of Different P450
Isoenzymes by Using Modeling Testing Sets and Independent Validation Sets

modeling testing seta independent validation seta

dataset CYP
sensitivity

(%)
specificity

(%)
concordance

(%)

Matthews
correlation
coefficient

sensitivity
(%)

specificity
(%)

concordance
(%)

Matthews
correlation
coefficient

inhibitors/ 3A4 76.5 (6.2) 98.8 (1.3) 94.3 (0.8) 0.817 (0.026) 82.1 (4.5) 97.9 (1.5) 93.9 (1.3) 0.835 (0.036)
noninhibitors 2D6 79.1 (7.3) 98.5 (1.4) 95.2 (0.8) 0.828 (0.028) 79.3 (5.4) 96.7 (1.6) 93.2 (1.7) 0.783 (0.054)

2C9 81.9 (4.7) 98.8 (1.0) 96.3 (0.6) 0.851 (0.025) 86.4 (5.0) 97.3 (1.3) 95.3 (1.1) 0.842 (0.039)
substrates/ 3A4 96.3 (1.5) 86.7 (2.7) 92.1 (0.8) 0.841 (0.015) 98.0 (1.3) 85.2 (3.0) 92.4 (1.3) 0.849 (0.026)

nonsubstrates 2D6 84.6 (5.0) 98.9 (1.3) 96.0 (0.6) 0.874 (0.018) 86.9 (4.7) 96.9 (1.5) 94.0 (1.7) 0.852 (0.043)
2C9 77.0 (8.2) 98.9 (1.0) 97.0 (0.8) 0.810 (0.047) 72.3 (7.9) 99.2 (0.9) 95.4 (1.1) 0.801 (0.051)

a Values in parentheses are the standard deviations.
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The Selected Descriptors.The majority of the selected
descriptors in our SVM classification systems are composite
descriptors, which can be divided into three groups: 3D-
MoRSE, RDF, and Randic molecular profiles. 3D-MoRSE
descriptors, which are representations of the 3D structure of
a molecule and encode features such as molecular weight,
van der Waals volume, electronegativities, and polarizabili-
ties, have been used for the classification of dopamine D1
and D2 agonists and modeling the binding of steroids to
corticosteroid binding globulin.40 RDF descriptors provide
information about bond lengths, ring types, planar and
nonplanar systems, atom types, and molecular weight and
have been used for pharmacokinetic studies.69 Randic mo-
lecular profiles measure interactions between atoms in a
molecule and encode information on molecular shape, which
is an important factor in ligand-enzyme interactions.
Because shape and chemical complementarity between a
ligand and an enzyme are important for ligand-enzyme
binding, it is not surprising that these three classes of 3D
descriptors, which provide information on hydrophobicity,
electronegativities, polarizabilities, and the shape of a
molecule, are frequently selected by the descriptor selection
process.

Because composite descriptors encode multiple physico-
chemical and structural aspects of the molecule, it is difficult
to extract from these descriptors information about which
specific molecular characteristics are important for the
inhibitors and substrates of these P450 isoenzymes. Nonethe-
less, it is possible to infer some information from noncom-
posite descriptors. As many descriptors are overlapping and
some of them are redundant, it is more appropriate to group
them into classes of descriptors of similar properties and
discuss their contribution to the inhibitors/substrates pre-
dictions at the class level. Table 7 gives the classes of non-
composite descriptors selected by our computations. It is
found that shape is the dominant factor involved in ligand-
P450 isoenzyme interaction. This is not surprising because
shape complementarity is important for ligand-protein
interactions. In addition to the shape descriptors, electrostatic
and hydrophobic interactions are found to be the dominant
forces involved in ligand-P450 isoenzyme interactions.
Descriptors that describe hydrogen bonding also appear to
be important for the ligand-P450 isoenzyme interactions,
which is consistent with the findings that hydrogen bonds
are involved in the ligand-P450 isoenzyme interactions.9

