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ABSTRACT
Motivation: Short interfering RNAs (siRNAs) can be used
to suppress gene expression and possess many potential
applications in therapy, but how to design an effective siRNA
is still not clear. Based on the MPI (Max-Planck-Institute)
basic principles, a number of siRNA design tools have been
developed recently. The set of candidates reported by these
tools is usually large and often contains ineffective siRNAs. In
view of this, we initiate the study of filtering ineffective siRNAs.
Results: The contribution of this paper is 2-fold. First, we pro-
pose a fair scheme to compare existing design tools based
on real data in the literature. Second, we attempt to improve
the MPI principles and existing tools by an algorithm that
can filter ineffective siRNAs. The algorithm is based on some
new observations on the secondary structure, which we have
verified by AI techniques (decision trees and support vector
machines). We have tested our algorithm together with the
MPI principles and the existing tools. The results show that
our filtering algorithm is effective.
Availability: The siRNA design software tool can be found in
the website http://www.cs.hku.hk/∼sirna/
Contact: smyiu@cs.hku.hk

INTRODUCTION
Short interfering RNAs (siRNAs), of length about 21, can be
used to suppress gene expression (Fire et al., 1998; Elbashir
et al., 2001a,b; Caplen et al., 2001) and possess many poten-
tial applications in therapy, for example, it is believed that
siRNAs can be used to suppress the HIV-1 replication in
human cell lines (Jacque et al., 2002). Different genes require
different siRNAs to suppress the expression. An siRNA is,
in fact, a DNA sequence that is formed by a substring of the
mRNA of the target gene. However, not every substring of
the target mRNA can form an effective siRNA (Holen et al.,
2002). A typical mRNA can have a length of thousands. The
number of potential candidates for siRNAs is therefore huge.

∗To whom correspondence should be addressed.

To verify whether a given siRNA is effective, one must go
through the laboratory experiments. These experiments are
both time-consuming and expensive. Yet how to design an
effective siRNA (i.e. to select the right substring from the
mRNA for the construction of the siRNA) is still not clear.

As the first attempt to solve the problem, Tuschl et al.
(2003, http://www.rockefeller.edu/labheads/tuschl/sirna.html)
provided a set of guidelines, commonly known as the MPI
(Max-Planck-Institute) principles, on how to design effect-
ive siRNAs. These principles try to capture some properties
that an effective siRNA should possess, for example, the
GC-content1 of an siRNA should be between 30 and 70%.
However, there are two issues in these principles. The prop-
erties given in the principles are not exclusive for effective
siRNAs. In fact, among 19 ineffective siRNAs that have been
reported in the literature, 6 of them also follow the MPI prin-
ciples. Another issue is that the principles are rather primitive
and not selective, the number of candidates that follow the
principles is usually large. We have tested the MPI principles
using 52 mRNAs with an average length of 2338. The average
number of candidates reported is 327.

In the past three years, several siRNA design tools have
been developed by refining and extending the MPI principles.
However, in general, the set of candidates reported by most
of these tools is still large (hundreds) and often contains some
ineffective siRNAs (Table 1).

Our contributions The contribution of this paper is
2-fold.

(1) A comparison scheme: Despite the fact that quite a num-
ber of design tools have been developed, there is no
study on comparing these tools. In fact, it is not trivial
to compare these tools directly as the number of can-
didate siRNAs reported by these tools vary a lot. It is
desirable to have a fair scheme to evaluate these tools.
In this paper, we propose a fair scheme to compare these

1GC-content is the percentage of the nucleotides G and C on the length-21
siRNA.
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Table 1. Number of ineffective siRNAs filtered by our algorithm

Design tools No. of No. of ineffective No. of ineffective
relevant siRNAs reported siRNAs reported
cases before filtering after filtering

Ambion_AA 4 3 1
OptiRNAi_AA 4 0 0
WI_AA (default) 4 0 0

Dharmacon_NA 8 0 0
(default)

Emboss_NA 8 7 2
JackLin_NA 8 3 1
MPI principles 8 5 0

Dharmacon_NN 19 0 0
Qiagen_NN 19 2 0
WI_NN 19 12 6

The tools are grouped by the starting nucleotides of the siRNAs reported.

