
BIOINFORMATICS Vol. 17 Suppl. 1 2001
Pages S316–S322

Molecular classification of multiple tumor types
Chen-Hsiang Yeang, Sridhar Ramaswamy, Pablo Tamayo, Sayan
Mukherjee, Ryan M. Rifkin, Michael Angelo, Michael Reich, Eric
Lander, Jill Mesirov and Todd Golub

Center for Genome Research, MIT Whitehead Institute, One Kendall Square,
Cambridge, MA 02139, USA

Received on February 5, 2001; revised and accepted on April 2, 2001

ABSTRACT
Using gene expression data to classify tumor types is a
very promising tool in cancer diagnosis. Previous works
show several pairs of tumor types can be successfully
distinguished by their gene expression patterns (Golub
et al. (1999), Ben-Dor et al. (2000), Alizadeh et al. (2000)).
However, the simultaneous classification across a het-
erogeneous set of tumor types has not been well studied
yet. We obtained 190 samples from 14 tumor classes
and generated a combined expression dataset containing
16063 genes for each of those samples. We performed
multi-class classification by combining the outputs of
binary classifiers. Three binary classifiers (k-nearest
neighbors, weighted voting, and support vector machines)
were applied in conjunction with three combination sce-
narios (one-vs-all, all-pairs, hierarchical partitioning). We
achieved the best cross validation error rate of 18.75%
and the best test error rate of 21.74% by using the
one-vs-all support vector machine algorithm. The results
demonstrate the feasibility of performing clinically useful
classification from samples of multiple tumor types.
Contact: chyeang@mit.edu

INTRODUCTION
Modern cancer treatment is based on the accurate determi-
nation of a tumor’s site of origin. In general, pathologists
utilize a variety of microscopic, genetic, and immunologic
techniques to make site-specific diagnosis. However, cur-
rent techniques are limited in their ability to distinguish
different tumor types. Many specimens are incorrectly
classified due to their morphological similarity to other
tumor types. Moreover, a large number of samples remain
poorly differentiated and difficult to relate to any known
tumor types including their sites of origin.
The emerging technology of gene expression analysis
is a promising tool for cancer diagnosis. In principle,
tumor gene expression profiles might serve as molecular
fingerprints that would allow for the accurate classi-
fication of tumors. The underlying assumption is that
samples from the same tumor class share some expression

profile patterns unique to their class. In addition, these
molecular fingerprints might reveal newer taxonomies
that previously have not readily been appreciated.
Previous works have demonstrated successful distinction
of several tumor types from expression profiles. For
example, leukemias arising from different precursors
(Golub et al. (1999)) and B-cell lymphoma (Alizadeh
et al. (2000)). Low error rates (0-10%) are achieved in
these morphological and lineage classifications. However,
these works only tackle binary classification problems.
As there are over a hundred types of cancer (Hanahan &
Weinberg (2000)) and potentially even more subtypes,
for any practical applications it is essential to develop
multiclass methodologies for molecular classification.
By extending to simultaneous classifications of multiple
tumor types, the problem becomes intrinsically more
difficult. As there is only one positive class (the sample’s
true class) but many negative classes (all other classes),
misclassifications are more likely to occur due to the noise
or variations of the expression data. The resources and
time required for collecting and genotyping specimens
limit the number of samples in each class, which makes
statistical inference very difficult.
In this paper we tackle the problem of cancer classifica-
tion in the context of multiple tumor types. We applied
the output coding scheme (Dietterich & Bakiri (1995),
Allwein et al. (2000)) which combines binary classifiers
to perform multiclass prediction. Section 2 describes
the binary classifiers and combination methods we used.
Section 3 describes the classification outcome on tumor
dataset and discusses the results. Section 4 draws conclu-
sions and points out the current and future directions with
regard to this project.