It is also possible to roughly distinguish betweenP+ and
P- compounds and to roughly distinguish between inhibitors
and substrates from the values of six selected descriptors,
S, nHAcc, nHDon, MLOGP, MW, and SPH. These descrip-
tors are representative of the four dominant interaction forces,
electrostatic, hydrogen bond acceptor, hydrogen bond donor
and hydrophobicity, and size and shape of the compounds,

respectively. S is the combined dipolarity/polarizability,
nHAcc and nHDon are the number of acceptor and donor
atoms for hydrogen bonds, respectively, MLOGP is the
Moriguchi Log P,70 MW is the molecular weight, and SPH
is the spherosity. The average values of these four descriptors
for P+ andP- compounds of all of the various datasets are
given in Table 8. Substrates of CYP3A4 are generally larger
in size, less spherical in shape, more hydrophobic, and have
more hydrogen bonding sites than nonsubstrates. Inhibitors
of CYP3A4 are generally less hydrophobic than substrates
but are larger in size and contain more hydrogen bond donors
and acceptors. Substrates of CYP2D6 are generally smaller
in size, more hydrophobic than nonsubstrates, and contain
one hydrogen bond donor. There are only minor differences
between inhibitors and substrates of CYP2D6, which sug-
gests that there is considerable overlap between the inhibitors

Table 7. Important Descriptor Classes Selected for the Prediction of Inhibitors/Substrates of Different P450 Isoenzymes

dataset CYP
electrostatic

(%)
hydrogen bond
acceptors (%)

hydrogen bond
donors (%)

hydrophobic
(%)

shape
(%)

size
(%)

inhibitors/ 3A4 20.4 3.6 3.3 8.8 56.8 7.1
noninhibitors 2D6 20.5 2.4 2.5 10.0 57.1 7.5

2C9 20.1 2.0 2.9 8.8 59.0 7.2
substrates/ 3A4 21.0 2.8 1.9 9.5 57.2 7.5

nonsubstrates 2D6 18.9 3.1 3.5 8.5 59.7 6.3
2C9 19.1 3.5 3.0 9.4 58.2 6.8

Table 8. Differences in the Values of Descriptors Important for
Distinguishing betweenP+ andP- Compounds

average valuea

dataset CYP descriptor P+ P-

inhibitors/ 3A4 S 2.56 (1.24) 2.36 (1.12)
noninhibitors nHAcc 6.47 (4.05) 4.59 (2.64)

nHDon 2.27 (2.44) 1.23 (1.40)
MLogP 1.83 (2.02) 1.96 (2.06)
MW 417 (185) 313 (116)
SPH 0.77 (0.13) 0.77 (0.13)

2D6 S 2.17 (1.00) 2.52 (1.20)
nHAcc 4.57 (2.70) 5.47 (3.48)
nHDon 1.57 (1.81) 1.59 (1.92)
MLogP 2.54 (1.76) 1.70 (2.09)
MW 355 (125) 346 (159)
SPH 0.78 (0.13) 0.77 (0.13)

2C9 S 2.56 (1.21) 2.39 (1.15)
nHAcc 5.31 (2.65) 5.21 (3.50)
nHDon 1.49 (1.52) 1.62 (1.99)
MLogP 1.78 (2.11) 1.96 (2.02)
MW 351 (123) 348 (159)
SPH 0.76 (0.13) 0.78 (0.13)

substrates/ 3A4 S 2.56 (1.15) 2.29 (1.17)
nonsubstrates nHAcc 5.53 (3.45) 4.91 (3.14)

nHDon 1.72 (1.99) 1.44 (1.75)
MLogP 2.20 (1.99) 1.60 (2.06)
MW 379 (157) 315 (137)
SPH 0.76 (0.13) 0.78 (0.13)

2D6 S 2.19 (1.08) 2.53 (1.18)
nHAcc 4.10 (2.13) 5.68 (3.58)
nHDon 1.15 (1.22) 1.76 (2.07)
MLogP 2.51 (1.74) 1.68 (2.11)
MW 320 (100) 360 (166)
SPH 0.78 (0.14) 0.77 (0.13)

2C9 S 2.52 (1.26) 2.41 (1.14)
nHAcc 4.69 (2.52) 5.38 (3.48)
nHDon 1.03 (1.14) 1.73 (2.01)
MLogP 2.05 (2.04) 1.88 (2.05)
MW 326 (112) 354 (160)
SPH 0.75 (0.14) 0.78 (0.13)

a Values in parentheses are the standard deviations.
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and substrates of CYP2D6. Substrates of CYP2C9 generally
are more hydrophobic than inhibitors of CYP2C9 but are
smaller in size and have lesser hydrogen bonding capacity.

