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Abstract—Web page classification is one of the essential techniques for Web mining because classifying Web pages of an interesting

class is often the first step of mining the Web. However, constructing a classifier for an interesting class requires laborious pre-

processing such as collecting positive and negative training examples. For instance, in order to construct a “homepage” classifier, one

needs to collect a sample of homepages (positive examples) and a sample of nonhomepages (negative examples). In particular,

collecting negative training examples requires arduous work and caution to avoid bias. This paper presents a framework, called

Positive Example Based Learning (PEBL), for Web page classification which eliminates the need for manually collecting negative

training examples in preprocessing. The PEBL framework applies an algorithm, called Mapping-Convergence (M-C), to achieve high

classification accuracy (with positive and unlabeled data) as high as that of a traditional SVM (with positive and negative data). M-C

runs in two stages: the mapping stage and convergence stage. In the mapping stage, the algorithm uses a weak classifier that draws

an initial approximation of “strong” negative data. Based on the initial approximation, the convergence stage iteratively runs an internal

classifier (e.g., SVM) which maximizes margins to progressively improve the approximation of negative data. Thus, the class boundary

eventually converges to the true boundary of the positive class in the feature space. We present the M-C algorithm with supporting

theoretical and experimental justifications. Our experiments show that, given the same set of positive examples, the M-C algorithm

outperforms one-class SVMs, and it is almost as accurate as the traditional SVMs.

Index Terms—Web page classification, Web mining, document classification, single-class classification, Mapping-Convergence (M-C)

algorithm, SVM (Support Vector Machine).
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1 INTRODUCTION

AUTOMATIC categorization or classification1 of Web pages
have been studied extensively since the Internet has

become a huge repository of information, in terms of both
volume and variance. Given the fact that Web pages are
based on loosely structured text, various statistical text
learning algorithms have been applied to Web page
classification.

While Web page classification has been actively studied,
most previous approaches assume a multiclass framework,
in contrast to the one-class binary classification problem
that we focus on. These multiclass schemes (e.g., [1], [2])
define mutually exclusive classes a priori, train each class
from training examples, and choose one best matching class
for each testing data. However, mutual-exclusion between
classes is often not a realistic assumption because a single
page can usually fall into several categories. Moreover, such
predefined classes usually do not match users’ diverse and
changing search targets.

Researchers have realized these problems and proposed
the classifications of user-interesting classes such as “call for
papers,” “personal homepages,” etc. [3]. This approach
involves binary classification techniques that distinguish

Web pages of a desired class from all others. This binary
classifier is an essential component for Web mining because
identifying Web pages of a particular class from the Internet
is the first step of mining interesting data from the Web. A
binary classifier is a basic component for building a type-
specific engine [4] or a multiclass classification system [5],
[6]. When binary classifiers are considered independently in
a multiclass classification system, an item may fall into
none, one, or more than one class, which relaxes the
mutual-exclusion assumption between classes [7].

However, traditional binary classifiers for text or Web
pages require laborious preprocessing to collect positive
and negative training examples. For instance, in order to
construct a “homepage” classifier, one needs to collect a
sample of homepages (positive training examples) and a
sample of nonhomepages (negative training examples).
Collecting negative training examples is especially delicate and
arduous because 1) negative training examples must
uniformly represent the universal set excluding the positive
class (e.g., sample of a nonhomepage should represent the
Internet uniformly excluding the homepages), and 2) manu-
ally collected negative training examples could be biased
because of human’s unintentional prejudice, which could be
detrimental to classification accuracy.