MULTICLASS CLASSIFICATION
Tumor type classification can be posed as a multi-
class prediction problem in machine learning. Let
S = {(x1, y1), ..., (xm, ym)} be a set of m training samples
where the xi ∈ X is the input of the i th sample (in
this case, the expression profile of 16063 genes) and

S316 c© Oxford University Press 2001



Molecular classification

yi ∈ Y= {1, 2, ..., k} is its multiclass label (in this case,
the tumor class). A multiclass classifier is a function
F : X → Y which maps an instance x into a label F(x).
Two approaches are commonly used to solve this prob-
lem. One approach is to generate the function F directly,
for example, decision trees (Breiman (1984)), naive
Bayes algorithm (Duda (2001)) or k-nearest neighbors
(Duda (2001)). The other approach is to construct F by
combining a number of binary classifiers. Many binary
classifiers such as weighted voting (Golub et al. (1999)),
support vector machines (Vapnik (1998)), and multi-layer
perceptrons (Minsky (1969)), are difficult to extend into
multiclass versions directly. Inspired by the satisfactory
performance of binary classifiers in tumor classification
we decided to adopt the second approach.
Among the 16063 genes, usually only a small portion
of them are related to the distinction of tumor classes.
Therefore, we want to choose a subset of genes based on
the strength of their correlation to separate tumor classes.
This procedure is called feature selection (here we define
each gene as a feature). We used the feature selection
algorithm which was developed in our previous work
(Golub et al. (1999)). Let c be a (binary) class vector
and g be the expression vector of a gene over m training
samples. Let µ1 and µ2 be the means of g within the
samples of classes 1 and 2, and σ1 and σ2 be the standard
deviations of g within the samples of classes 1 and 2. We
then define P(g, c) = (µ1−µ2)

(σ1+σ2)
to be the signal-to-noise

ratio of g with respect to class vector c. This quantity
captures the separation between two classes and the
variation within individual classes. Figure 1 illustrates
the signal-to-noise ratio for binary class prediction. An
“ideal” marker gene expression profile is a binary vector
which is 1 among all the samples in class A and 0 among
all the samples in class B (or vice versa). This profile does
not happen since the reading of microarray experiments
is continuous. We are looking for “good” marker genes
which are close to the binary expression profile. The
signal-to-noise ratio measures how well the expression
profile of a real gene approximates the ideal marker gene
profile. The top genes in terms of the absolute values
of the signal-to-noise ratio are chosen to build binary
classifiers.

Binary classifiers
The weighted voting (WV) algorithm directly applies the
signal-to-noise ratio to perform binary classification. For
a chosen feature of a test sample it measures its distance
with respect to the decision boundary b = 1

2 (µ1 + µ2),
which is located halfway between the average expression
levels of two classes. If the value of this feature falls on
one side of the boundary, a vote is added to the corre-
sponding class. The vote V = P(g, c)(x − b) is weighted

Fig. 1. Illustration of the signal-to-noise metric.

by the distance between the feature value and the decision
boundary and the signal-to-noise ratio of this feature
determined by the training set. The vote for each class
is computed by summing up the weighted votes made
by selected features for this class. The weighted-voting
algorithm with the signal-to-noise ratio metric is very
similar to Bayesian binary detection under the assumption
of a Gaussian distribution within each class (Slonim et al.
(2000)). In Bayesian detection the discriminant function
is V = (

µ1−µ2
σ 2 )(x − b) assuming that the within-class

variances σ 2 of classes 1 and 2 are identical.
We are interested not only in predicting class labels but
also in the confidence of the prediction. To fulfill this
requirement the output of the binary classifier is a real
number instead of a binary value. The sign of the output
denotes the class label, whereas its absolute value denotes
the confidence of prediction. In the weighted voting
algorithm the confidence value is c = Vwin

(Vwin+Vlose)
, where

Vwin is the overall vote acquired by the winnning class
and Vlose is the overall vote acquired by the losing class.
The k-nearest neighbors (kN N ) algorithm is a simple
but effective classification algorithm. It is widely used
in machine learning and has numerous variations (Duda
(2001)). Given a test sample of unknown label, it finds
the k nearest neighbors in the training set and assigns the
label of the test sample according to the labels of those
neighbors. The vote from each neighbor is weighted by
its rank in terms of the distance to the test sample: the
nearest neighbor’s vote is multiplied by 1, the second
nearest neighbor’s vote is multiplied by 1