CYP3A4 has a relatively large active site that facilitates
weak hydrophobic interactions with its substrates.2,8,11 A
pharmacophoric model of the substrates suggests that there
are four important features: two hydrogen bond acceptors,
one hydrogen bond donor, and one hydrophobic region.71

Some of the descriptor classes frequently selected by the
SVM classification systems for the prediction of substrates
and nonsubstrates of CYP3A4 are related to the hydropho-
bicity and hydrogen bonding ability of the molecule.
Examples of descriptors in these classes include ARR, which
is the aromatic ratio; aaCH and aasC, which are electroto-
pological descriptors for carbons in aromatic rings; nHAcc;
and nHDon. The differences in the distribution of intermo-
lecular forces between inhibitors and substrates of CYP3A4
suggest that the inhibitors have less electrostatic and
hydrophobic interactions and more hydrogen bonding at the
binding site than the substrates.

The pharmacophoric model for substrates of CYP2D6
consists of a basic nitrogen atom and a flat hydrophobic
region.5,13 Some of the frequently selected descriptor classes
by SVM classification systems for predicting substrates and
nonsubstrates of CYP2D6 match this model. Examples of
descriptors in these classes include MAXDP, which is the
maximal electrotopological positive variation topological
descriptor and is related to the electrophilicity of the
molecule; nN, which is the number of nitrogen atoms; and
BLI, which is the Kier benzene-likeness index. These
descriptor classes are also selected by the SVM classification
systems for predicting inhibitors and noninhibitors of CYP2D6.
However, differences in the distribution of intermolecular
forces between inhibitors of CYP2D6 suggest that the
inhibitors may have increased electrostatic and hydrophobic
interactions at the active site. This is consistent with the
findings from pharmacophoric studies of inhibitors of
CYP2D6 which suggests that the inhibitors have an ad-
ditional region in which functional groups with lone pairs
enhance inhibitory potency and a region for hydrophobic
groups.5

Descriptors encoding aromaticity, polarity, and hydrogen
bond donors are frequently selected by SVM classification
systems for predicting substrates and nonsubstrates of
CYP2C9. These include aasC, which is the electrotopological
state atom index for aromatic carbons; MAXDN, which is
the maximal electrotopological negative variation topological
descriptor and is related to the nucleophilicity of the
molecule; and nHDon. These selected descriptors are con-
sistent with the findings that the substrates of CYP2C9 are
primarily polar compounds that contain an aromatic group
and that drug-CYP2C9 interaction is mediated by both
hydrogen bonding9 andπ-π interactions at the binding site.13

The differences in the distribution of intermolecular forces
between inhibitors and substrates of CYP2C9 suggest that
the inhibitors have fewer hydrogen bonds but increased
electrostatic interactions at the active site compared to the
substrates.

Potential Training Errors and Misclassified Com-
pounds.In this work, noninhibitors and nonsubstrates were
selected from those compounds without a report identifying
them as an inhibitor or a substrate. There is also a certain

level of overlapping between noninhibitors of different CYP
subtypes, between noninhibitors and nonsubstrates of a
specific CYP subtype, and between noninhibitors and
substrates of a particular CYP subtype. A potential problem
with this method is that a small number of true inhibitors or
substrates may be selected as noninhibitors or nonsubstrates
(false negatives). The extent of training errors caused by false
negatives can be roughly estimated by using experimentally
confirmed noninhibitors/nonsubstrates. However, there is
only a limited number of experimentally confirmed nonin-
hibitors/nonsubstrates. In the CYP3A4 substrate/nonsubstrate
validation set, only irbesartan is a known nonsubstrate.26 In
the CYP2C9 inhibitor/noninhibitor validation set, only re-
boxetine is experimentally determined to be a noninhibitor.26

In the CYP2D6 substrate/nonsubstrate validation set, only
nilvadipine is a known nonsubstrate.26 In the CYP2D6
inhibitor/noninhibitor validation set, only gatifloxacin is a
known noninhibitor.26 All of these compounds, except
irbesartan, were correctly predicted by the CSVMs to be
noninhibitors/nonsubstrates. These results, together with the
reported high accuracies of the SVM classification systems
for other systems,21,72 suggest that by using soft-margin
SVM,52 the training errors caused by false negatives can be
kept at a minimum.