To eliminate the need for manually collecting negative
training examples in the preprocessing, we proposed a
framework, called Positive Example Based Learning (PEBL)
[8]. Using a sample of the universal set as unlabeled data,
PEBL learns from a set of positive data as well as a collection
of unlabeled data. A traditional learning framework learns
from labeled data which contains manually classified, both
positive and negative examples. Unlabeled data indicates
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random samples of the universal set for which the class of
each sample is arbitrary and uncorrelated. For example,
samples of homepages and nonhomepages are labeled data
because we know the class of the samples from manual
classification, whereas random sampling of the Internet
provides unlabeled data because the classes of the samples
are unknown. In many real-world learning problems
including Web page classification, unlabeled and positive,
data are widely available whereas acquiring a reasonable
sampling of the negative is impossible or expensive because
the negative data set is just the complement of the positive
one, and, thus, its probability distribution can hardly be
approximated [8], [9], [10]. For example, consider the
automatic diagnosis of diseases: Unlabeled data are easy
to collect (all patients in the database), and positive data are
also readily available (the patients who have the disease).
However, negative data can be expensive to acquire; not all
patients in the database can be assumed to be negative if
they have not been tested for the disease, and such tests can
be expensive.

Our goal is to achieve classification accuracy from
positive and unlabeled data as high as that from fully
labeled (positive and negative) data. Here, we only assume
that the unlabeled data is unbiased. There are two main
challenges in this approach: 1) collecting unbiased un-
labeled data from a universal set which can be the entire
Internet or any logical or physical domain of Web pages,
and 2) achieving classification accuracy from positive and
unlabeled data as high as that from labeled data. To address
the first issue, we assume it is sufficient to use random
sampling to collect unbiased unlabeled data. Random
sampling can be done in most databases, warehouses, and
search engine databases (e.g., DMOZ) or it can be done
independently directly from the Internet.

In this paper, we focus on the second challenge,
achieving classification accuracy as high as that from
labeled data. The PEBL framework applies an algorithm,
called Mapping-Convergence (M-C), which uses the SVM
(Support Vector Machine) techniques [11]. In particular, it
leverages the marginal property of SVMs to ensure that the

classification accuracy from positive and unlabeled data
will converge to that from labeled data. We present the
details of the SVM properties in Section 3.

Our experiments (Section 5) explore the classes within
two different universal sets: The first universal set is the
entire Internet (Experiment 1), and the second is computer
science department sites (Experiment 2). Both experiments
show that the PEBL framework is able to achieve classifica-
tion accuracy as high as using fully labeled data.

One might argue that using a sample of universal set
itself as an approximation for negative training data is
sufficient since the portion of positive class in the universal
set ðP ðCÞÞ is usually much smaller than its complement
ðP ðCÞÞ. However, when training a SVM, a small number of
false positive training data could be detrimental. Experi-
ment 2 (i.e., CS department sites) shows that using samples
of the universal set as a substitute for negative examples
degrades accuracy significantly.

In summary, the contributions of our PEBL framework
are the following:

1. Preprocessing for classifier construction requires
collecting only positive examples, which speeds up
the entire process of constructing classifiers and also
opens a way to support example-based query on the
Internet. Fig. 1 shows the difference between a
typical learning framework and the PEBL frame-
work for Web page classification. Once a sample of
the universal set is collected in PEBL, the sample is
reused as unlabeled data for every class, therefore,
users would not need to resample the universal set
each time they construct a new classifier.

2. PEBL achieves accuracy as high as that of a typical
framework without loss of efficiency in testing.
PEBL runs the M-C algorithm in the training phase
to construct an accurate SVM from positive and
unlabeled data. Once the SVM is constructed,
classification performance in the testing phase will
be the same as that of a typical SVM in terms of both
accuracy and efficiency.
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Fig. 1. A typical learning framework versus the Positive Example Based Learning (PEBL) framework. Once a sample of the universal set is collected

in PEBL, the same sample is reused as unlabeled data for every class.



Note that this paper concentrates on the classification
algorithms, but not on other related important problems for
Web page classification, such as feature modeling and
extraction. For instance, taking advantage of the structures
of the documents or hyperlinks is also an important issue
for Web page classification [12], [13], [14]. Moreover,
selection of good features is critical to the classification
accuracy regardless of the algorithms. However, these
issues are beyond the scope of this paper. We consider a
set of commonly used and clearly defined Web-based
features of Web pages in our experiments, such as URL,
head text, all text, hyperlink, and anchor text (Section 5).