tools based on the published siRNAs. The idea is to
make use of a random selector that will randomly pick
the candidates from the target mRNA. The number of
candidates to be chosen by the random selector depends
on the output size of the tool in concern. Based on the
published siRNAs, we calculate some indices showing
how much the choice of the tool is better than a random
choice. The random selector actually acts as a reference
(control) for comparison. Our aim is to filter ineffect-
ive siRNAs, so the focus of our comparison is mainly
on published ineffective siRNAs, the comparison for
effective siRNAs is used as a reference.

We have evaluated seven existing tools and the
MPI principles. The tools include Ambion (Ambion,
2003, http://www.ambion.com/techlib/misc/siRNA_
finder.html), Dharmacon (Dharmacon, 2003, http://
design.dharmacon.com/rnadesign/default.aspx?SID=6
91011983), Emboss (Williams, 2002, http://www.
hgmp.mrc.ac.uk/Software/EMBOSS/Apps/sirna.html),
Jack Lin (Lin, 2002, http://www.sinc.sunysb.edu/Stu/
shilin/rnai.html), Whitehead Institute siRNA selection
program (WI) (Yuan et al., 2004, http://jura.wi.mit.edu/
siRNAext/), Qiagen (Qiagen, 2003, http://python.
penguindreams. net/ Xeragon_Order_ Entry/jsp/Index.
jsp), and OptiRNAi (Cui et al., 2003, http://bioit.dbi.
udel.edu/rnai). The result shows that in general, most
of these tools still output quite a number of ineffective
siRNAs and have a similar (if not worse) performance
as the random selector. For effective siRNAs, Jack Lin
seems to be the best based on the published data.

(2) A filtering algorithm: Basically, most of these tools still
try to identify a set of properties for selecting effect-
ive siRNAs. In this paper, we initiate the study of the
properties that an ineffective siRNA would possess,
which enables one to filter out the candidates that are

unlikely to be an effective siRNA. We develop a filtering
algorithm to improve the MPI principles and existing
tools. The algorithm is based on some new observa-
tions on the secondary structure, which we have verified
by AI techniques (decision trees and support vector
machines). We have evaluated our filtering algorithm by
applying it to the existing tools and the MPI principles.
The results show that our filtering algorithm is effect-
ive. The number of ineffective siRNAs reported can be
reduced by up to 100% while the number of effective
siRNAs reported is only reduced by an average of 15%.

Remarks We have exploited about 100 siRNAs in our exper-
iments. This already includes all ineffective and most effective
siRNAs for human genes that are published in the literature.

Organization of the paper The rest of this paper is
organized as follows. We first present the scheme for
comparing existing siRNA design tools and the comparison
result of seven existing tools. Then, we present the filtering
algorithm for filtering ineffective siRNAs and discuss the
experimental results of applying our filtering algorithm on
the seven existing tools. This is followed by a discussion on
how we find the filtering rule. Finally, we provide a summary
and conclusion of our work.

THE COMPARISON SCHEME
Idea and results
In this section, we compare the performance of existing siRNA
design tools and the MPI principles using real data in the
literature. From the literature, there are 70 effective siRNAs
and 19 ineffective siRNAs for human genes. (The references
for the real data are provided in the Appendix section.) We
compare the following tools: Ambion, Dharmacon, Emboss,
Jack Lin, WI, Qiagen and OptiRNAi. Note that if a tool has
options to restrict the selected siRNAs to have AA, NA or NN
as the starting two nucleotides, we tried the default and the
NN options (where ‘N’ stands for any nucleotide).

ForagivenmRNA,thenumberofcandidatesiRNAsreported
by the tools can vary a lot. It is not trivial how one can compare
these tools directly. We propose to use a random selector that
randomlypickscandidatesfromthetargetmRNAasareference
for comparison. To handle the issue of different output sizes
for the tools, we make sure that the number of candidates to be
selectedbytherandomselectorwouldbethesameasthenumber
of candidates reported by the tool in concern. In addition, if
the tool only reports siRNAs starting with AA, the random
selector will only select siRNAs starting with AA.