Table 9 gives the list of compounds misclassified by more
than 50% of the SVM classification systems for each dataset.
A possible reason for the misclassification of some of these
compounds is that some descriptor subsets may be inadequate
to properly describe these compounds. Examples of these
compounds are carbamazepine; chlorphenamine; cinnarizine;
doxepin; methadone; olanzapine and zuclopenthixol, which
contain two aromatic rings separated by an atom; and
irbesartan and lorsartan, which contain a highly polar

Table 9. List of Misclassified Compounds in This Worka

dataset CYP misclassified compounds

inhibitors/ 3A4 pilocarpine (P+)
noninhibitors stiripentol (P+)

olanzapine (P+)
cyclophosphamide (P+)

2D6 lobeline (P+)
propafenone (P+)
reboxetine (P+)
sulconazole (P+)
doxepin (P+)
isoconazole (P-)

2C9 stiripentol (P-)
sulconazole (P+)
isoconazole (P-)

substrates/ 3A4 chlorphenamine (P+)
nonsubstrates flurithromycin (P-)

irbesartan (P-)
oxomemazine (P-)
pargyline (P-)
pentazocine (P-)
sulindac (P-)

2D6 carbamazepine (P+)
cinnarizine (P+)
zuclopenthixol (P+)
domperidone (P-)
emedastine (P-)

2C9 cinnarizine (P+)
losartan (P+)
methadone (P+)

a All of the compounds misclassified by more than 50% of the 81
classification systems are included.

CYTOCHROME INHIBITORS AND SUBSTRATES J. Chem. Inf. Model., Vol. 45, No. 4, 2005989



tetrazole ring. Among the misclassified noninhibitors or
nonsubstrates, only irbesartan is a known nonsubstrate.26

Oxomemazine is a known inducer and flurithromycin is a
known inhibitor of CYP3A4.27 Thus, it may be possible that
both oxomemazine and flurithromycin are actually false
negatives, as more than 60% of the CYP3A4 inhibitors in
the dataset are both CYP3A4 inhibitors and substrates.
Similarly, doxepin, which is a known CYP2D6 substrate,27

may also be a false negative, as nearly 50% of the CYP2D6
substrates are both CYP2D6 substrates and inhibitors.

Comparison of the Two CSVM Systems.The results
from our studies show that PP-CSVM gives slightly better
accuracies than PM-CSVM. This is because individual SVM
classification systems in PP-CSVM are ranked according to
their accuracies and SVM classification systems with better
accuracies have more influence on the final classification of
a compound. This is different from PM-CSVM where all
individual SVM classification systems, regardless of their
accuracies, contribute equally to the final classification of a
compound. Thus, it is expected that PP-CSVM, by reducing
the contribution from SVM classification systems with lower
accuracies, gives better or at least equal accuracies to those
of PM-CSVM.

There are two potential problems with PP-CSVM. The first
is that the prior probability, which was tentatively set at 0.5,
may not always be the most appropriate value for represent-
ing the ratio ofP+ to P- compounds in the population.
This problem can be partially solved by using a large number
of individual SVM classification systems to construct a
CSVM so that the influence of prior probability on the final
classification result is reduced. In this study, we have found
that the same classification results were obtained even when
the prior probability was varied from 0.05 to 0.95 when 81
SVM classification systems were used to construct the
CSVM. The second problem is the difficulty in determining
the true sensitivities and specificities of the individual SVM
classification systems, which are required by eqs 9 and 10.
In the present study, sensitivities and specificities of the SVM
classification systems were estimated by using the modeling
testing set and have a mean absolute difference of 2.0% and
3.4%, respectively, from those derived by using the inde-
pendent validation set. If sensitivities and specificities of the
individual SVM classification systems derived from the
independent validation set are used in PP-CSVM, the
resultant CSVMs are found to give slightly higher accuracies,
suggesting a possible need for a more accurate estimate of
the performance of some SVM classification systems.