2 , and so on.
This weighting scheme requires at least 3 consensus
votes against the nearest neighbor in order to overturn the
decision drawn from it.
The confidence values of the kN N algorithm are related
to the relative strength of the weighted votes for each
class. If the vote for class 1 dominates the vote for class
2 (e.g. all the k nearest neighbors belong to class 1),

S317



C.-H.Yeang et al.

then the confidence of choosing class 1 as the predicted
label is high. We use both the normalized vote for the
winning class ( Vwin

(Vwin+Vlose)
) and the negative entropy of

the normalized votes (1 − H(
Vwin

(Vwin+Vlose)
,

Vlose
(Vwin+Vlose)

)) as
confidence values, but only report the results based on the
negative entropy confidence.
The support vector machine (SVM, Vapnik (1998)) is
one of the most powerful supervised learning algorithms.
It finds a hyperplane f (x) = w · x + b which separates
positive and negative training samples and maximizes the
margin between the samples and the hyperplane (recall
x is the input data and y is the class label). This task
can be formulated as an optimization problem: minimize
‖w‖2 subject to the constraints yi(xi · w + b) − 1 ≥ 0∀i .
The discriminant function can be written as the follow-
ing form: f (x)=∑

i wi yi(x · xi)+b, where wi ’s and b
can be obtained by solving the quadratic programming
problem. An important characteristic is that only the
training samples which are misclassified or lie between
the hyperplanes (x · w + b) = +1 and (x · w + b) = −1
contribute to the non-zero terms wi . These samples are
called the “support vectors” of the predictor. Only the
support vectors are relevant in classification.
The output of the predictor f (x) can be used as
a confidence value. It is the margin between the
sample and the decision hyperplane (normalized by

1
‖w‖ ). A loss function is a function of margin val-
ues. A commonly used loss function in SVM is the
hinge loss: L(x, y) = (1 − y(w · x) + b)+, where
(z)+ = max{z, 0}. When the sample falls out of the
region y(x · w+b) − 1 > 0, the loss is 0, otherwise the
loss is proportional to its distance with respect to the
decision boundary.

Combination methods
Two approaches are commonly used in combining
the binary classifiers to perform multiclass predic-
tion. The one-vs-all approach builds k (the number
of classes) binary classifiers which distinguish one
class from all the other classes lumped together. For
a test sample x the binary classifier outputs form a
k-vector f (x) = (f1(x), ..., fk(x)). If fi(x) is a real
number (i.e. predicted label with confidence value),
then the predictor finds the maximum of fi (x) and
assigns the sample to the corresponding class label:
F(x) = arg maxi fi(x). Similarly, the all-pairs approach
builds k(k−1)

2 binary classifiers which distinguish a pair
of classes: f (x) = (f1,2(x), ..., fk−1,k(x)). For each class
there are k relevant binary classifiers which distinguish
it from the other classes. The confidence values of those
k binary classifiers are summed up, and the class with
the greatest overall confidence is the winning class:
F(x) = arg maxi

∑
j fi, j (x).

Both the one-vs-all and the all-pairs schemes are special
cases of a general output coding scheme (Dietterich &
Bakiri (1995), Allwein et al. (2000)). A code matrix
M∈ {−1, 0, 1}k×l is a k by l binary matrix, where k is the
number of classes and l is the number of binary classifiers
used to construct F . Each column in M defines a binary
partition on class labels. It puts some classes at one side
of the boundary (+1), some classes at the other side of the
boundary (-1), and ignores the remaining classes (0). A
binary classifier ft is built on a partition of the training
examples. Each row in M is called a codeword of a class.
It is the binary classifiers outputs of an “ideal” sample
from a given class. The binary classifier outputs of an
unknown sample are compared to each codeword in M.
The class whose codeword has the minimum distance
with respect to binary classifier outputs is assigned to the
sample. In formal notations,