We then compare the two sets of candidates against the
known siRNAs. For ineffective siRNAs, intuitively, if the tool
reports less such siRNAs than the random selector, the choice
of the tool is better than a random choice. We calculate the per-
centages of known ineffective siRNAs that have been reported
by the tool and the random selector. The difference in these
percentages, the net percentage, is used as an index to show
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Table 2. The net percentages of various siRNA design tools against
ineffective siRNAs

Design tools Against ineffective siRNAs
Actual % Expected % Net %

Ambion_AA 75 70 5
OptiRNAi_AA 0 6 −6
WI_AA (default) 0 5 −5

Dharmacon_NA (default) 0 3 −3
Emboss_NA 88 66 22
JackLin_NA 38 25 13
MPI principles 63 32 31

Dharmacon_NN 0 3 −3
Qiagen_NN 11 3 8
WI_NN 63 60 3

how much the choice of the tool is better than a random choice.
Note that in calculating the percentages, if the tool only reports
siRNAs starting with AA, we only consider the known siRNAs
starting with AA. In fact, we do not actually run a random
selector. We compute the expected percentage of ineffective
siRNAs reported by the random selector. The detailed cal-
culation will be discussed below. The net percentage is then
defined as the actual percentage of ineffective siRNAs repor-
ted by the tool minus the expected percentage of the random
selector. Obviously, a good siRNA tool should have a negative
net percentage against ineffective siRNAs.

Table 2 shows the net percentages of various design tools
against ineffective siRNAs. We see that many tools have pos-
itive net percentages; in other words, these tools report more
ineffective siRNAs than the random selector. So, their choices
of candidates are no better than the random choices with
respect to ineffective siRNAs.

Computing the expected percentage for random
selector
Now, we discuss the details of how to compute the expected
percentage of the random selector. Consider a design tool T

that reports siRNAs starting with AA. The other two cases for
NA and NN are similar. Suppose M is the input mRNA. Let
SM be the set of ineffective siRNAs starting with AA that are
reported in the literature and σM = |SM |. Let nM be the num-
ber of length-21 substrings of M that start with AA. Let kM be
the size of output of T for M . The random selector will select
kM siRNAs from the nM candidates randomly. Let XM denote
the number of siRNAs reported by the random selector that
are in SM . Then the expected value of XM can be computed
as follows:

E(XM) =
∑

1≤i≤σM

i · Pr(XM = i)

=
∑

1≤i≤σM

i ·
(
σM

i

)(
nM−σM

kM−i

)
(
nM

kM

) ,

Table 3. The net percentages of various siRNA design tools against effective
siRNAs

Design tools Against effective siRNAs
Actual % Expected % Net %

Ambion_AA 88 72 16
OptiRNAi_AA 48 9 39
WI_AA (default) 39 3 36

Dharmacon_NA (default) 5 3 3
Emboss_NA 93 71 22
JackLin_NA 62 20 42
MPI principles 86 52 34

Dharmacon_NN 7 5 2
Qiagen_NN 43 3 40
WI_NN 83 64 19

where
(
n
r

)
denotes the number of combinations of choos-

ing r items from n items. The expected number of inef-
fective siRNAs reported by the random selector equals
to

∑
M [E(XM)], and the expected percentage equals to∑

M [E(XM)] divided by the number of ineffective siRNAs
in the literature that start with AA.

We have also performed the comparison of the tools against
effective siRNAs. In this case, the actual percentage, the
expected percentage and the net percentage are defined on
known effective siRNAs. A good tool should have a positive
net percentage. Table 3 shows the net percentages of various
design tools against effective siRNAs. All the tools have pos-
itive net percentages, meaning that they report more effective
siRNAs than the random selector. Their choices are better than
random choices. In particular, Jack Lin seems to be the best
based on the published data.

To conclude, the existing tools perform well in selecting the
effective siRNAs but are not good for filtering out the ineffect-
ive ones. In the next section, we show how to enhance these
tools by a filtering algorithm that filters potential ineffective
siRNAs.