While this paper focuses on algorithmic issues rather
than applications, we note that the PEBL framework can
enable many Web search and mining tasks that are
essentially built on page classification. The PEBL frame-
work, as a classifier that does not rely on negative labeled
data, will be easily deployable, which makes it applicable in
many practical applications. For instance, a focused crawler
can traverse and mine the Web to discover pages of specific
types (e.g., job announcements on the Web, in order to build
a job database). Similarly, a type-specific search engine can use
a page classifier to limit the search scope to only some target
class (e.g., finding “C++” among only the job announce-
ments). Further, our technique is also critical for query by
examples, in which users give a few (positive) example pages
to retrieval more in the same class. While such search
methods will enable powerful queries beyond the current
limitations of keyword queries, it is impractical and
nonintuitive if users have to specify negative examples as
well. Finally, although we specifically address Web page
classification in this paper, our PEBL framework is
applicable to classification problems in diverse domains
(such as diagnosis of diseases or pattern recognition) with
minor revisions. We discuss this further in Section 6.

The paper is organized as follows: Section 2 describes
related work including the review of using unlabeled data
in classification. Section 3 reviews the marginal properties
of SVMs. Section 4 presents the M-C algorithm and
provides theoretical justification. Section 5 reports the result
of a systematic experimental comparison using two
classification domains: the Internet and CS department
sites. Section 6 outlines several important issues to consider
regarding the learning algorithm and the PEBL framework.
Finally, Section 7 reviews and concludes our discussion of
the PEBL framework.

2 RELATED WORK

Although traditional classification approaches use both
fully-labeled positive and negative examples in classifica-
tion, there are also approaches that use unlabeled data,
which we discuss and contrast below.

How are unlabeled data useful when learning classification?
Unlabeled data contains information about the joint dis-
tribution over features other than the class label. Clustering
techniques utilize the features of unlabeled data to identify
natural clusters of the data. However, class labels do not
always correspond to the natural clustering of data. When
unlabeled data are used with a sample of labeled data, it
increases classification accuracy in certain problem settings.
Such techniques are called semisupervised learning. The
EM algorithm is a representative algorithm which can be

used for either semisupervised learning or unsupervised
learning [15]. However, the result depends on the critical
assumption that the data sets are generated using the same
parametric model used in classification. Kamal Nigam
inserted two parameters into EM (to relax the generative
assumptions): one for controlling the contributions of
labeled data and unlabeled data and the other for
controlling the quantity of mixture components correspond-
ing to one class [16]. Another semisupervised learning
occurs when it is combined with SVMs to form transductive
SVM [17]. With careful parameter setting, both of these
works show good results in certain environments, e.g., with
an extremely low amount of labeled data. When the number
of labeled data grows or when the generative assumptions
are violated, semisupervised learning schemes suffer sig-
nificant degradation of classification accuracy.

Another line of research for using unlabeled data in
classification is learning from positive and unlabeled data, often
referred to as single-class learning or classification. Many
works attempt rule-based or probability-based learning
from positive or positive and unlabeled data [18], [19], [10],
[9]. In 1998, Denis defined the PAC learning model for
positive and unlabeled examples and showed that k-DNF
(Disjunctive Normal Form) is learnable from positive and
unlabeled examples [19]. After that, some experimental
attempts [9], [10] have pursued using k-DNF or C4.5.
However, these rule-based learning methods are often not
applicable to Web page classification because:

1. they are not very tolerant with high dimensionality
and sparse instance space, which are essential issues
for Web page classification,

2. their algorithms require knowledge of the propor-
tion of positive instances within the universal set,
which is not available in many problem settings, and

3. they perform poorer than traditional learning
schemes given sufficient labeled data.

Recently, a probabilistic method built upon the
EM algorithm has been proposed for the text domain [18].
The method has several fundamental assumptions: the
generative model assumption, the attribute independence
assumption which results in linear separation, and the
availability of prior probabilities. Our method does not
require the prior probability of each class, and it can draw
nonlinear boundaries using advanced SVM kernels.

The pattern recognition and verification fields have also
explored various single-class classification methods, includ-
ing neural network models [20], [21] and the SVMs [22], [23]
(with increasing popularity). Some of these techniques tend
to be domain specific: For instance, [23] uses SVM with only
positive examples for face detection, however, it relies on
using the face features of other nontarget classes as negative
examples and, thus, is not generally applicable to other
domains.