CONCLUSION

Results from this work are consistent with earlier studies
that suggest that consensus classification systems give better
predictive performance than single classification systems. All
of the PP-CSVMs for predicting inhibitors/substrates of the
three P450 isoenzymes, CYP3A4, CYP2D6, and CYP2C9,
show high prediction accuracies, with improved specificities
compared to those of earlier studies. A potential problem of
this work is that the selection criteria for noninhibitors and
nonsubstrates may result in a small number of false negatives.
However, the use of soft-margin SVMs in this work can help
to achieve a balance between training errors and prediction
accuracies. The accuracies of the SVM classification systems

may also be improved by the addition of a correction factor
to the SVM decision function. The present CSVMs are only
suitable for distinguishing between inhibitors and noninhibi-
tors or substrates and nonsubstrates. With the availability of
more detailed experimental data, it is possible to use
multiclass SVMs73 for classification of noninhibitors, weak
inhibitors, and strong inhibitors or SVM regression74 for
quantitative prediction of the Ki values of inhibitors. Our
computational results suggest that PP-CSVM is better than
PM-CSVM for constructing CSVMs for classifying inhibitors
and substrates of various P450 isoenzymes. Thus, CSVMs,
particularly PP-CSVM, are potentially useful for developing
filters for the prediction of inhibitors and substrates of P450
isoenzymes.
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(39) Rücker, G.; Ru¨cker, C. Counts of all walks as atomic and molecular
descriptors.J. Chem. Inf. Comput. Sci.1993, 33 (5), 683-695.

(40) Schuur, J. H.; Setzer, P.; Gasteiger, J. The coding of the three-
dimensional structure of molecules by molecular transforms and its
application to structure-spectra correlations and studies of biological
activity. J. Chem. Inf. Comput. Sci.1996, 36 (2), 334-344.

(41) Pearlman, R. S.; Smith, K. M. Metric validation and the receptor-
relevant subspace concept.J. Chem. Inf. Comput. Sci.1999, 39 (1),
28-35.

(42) Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani,
A. MS-WHIM, new 3D theoretical descriptors derived from molecular
surface properties: A comparative 3D QSAR study in a series of
steroids.J. Comput.-Aided Mol. Des.1997, 11 (1), 79-92.

(43) Galvez, J.; Garcia, R.; Salabert, M. T.; Soler, R. Charge indexes. New
topological descriptors.J. Chem. Inf. Comput. Sci.1994, 34 (3), 520-
525.

(44) Consonni, V.; Todeschini, R.; Pavan, M. Structure/Response correla-
tions and similarity/diversity analysis by GETAWAY descriptors. 1.
Theory of the novel 3D molecular descriptors.J. Chem. Inf. Comput.
Sci.2002, 42 (3), 682-692.

(45) Randic, M. Graph theoretical approach to local and overall aromaticity
of benzenoid hydrocarbons.Tetrahedron1975, 31 (11-12), 1477-
1481.

(46) Randic, M. Molecular profiles. Novel geometry-dependent molecular
descriptors.New J. Chem.1995, 19, 781-791.

(47) Kier, L. B.; Hall, L. H. Molecular structure description: The
electrotopological state; Academic Press: San Diego, CA, 1999.

(48) Platts, J. A.; Butina, D.; Abraham, M. H.; Hersey, A. Estimation of
molecular free energy relation descriptors using a group contribution
approach.J. Chem. Inf. Comput. Sci.1999, 39 (5), 835-845.

(49) Lucasius, C. B.; Kateman, G. Understanding and using genetic
algorithms Part 1. Concepts, properties and context.Chemom. Intell.
Lab. Syst.1993, 19 (1), 1-33.

(50) Livingstone, D. J. Data pretreatment. InData analysis for chemists:
Applications to QSAR and chemical product design; Oxford University
Press: Oxford, 1995; pp 48-64.

(51) Matthews, B. W. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme.Biochim. Biophys. Acta1975, 405
(2), 442-451.

(52) Vapnik, V. N.The nature of statistical learning theory. Springer: New
York, 1995.

(53) Burges, C. J. C. A tutorial on support vector machines for pattern
recognition.Data Min. Knowledge DiscoVery 1998, 2 (2), 127-167.

(54) Evgeniou, T.; Pontil, M. Support vector machines: theory and
applications. InMachine learning and its applications. AdVanced
lectures; Paliouras, G., Karkaletsis, V., Spyropoulos, C. D., Eds.;
Springer: New York, 2001; pp 249-257.

(55) Eriksson, L.; Jaworska, J.; Cronin, M.; Worth, A.; Gramatica, P.;
McDowell, R. Methods for reliability and uncertainty assessment and
for applicability evaluations of classification- and regression-based
QSARs.EnViron. Health Perspect.2003, 111 (10), 1361-1375.