THE FILTERING ALGORITHM AND ITS
PERFORMANCE
Performance of the filtering algorithm
Based on the discussion in the previous section, we see that
both the MPI principles and most design tools report a certain
number of ineffective siRNAs. In view of this, we attempt to
improve the MPI principles and existing tools by an algorithm
that can filter ineffective siRNAs. The target of the filtering
algorithm is to reduce the number of ineffective siRNAs
reported, and more importantly, reduce the net percentage
against ineffective siRNAs.

We have applied the filtering algorithm on the output of
the design tools to filter potential ineffective candidates. We
observe that the output size is reduced by about ∼23% on
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Table 4. Comparison of the net percentages against ineffective siRNAs
before and after applying the filtering algorithm

Design tools Net percentage against ineffective siRNAs
Before filtering After filtering Change

Ambion_AA 5 −33 −38
OptiRNAi_AA −6 −5 +1
WI_AA (default) −5 −4 +1

Dharmacon_NA (default) −3 −2 +1
Emboss_NA 22 −26 −48
JackLin_NA 13 −9 −22
MPI principles 31 −22 −53

Dharmacon_NN −3 −2 +1
Qiagen_NN 8 −2 −10
WI_NN 3 −14 −17

average. We have also shown in Table 1 that the number of
ineffective siRNAs decreases by a significant amount. Regard-
ing the net percentage against ineffective siRNAs, Table 4
shows that the percentages decrease drastically for most of
the tools (up to 53% for the MPI principles). In particular,
the net percentages of six of them become negative, imply-
ing that the corresponding tools now report fewer ineffective
siRNAs than the random selector. This shows that our filter-
ing algorithm is effective. Note that the expected percentage
of the random selector is based on the reduced size of the
output after filtering.

For the net percentage against effective siRNAs, Table 5
shows that the percentages decrease after applying the filter-
ing but by a smaller amount; precisely, the net percentage
decreases by at most 10%.

Details of the filtering algorithm
In this section, we give the details of the filtering algorithm.
Note that in the process of suppressing gene expression, the
siRNA needs to approach the corresponding target site on
the mRNA. One of the factors affecting the success is the
accessibility of the mRNA near the target site. This motivates
us to study the secondary structure of the mRNA in concern,
i.e. the pairing of the bases of the mRNA.

Repelling loops and big repelling loops Our filtering
algorithm is based on the secondary structure properties that
we call repelling loops and big repelling loops. The idea is
as follows. The pairing of the bases may introduce loops [e.g.
internal loop and multi-branched loop (Waterman, 2000)]. See
Figure 1 for an example of a multi-branched loop. Suppose
that a target site is hidden between two very close branches of
a loop (because of the repelling force on the other side of the
loop). Then it may not be easy for the corresponding siRNA
to access the target site, so the siRNA has a high chance to be
ineffective. We call such a loop a repelling loop with respect
to that siRNA and the two branches are called the enclosing

Table 5. Comparison of the net percentages against effective siRNAs before
and after applying the filtering algorithm

Design tools Net percentage against effective siRNAs
Before filtering After filtering Change

Ambion_AA 16 10 −6
OptiRNAi_AA 39 36 −3
WI_AA (default) 36 26 −10

Dharmacon_NA (default) 2 3 +1
Emboss_NA 22 19 −3
JackLin_NA 42 34 −8
MPI principles 34 30 −4

Dharmacon_NN 2 3 +1
Qiagen_NN 40 36 −4
WI_NN 19 16 −3

Fig. 1. A repelling loop of min_size-20 and max_degree-0.1.

branches. Figure 1 shows an example of a repelling loop and
the corresponding target site. Furthermore, if the repelling
loop is big, i.e. the number of unpaired bases is large, then
the unpaired bases on the other sides of the loop have higher
free energy, thus may interfere with the siRNA activity. We
call such a loop a big repelling loop (with respect to that
siRNA).