F(x) = arg min
r

d(M(r), f(x)) (1)

d(M(r), f(x)) is the distance between a codeword M(r)
and the binary classifier outputs f(x). If the binary clas-
sifiers output only predicted labels, then the Hamming
distance is used:

dH (M(r),f(x)) =
l∑

s=1

1

2
(1 − M(r, s)fs(x)) (2)

The Hamming distance simply counts the number of
bits in M(r) and f(x) which disagree with each other.
Since the the code matrix entries can have three values
({−1, 0, +1}) but the predictor outputs can only have two
values ({−1, +1}), the definition is slightly different from
the conventional Hamming distance. When the codeword
has value +1 or -1 on a given bit, the Hammin distance is
increased by one if it is different from the binary predictor
output. This is the case when the corresponding class is
involved with the binary classifier. When the codeword has
value 0 on this bit, the Hamming distance is increased by
one half no matter what the binary classifier output is. This
is the case when the corresponding class is not involved
with the binary classifier on this bit (for instance, class 3
is not classified by the pairwise predictor f1,2(x)).
If the binary classifier outputs a real number, then the
distance metric should take the confidence of the outputs
into account. Allwein and Schapire introduced the loss-
based distance between a codeword and real-number
classifier outputs (Allwein et al. (2000)). It is the sum of
losses over the outputs of binary classifiers:

dL(M(r),f(x)) =
l∑

s=1

L(M(r, s)fs(x)). (3)

The loss function is designed to penalize misclassification
and takes the (continuous) classifier output into account.

S318



Molecular classification

For the weighted voting and kN N algorithms we define
the loss as one minus the confidence value, whereas for
SVM we apply the hinge loss function.

Hierarchical partitioning algorithm
Constructing the code matrix is the main issue for the
output coding scheme. In principle, a good code matrix
should satisfy two criteria: the Hamming distances be-
tween row vectors should be large enough so that errors
can be corrected, and the error rate made by each binary
classifier is low. There are several previous works on
designing the code matrix, for example, linear error-
correcting (Dietterich & Bakiri (1995)), random codes
(Dietterich & Bakiri (1991)), and continuous-valued code
matrix (Crammer & Singer (2000)). In this paper, we
develop an algorithm which incorporates the partitions of
low error rates and constructs a decision-tree-like classi-
fier. We call this algorithm the hierarchical partitioning.
The training procedure starts by searching the binary
partitions on class labels that yield low (cross-validation)
error rates. Instead of exhaustively searching for all 2k

partitions, we only look at partitions which assign one,
two or three classes on one side and the remaining classes
on the other side.
If the code matrix contains only the partitions of low error
rates it may not be able to decipher all classes uniquely:
multiple classes may have identical row vector. Therefore,
we need to build another code matrix to distinguish the
classes which cannot be uniquely decoded at the current
level. The procedures of searching valid partitions and
building the code matrix continue recursively until all
class labels are uniquely deciphered. The classifier built
by this method is a hierarchy of multiclass classifiers.
The classification procedure resembles a decision-tree.
Starting from the root the test sample is fed into the
multiclass predictor associated with the node. If the pre-
dicted label is non-degenerate (i.e. there exists a unique
codeword for this class), then the classification procedure
is completed. If the predicted label is degenerate (several
classes have the same codeword), then the predictor at
the next level is applied to the sample. The classification
procedure continues until the sample is assigned to a
unique label. Figure 2 illustrates how the algorithm works
with a simplified 4-class problem. The root contains all
class labels and a code matrix which partitions them into
subsets. Each child contains the labels in one subset. If
the node is not a leaf (i.e., it contains multiple classes),
then a code matrix is applied to divide the classes into
smaller subsets. In this example the code matrix at the
root uniquely distinguishes classes 1 and 2 but lumps
classes 3 and 4 together. The code matrix at the second
level (a single-column matrix) then separates classes 3
and 4.

+1
-1
-1
-1

-1
+1
-1
-1

-1
-1
+1
+1

class 1
class 2
class 3
class 4

class 1
class 2
class 3
class 4

0
0
+1
-1

class 1 class 2

class 3 class 4

Fig. 2. Hierarchical partitions of a 4-class problem.