(56) McDowell, R.; Jaworska, J. Bayesian analysis and inference from
QSAR predictive model results.SAR QSAR EnViron. Res.2002, 13,
111-125.

(57) Sutherland, J. J.; Weaver, D. F. Development of quantitative structure-
activity relationships and classification models for anticonvulsant
activity of hydantoin analogues.J. Chem. Inf. Comput. Sci.2003, 43
(3), 1028-1036.

(58) Yap, C. W.; Chen, Y. Z. Quantitative structure-pharmacokinetic
relationships for drug distribution properties by using general regres-
sion neural network.J. Pharm. Sci.2005, 94 (1), 153-168.

(59) Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by
machine learning: support vector machines for pharmaceutical data
analysis.Comput. Chem.2001, 26 (1), 5-14.

(60) Czerminski, R.; Yasri, A.; Hartsough, D. Use of support vector machine
in pattern classification: Application to QSAR studies.Quant. Struct.-
Act. Relat.2001, 20 (3), 227-240.

(61) Meyer, D.; Leischa, F.; Hornik, K. The support vector machine under
test.Neurocomputing2003, 55 (1-2), 169-186.

(62) Lessmann, S. Solving unbalanced classification problems with support
vector machines.Proceedings of the International Conference on
Artificial Intelligence, IC-AI’04 2004; pp 214-220.

(63) Han, L. Y.; Cai, C. Z.; Lo, S. L.; Chung, M. C. M.; Chen, Y. Z.
Prediction of RNA-binding proteins from primary sequence by support
vector machine approach.RNA2004, 10 (3), 355-368.

(64) Topliss, J. G.; Edwards, R. P. Chance factors in studies of quantitative
structure-activity relationships.J. Med. Chem.1979, 22 (10), 1238-
1244.

(65) Jouan-Rimbaud, D.; Massart, D. L.; de Noord, O. E. Random
correlation in variable selection for multivariate calibration with a
genetic algorithm.Chemom. Intell. Lab. Syst.1996, 35 (2), 213-220.

(66) Manly, B. F. J.Randomization bootstrap and Monte Carlo methods
in biology, 2nd ed.; Chapman and Hall: London, 1997.

(67) Leardia, R.; Gonza´lez, A. L. Genetic algorithms applied to feature
selection in PLS regression: How and when to use them.Chemom.
Intell. Lab. Syst.1998, 41 (2), 195-207.

(68) Hawkins, D. M. The problem of overfitting.J. Chem. Inf. Comput.
Sci.2004, 44 (1), 1-12.

(69) Wegner, J. K.; Fro¨hlich, H.; Zell, A. Feature selection for descriptor
based classification models. 2. Human intestinal absorption (HIA).J.
Chem. Inf. Comput. Sci.2004, 44 (3), 931-939.

(70) Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple
method of calculating octanol/water partition coefficient.Chem. Pharm.
Bull. 1992, 40 (1), 127-130.

CYTOCHROME INHIBITORS AND SUBSTRATES J. Chem. Inf. Model., Vol. 45, No. 4, 2005991



(71) Ekins, S.; Bravi, G.; Wikel, J. H.; Wrighton, S. A. Three-dimensional-
quantitative structure activity relationship analysis of cytochrome P-450
3A4 substrates.J. Pharmacol. Exp. Ther.1999, 291 (1), 424-433.

(72) Sorich, M. J.; Miners, J. O.; McKinnon, R. A.; Winkler, D. A.; Burden,
F. R.; Smith, P. A. Comparison of linear and nonlinear classification
algorithms for the prediction of drug and chemical metabolism by
human UDP-glucuronosyltransferase isoforms.J. Chem. Inf. Comput.
Sci.2003, 43 (6), 2019-2024.

(73) Angulo, C.; Parra, X.; Catala, A. K. SVCR. A support vector machine
for multi-class classification.Neurocomputing2003, 55 (1-2), 57-
77.

(74) Smola, A. J.; Scholkopf, B. InA tutorial on supportVector regression,
NeuroCOLT2 Technical Report Series.

CI0500536

992 J. Chem. Inf. Model., Vol. 45, No. 4, 2005 YAP AND CHEN