Now we give precise definitions for repelling loops and big
repelling loops. For a given target site, consider the loops
that are near to the target site and with at least two branches.
A target site is near to a loop if it overlaps with the loop or
is within a short distance from the loop, say 10 nt (we have
tried other values and 10 seems to be a sensible choice and is
used in all our experiments). Intuitively, for each loop, if the
segment enclosed by the enclosing branches (with respect to
the target site) is small relative to the total length of the loop,
the target site is more difficult to be accessed. Therefore, we
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measure the ratio between the length of the segment enclosed
by the enclosing branches (with respect to the target site) and
the total length of the loop. If this ratio is at most r < 0.5,
we say that the loop is a repelling loop of max_degree-r .
For example, the loop in Figure 1 is a repelling loop of
max_degree-(2/20).

Whether a repelling loop is considered to be big, we measure
the length of the loop. If a repelling loop of max_degree-r
has a length at least �, we say that it is a repelling loop of
min_size-� and max_degree-r . Figure 1 shows a repelling
loop of min_size-20 and max_degree-0.1. In particular, our
filtering algorithm considers repelling loops of max_degree-
0.25 and big repelling loops of min_size-15. The thresholds
for repelling loops and big repelling loops are obtained by
using AI techniques, which we will describe in the next
section.

The filtering algorithm Based on the concept of repelling
loops and big repelling loops, we have devised a filtering
algorithm to filter potential ineffective siRNAs. The details
are as follows. Consider any mRNA and a set of candidate
siRNAs. We first obtain the secondary structures of the mRNA
from Zuker’s MFOLD algorithm (Zuker, 2003). The MFOLD
algorithm usually reports over 10 secondary structures, each
with a free energy indicates the stability of the corresponding
structure. We focus on the five structures that have the lowest
free energy, i.e. the five most stable structures. To determine
whether to filter a candidate siRNA, we count, for each such
structure, the number of repelling loops of max_degree-0.25
and the number of big repelling loops of min_size-15 and
max_degree-0.25 with respect to that candidate. The filtering
condition is as follows:

A candidate is filtered if out of the five most stable
secondary structures, (1) three or more structures each con-
tain at least one big repelling loop of min_size-15 and
max_degree-0.25 and (2) three or more structures [can
be the same set of structures in (1)] each contain at least
two repelling loops of max_degree-0.25 with respect to the
candidate.

The filtering algorithm checks the filtering condition for each
candidate siRNA and report those that are not filtered.

FINDING THE FILTERING RULE BY AI
TECHNIQUES
In this section, we discuss how the filtering rule is
derived using decision tree learning (Quinlan, 1987,
http://www2.cs.uregina.ca/∼hamilton/courses/831/notes/ml/
dtrees/c4.5/tutorial.html). In addition to the repelling loops,
big repelling loops we mentioned in the previous section, we
have also considered the following two factors that are related
to our observations.

• The number of branches in a repelling loop: Intuitively, if
the number of branches increases, branches will be closer
together, so if a target site is enclosed by the branches, it
may be difficult to access it.

• The free bases in the target site: Free base has higher
free energy and may interfere siRNA activity. Hence, we
also consider the number of free bases in the target site.
To reflect the relative strength of a CG-bond and an AT-
bond, we assign a weight of 2 to a free A or T base and a
weight of 3 to a free C or G base. The total weight of the
free bases will be used in the decision tree training.

Training process For repelling loops and big repelling
loops, there are two parameters, r (the repelling loop
threshold) and � (the big loop threshold), to consider. We
repeatedly train the decision tree by fixing the values of r

in the range 0.05–0.45, incremented by 0.05 each time. For
a particular value of r , we compute the following attributes
for each siRNA. Recall that when considering the secondary
structures, we use the five most stable structures reported by
the MFOLD algorithm.

(1) The largest number α such that at least 3 out of the 5
most stable secondary structures each contain at least α

repelling loops of max_degree-r . Among these struc-
tures, select three that have more repelling loops and
we break the ties by selecting the one with the lower
free energy (i.e. the more stable one).

(2) For each integer � in the range [13, 17], the largest
number β� such that at least three out of the five most
stable secondary structures each contain at least β� big
repelling loops of min_size-� and max_degree-r . Note
that we have also tried other values of �, the threshold
15 is clearly much better than the rest, thus we limit our
experiments to examine the values from 13 to 17.