For document classification, Manevitz and Yousef [22]
compared various single-class classification methods in-
cluding neural network method, one-class SVM, nearest
neighbor, naive Bayes, and Rocchio and concluded that
one-class SVM and neural network methods were superior
to all the other methods, and the two are comparable.

One-class SVMs (OSVMs), based on the strong mathe-
matical foundation of SVM, distinguish one class of data
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from the rest of the feature space given only positive data
sets [24], [22]. OSVMs draw the class boundary of the
positive data set in the feature space. They have the same
advantages of SVM such as scalability on the number of
dimensions or nonlinear transformation of the input space
to the feature space. However, due to lack of information
about negative data distribution, they require a much larger
amount of positive training data to induce an accurate
boundary, and they also tend to easily overfit or underfit.
We discuss the theoretical aspect of OSVM and the
justification on the empirical results in Sections 4.3 and 5.

Our approach is also based on SVM to use unlabeled
data for the single-class classification problem. As a major
difference from other SVM-based approaches, we first draw
a rough class boundary using a rule-based learner that is
proven to be PAC learnable from positive and unlabeled
examples. After that, we induce an accurate boundary from
the rough boundary by using SVM iteratively.

3 SVM OVERVIEW

As a binary classification algorithm, SVM gains increasing
popularity because it has shown outstanding performance
in many domains of classification problems [7], [25], [26].
Especially, it tolerates the problem of high dimensions and
sparse instance spaces. There has been a recent surge of
interest in SVM classifiers in the learning community.

SVM provides several salient properties, such as max-
imization of margin and nonlinear transformation of the
input space to the feature space using kernel methods [11].
To illustrate, consider its simplest form, a linear SVM. A
linear SVM is a hyperplane that separates a set of positive
data from a set of negative data with maximum margin in the
feature space. The margin (M) indicates the distance from
the hyperplane (class boundary) to the nearest positive and
negative data in the feature space. Fig. 2 shows an example
of a simple two-dimensional problem that is linearly
separable. Each feature corresponds to one dimension in
the feature space. The distance from the hyperplane to a
data point is determined by the strength of each feature of
the data. For instance, consider a resume page classifier. If a
page has many strong features related to the concept of
“resume” (e.g., words “resume” or “objective” in headings),
the page would belong to positive (resume class) in the

feature space, and the location of the data point should be
far from the class boundary on the positive side. Likewise,
another page not having any resume related features, but
having many nonresume related features should be located
far from the class boundary on the negative side.

In cases where the points are not linearly separable, the
SVM has a parameter C (� in �-SVM) which controls the
noise in training data. The SVM computes the hyperplane
that maximizes the distances to support vectors for a given
parameter setting.

For problems that are not linearly separable, advanced
kernel methods can be used to transform the initial feature
space to another high-dimensional feature space. Linear
kernels are fast, but generally Gaussian kernels perform
better in terms of accuracy, especially for single-class
classification problems [27]. We used Gaussian kernels in
our experiments for the best results and for the fair
comparison with one-class SVMs. We discuss the choice
of kernels within our framework in Section 6.

4 MAPPING-CONVERGENCE (M-C) ALGORITHM

The main thrust of this paper is how to achieve classifica-
tion accuracy (from positive and unlabeled data) as high as
that from labeled (positive and unbiased negative) data. The
M-C algorithm achieves this goal.

M-C runs in two stages: the mapping stage and convergence
stage. In the mapping stage, the algorithm uses a weak
classifier (e.g., a rule-based learner) that draws an initial
approximation of “strong” negative data. (The definition of
strength of negative instances is provided in Section 4.1.)
Based on the initial approximation, the convergence stage
runs in iteration using a second base classifier (e.g., SVM)
that maximizes margin to make progressively better
approximation of negative data. Thus, the class boundary
eventually converges to the true boundary of the positive
class in the feature space.