RESULTS AND DISCUSSION
Datasets
We collected 190 human tumor samples spanning
14 cancer types. These tumors underwent extensive
histopathologic review in order to classify them using
traditional methods. This relatively large dataset provides
a very useful resource to explore the feasibility of using
gene expression to make multiclass distinctions in human
cancer. For details about the experimental protocol see
the description in the protocols sections of this web site
http://www.genome.wi.mit.edu/MPR/. RNA from each
sample was hybridized overnight to Affymetrix high-
density oligonucleotide microarrays containing probes for
16063 known human genes and expressed sequence tags
(ESTs). The arrays were scanned with a Hewlett-Packard
scanner, and the expression levels for each gene calculated
using Affymetrix GENECHIP analysis software. The data
obtained from the arrays was used without re-scaling.
We divided the samples into two datasets: the training
set contained 144 samples and the test set contained 46
samples. The compositions of samples from each class
are similar in both datasets. Table 1 lists tumor classes
and number of samples from each class.

Classification results
We applied three binary classifiers (weighted voting,
k-nearest neighbors, support vector machines) in conjunc-
tion with two combination scenarios (one-vs-all, all-pairs)
on the tumor dataset. The hierarchical partitioning method
with the k-nearest neighbors algorithm was also applied.
For the weighted voting and kN N features were selected
according to the signal-to-noise ratio introduced earlier.
Each binary classifier was built on a fixed number of
features (genes). The classification results of using 20, 40,
50, 100 and 200 features were reported. SVM chose all
genes in the dataset thus feature selection was not applied.

S319



C.-H.Yeang et al.

Table 1. Tumor classes.

Index Tumor type Abbr. # training # test

0 Breast B 8 3
1 Prostate P 8 2
2 Lung L 8 3
3 Colorectal CR 8 5
4 Lymphoma Ly 16 6
5 Bladder BL 8 3
6 Melanoma M 8 2
7 Uterus U 8 2
8 Leukemia Le 24 6
9 Renal R 8 3
10 Pancreas PA 8 3
11 Ovary Ov 8 3
12 Mesothelioma Ms 8 3
13 Brain C 16 4

Table 2 shows the leave-one-out cross validation errors for
various methods on the training dataset (144 samples, 14
classes). The one-vs-all SVM outperformed other meth-
ods significantly: 27 errors out of 144 samples (18.75%).
The one-vs-all kN N with 100 features achieved the
second best: 39 errors out of 144 samples (27.08%).
There are three interesting observations in comparing
the outcomes of various classifiers. First, the average
performance of kN N is better than the weighted voting.
However, given a fixed feature number kN N does not
necessarily outperform the weighted voting. Second,
one-vs-all methods tend to achieve lower error rates than
all-pairs methods. This is mainly because the binary
classifiers in the all-pairs scenario were built from fewer
examples than the classifiers in the one-vs-all scenario.
In the one-vs-all method, each binary classifier uses all
the training samples, whereas in the all-pairs method,
the pairwise classifier is trained only on the samples
with relevant class labels. The small training set makes
the pairwise predictors subject to overfitting. Moreover,
irrelevant classifiers in the all-pairs method add extra
noise. In addition, for a given sample only k (the number
of classes) binary classifiers are relevant to its true label.
All the other classifiers generate incorrect answers no
matter what the outputs are. Third, there is no clear
relation between feature numbers and error rates for the
weighted voting and kN N algorithms (at least from the
five feature numbers reported here). Unlike SVM, the
weighted voting and kN N do not gain by adding more
features.
Table 3 shows the prediction outcomes on an inde-

pendent test set of 46 samples. One-vs-all SVM again
outperforms other methods: 10 errors out of 46 samples
(21.74%). The second best is all-pairs kN N with 20 or 40
features: 16 errors out of 46 samples (34.78%). In contrast
to cross-validation results, kN N is significantly better
than the weighted voting. Furthermore, all-pairs methods

Table 2. Cross-validation errors, 144 samples.