(3) The average number of branches of all the repelling
loops in the three structures selected in Step 1. Note
that the two branches that enclose the target site are not
counted.

(4) The average of the total weight of free bases in the three
structures selected in Step 1.

We then train the decision trees by including different attrib-
utes as follows. We have designed six sets of experiments:
the first five sets correspond to one of the values of the big
loop threshold β�, and the last set correspond to all the big
loop thresholds. For each experiment, we include the attrib-
utes α and the corresponding β(’s), while the remaining two
attributes may or may not be included. As a result, we have
four combinations: including both the unpaired weight and
the number of branches, including either one of them, and
including none of them.

We train the decision tree using a subset of data from the lit-
erature, which contains 27 effective and 6 ineffective siRNAs
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Fig. 2. The classification rates of the decision trees in various experiments.

that satisfy the following basic principles: (i) the position of
the target site is at least 100 from the start codon of the corres-
ponding mRNA, (ii) the GC-content of the siRNA is between
30 and 70% and (iii) the siRNA does not contain consecutive
long runs of four or more equal nucleotides, e.g. GGGG.

Results Four decision trees are returned for each experi-
ment. For each decision tree, we compute the rate of correct
classification for ineffective and effective siRNAs. Since our
target is to filter ineffective siRNAs, the ideal decision tree is
one having 100% correct classification for ineffective siRNAs
and a high correct classification rate for effective siRNAs.
Figure 2 shows the classification rate of the decision trees for
all the experiments. In each experiment, we only report the
best decision tree, i.e. the one with the highest classification
rate for ineffective siRNAs.

The results show that the best decision tree is the one for
Experiments 3 (using 15 as the big loop threshold) and 6 (using
all values in [13, 17] as the big loop thresholds) with repelling
loop threshold r = 0.25. The classification rate for ineffective
and effective siRNAs is 100 and 92.6%, respectively. In fact,
when the repelling loop threshold is 0.25, all the eight decision
trees for Experiments 3 and 6 are the same. This shows that 15
should be the appropriate big loop threshold and also even if
we include the unpaired weight or the number of branches, the
best decision tree only involves the attributes of the number
of repelling loops of max_degree-0.25 and the number of big
repelling loops of min_size-15 and max_degree-0.25.

We also make use of the support vector machine (Joachims,
1999) to see if the classification is consistent with that of
the decision tree. We train the support vector machine learn-
ing module using the attributes α and β as in Experiments 3

and 6. The support vector machine obtained has a similar
performance as the decision tree we obtained. Precisely, the
classification rate for both ineffective and effective siRNAs
are the same as that of the decision tree, and even further, the
sets of siRNAs that are classified as ineffective and effective
are the same for both the decision tree and the support vec-
tor machine. These results show that the attributes and the
thresholds are selected appropriately.

As a remark, we have tried to use the rules to select
siRNAs directly and compared its performance with the ran-
dom selector. The results show that the rules perform better
than the random selector. The output based on the rules
show a net percentage of 23% for effective siRNAs and a
net percentage of −15% for ineffective siRNAs.

CONCLUSION
In this paper, we have proposed a scheme to evaluate exist-
ing siRNA design tools based on the published effective and
ineffective siRNAs. In the scheme, the output of each design
tool is compared with a set of randomly selected siRNA can-
didates. The results show that existing tools are not good
at filtering ineffective siRNAs. We also propose a filtering
algorithm to filter potential ineffective siRNA candidates from
the output of existing tools. The algorithm is based on two
observations, namely repelling loops and big repelling loops,
on secondary structures of the target mRNA. The rule for
classifying potential ineffective siRNAs from other candid-
ates is generated with the help of AI techniques, in particular,
the decision tree and support vector machine. The filtering
algorithm is shown to be effective.
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The results of this paper provide evidence that the secondary
structures should be considered for the design of siRNA.
We are in the process of designing laboratory experiments
to further verify our observations on secondary structures.
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