# features WV KNN SVM
OA AP OA AP OA AP

20 51 45 52 43 - -
40 45 48 49 51 - -
50 44 48 48 49 - -
100 48 54 39 49 - -
200 48 54 40 47 - -
All - - - - 27 61

Table 3. Test errors, 46 samples.

# features WV KNN SVM
OA AP OA AP HP OA AP

20 23 20 18 16 17 - -
40 24 22 22 16 25 - -
50 26 22 18 17 25 - -
100 25 25 21 18 25 - -
200 25 25 17 18 25 - -
All - - - - - 10 21

tend to outperform one-vs-all methods with fixed feature
numbers. We do not know what causes the results incon-
sistent with cross-validation outcomes. The hierarchical
partitioning achieves comparable results to the second
best predictor for small feature number, but in general
it performs worse than the other algorithms. It suggests
optimizing the code matrix in terms of cross-validation
errors may cause further overfitting to the training set.

Relating confidence to test errors
Tables 2 and 3 show the hard errors of classification: an
error is counted when misclassification occurs. However,
the strength of the prediction is not shown. Loss-based
distances between the binary classifier outputs and the
codewords represent the strength of prediction. If the
loss-based distance with respect to the codeword of the
winning class is significantly lower than the other classes,
then the strength of prediction is high. On the contrary, if
there are multiple or no classes which claim the sample
with low loss, then the strength of the prediction outcome
is low. Figure 3 illustrates the relation between the con-
fidence and the prediction strength. It shows the binary
classifier outputs of 4 test samples using one-vs-all SVM.
In the first example only one of the fourteen classifiers re-
turns a positive value, and this value is significantly higher
than the other values. We call this a high confidence case
since the prediction outcomes are strongly biased toward
one class. In the second example only one classifier
returns a positive value, but this value is close to 0 and

S320



Molecular classification

Fig. 3. Binary classifier outputs for four samples.

Table 4. Test errors categorized by confidence values

OA SVM OA kNN
Error Total Error Total

High conf 0 15 1 15
Med. conf 5 19 3 8
Low conf 5 12 13 23

is not very different from other binary classifier outputs.
Although we still assign the sample to the winning class,
we are less certain about the classification outcome. We
call this a medium confidence case. In the third example,
none of the binary classifiers returns a positive value. The
winning class is the one which is “less dissimilar” to the
test sample. However, it is possible that the test sample
falls into a new category (or sub-category) not captured
by the training set. In the fourth example, multiple classes
claim the sample with positive output values. We call both
the third and the fourth examples low confidence cases.
Table 4 shows the test errors for high confidence, medium
confidence, and low confidence samples using one-vs-all
SVM and one-vs-all kN N classifiers. The results clearly
indicate that most of the errors are in the low and medium
confidence samples. Among the 15 high-confidence
samples in SVM, none of them are misclassified, whereas
among the 15 high-confidence samples in kN N , only
one of them is misclassified. This strongly suggests that
errors tend to appear in the overlapped regions of multiple
classes. Samples from those regions are easily confused
with other classes.

If we allow the predictor to return “no calls” on
low-confidence samples, then the hard error rates are
considerably reduced: 5 errors out of 34 samples for SVM
and 4 errors out of 23 samples for kN N .

CONCLUSION
In this paper we collected samples from 14 tumor types
and generated expression data from those samples. We
applied various supervised learning algorithms to classify
tumor samples from their expression data. Motivated by
the good performance of binary classifiers in tumor clas-
sification, we adopted the output coding scheme which
combined binary classifiers for multiclass prediction. We
applied two commonly used combination strategies: the
one-vs-all and the all-pairs methods. In addition, we also
developed a hierarchical partitioning algorithm which
generated a collection of code matrices and organized
them in a hierarchy. We chose three types of binary
classifiers as the components of the multiclass predictor:
the weighted voting, the k-nearest neighbor, and the
support vector machines.
Cross-validation errors and test errors indicate that the
one-vs-all SVM achieves the best performance. The kN N
outperforms the weighted voting algorithm on average,
but in some cases the weighted voting performs better.
There is no clear relation between the number of genes in
the classifier and the accuracy rate of classification.
By looking at individual classifier outputs, more infor-
mation is revealed. We categorized samples into high
confidence, medium confidence and low confidence types
in terms of binary classifier outputs. We found that most
of the errors were made by low confidence samples. Very
few high confidence samples were misclassified. When
we allowed no calls to low confidence samples, we were
able to reduce the error rate significantly (14.71% for
one-vs-all SVM and 17.39% for one-vs-all kN N ). This
fact suggests most errors occur in the overlapped region
rather than the outliers of the class territories.
We suspect the classification accuracy is limited by the
number of samples we have. Therefore we are collecting
more samples covering broader tumor types. We are
also exploring the distinctions between normal tissues
and malignant tissues. A comprehensive analysis which
covers these aspects will appear soon.

ACKNOWLEDGEMENTS
The authors are grateful to the following colleagues at
Whitehead Institute Genome Center: Michelle Gaasen-
beek, Christine Huard, Christine Ladd, Shawn O’Malley,
and Jane Staunton. The authors are also grateful to the
following people who contributed tissue samples and
pathology expertise: Massimo Loda, David Waltregny,
Phllip Febbo, Margaret Shipp, Raphael Bueno, Kevin
Loughlin, Scott Pomeroy, William Gerald, Massachusetts
General Hospital Tumor Bank, and the Cooperative
Human Tissue Network. The authors thank Professor
Tommi Jaakkola at MIT EECS Department for reviewing
the draft.

S321



C.-H.Yeang et al.

REFERENCES
Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald,

A., Boldrick, J., Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L.,
Marti, G., Moore, T., Hudson, J., Lu, L., Lewis, D., Tibshirani,
R., Sherlock, G., Chan, W., aand D.D. Weisenburger, T. G.,
Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M. R.,
Bvrd, J., Bostein, D., Brown, P. & Staudt, L. (2000). Distinct
types of diffuse large b-cell lymphoma identified by gene
expression profiling. Nature, 403, 503–511.

Allwein, E., Shapire, R. & Singer, Y. (2000). Reducing multiclass to
binary: a unifying approach for margin classifiers. In Proceeding
of international conference on machine learning.

Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M.
& Yakhini, Z. (2000). Tissue classification with gene expression
profiles. In Proceeding of the fourth annual international
conference on computational molecular biology. pp. 54–64.

Breiman, L. (1984). Classification and regression trees. Wadsworth
international group.

Crammer, K. & Singer, Y. (2000). On the learnability and design
of output codes for multiclass problems. In Proceeding of ACM
conference on computational learning theory.

Dietterich, T. & Bakiri, G. (1991). Error-correcting output codes:
a general method for improving multiclass inductive programs.
In Proceeding of the eighth national conference on artificial
intelligence. pp. 572–577.

Dietterich, T. & Bakiri, G. (1995). Solving multiclass learning
problems via error-correcting output codes. Journal of artificial
intelligence research, 2, 263–286.

Duda, R. (2001). Pattern classification. Wiley.
Golub, T., Slonim, D., Tamayo, P., Huard, C., Gassenbeek, M.,

Mesirov, J. P., Coller, H., Loh, M. L., Downing, J., Caligiuri, M.,
Bloomfield, C. & Lander, E. (1999). Molecular classification of
cancer: class discovery and class prediction by gene expression
monitoring. Science, 286, 531–537.

Hanahan, D. & Weinberg, R. (2000). The hallmark of cancer. Cell,
100, 57–71.

Minsky, M. (1969). Perceptrons: an introduction to computational
geometry. MIT Press.

Slonim, D., Tamayo, P., Mesirov, J., Golub, T. & Lander, E. (2000).
Class prediction and discovery using gene expression data. In
Proceeding of the fourth annual international conference on
computational molecular biology. pp. 263–272.

Vapnik, V. (1998). Statistical learning theory. Wiley.

S322