How can we draw the approximation of “strong” negative data
from positive and unlabeled data? We can identify strong
positive features from positive and unlabeled data by
checking the frequency of those features within positive
and unlabeled training data. For instance, a feature that
occurs in 90 percent of positive data but only in 10 percent
of unlabeled data would be a strong positive feature.
Suppose we build a list of every positive feature that occurs
in the positive training data more often than in the
unlabeled data. By using this list of the positive features,
we can filter out any possibly positive data point from the
unlabeled data set, which leaves only strongly negative data
(which we call strong negatives). A data point not having any
of the positive features in the list is regarded as a strong
negative. In this case, the list is considered a monotone
disjunction list (or 1-DNF). The 1-DNF construction algo-
rithm is described in Fig. 4. In this way, one can extract
strong negatives from the unlabeled data. This extraction is
what the mapping stage of the M-C algorithm accomplishes.
However, using the list, one can only identify strong
negatives that are located far from the class boundary. In
other words, although 1-DNF is potentially learnable from
positive and unlabeled data, its resulting quality of learning
is not good enough.
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Fig. 2. A graphical representation of a linear SVM in a two-dimensional

case. (i.e., Only two features are considered.)M is the distance from the

separator to the support vectors in feature space.



How can we progressively construct better approximation of
negative data from the strong negatives and the given positives
and unlabeled data? If an SVM is constructed from the
positives and the strong negatives only, the class boundary
would be far from accurate due to the insufficient negative
training data. More concretely, if an SVM is trained with
insufficient negative training data, the boundary will be
located toward the negative side too much because the
boundary of SVM will have equal margins to the positive
and negative training data. However, this “biased” bound-
ary can be useful because it still maximizes the margin. The
biased boundary divides the space between the strong
negatives and the positives into half within the feature
space. Thus, one would get a little less strong negative data
from the unlabeled data if the rest of the unlabeled data (the
unlabeled data excluding the strong negatives) is further
classified using the biased boundary. In general, the less
strong data would be the data within the area between the
strong negatives and the biased boundary in the feature
space. By iterating this process, one can continuously
extract negative data from the unlabeled data until there
exists no negative data in the unlabeled data. The boundary
will also converge into the true boundary. This belongs to
the convergence stage of the M-C algorithm.

We note that our framework can essentially work with
any base classifier that satisfies the specific requirements,
namely, that �1 (e.g., 1-DNF) is a classifier that does not
generate false negatives, and that �2 (e.g., SVM) maximizes
margin. To make our discussion concrete, our framework
uses 1-DNF for �1 and SVM for �2. We will provide the
theoretical proofs of M-C and the requirements of the base
classifiers (Section 4.2) after a detailed presentation of the
M-C algorithm.

4.1 Algorithm Description

Let us define some basic concepts first. Assume, as usual in
classification or pattern recognition problems, that the
dissimilarity between two objects is proportional to the
distance between them in feature space. Let F be the feature

space and fðxÞ be the boundary function of the positive
class, which computes the distance of x to the boundary in
F such that

fðxÞ > 0 if x is a positive instance;
fðxÞ < 0 if x is a negative instance;

jfðxÞj > jfðx0Þj if x is located farther than
x0 from the boundary in F :

For example, in SVMs, the boundary function fðxÞ
(fðxÞ ¼ w � �ðxÞ, where w is a weight vector, x is an input
vector, and � is a nonlinear transformation function)
behaves exactly this way. (Section 6 further discusses the
usage of nonlinear kernels for the M-C algorithm.) An
instance x is stronger than x0 when x is located farther than
x0 from the boundary of the positive class in feature space.
(fðxÞ ¼ 0 when x is on the boundary.)

Definition 1: Strength of Negative Instances. For two
negative instances x and x0 such that fðxÞ < 0 and fðx0Þ < 0,
if jfðxÞj > jfðx0Þj, then x is stronger than x0.

Example 1. Consider a resume classifier. Assume that there
are two negative data points (nonresume pages) in the
feature space: one is “how to write a resume” page, and
the other is “how to write an article” page. In the feature
space, the article writing page is considered to be more
distant from the resume class because the resume writing
page has more features related to resumes (e.g., the word
“resume” in text) though it is not an actual resume page.

We present the M-C algorithm in Fig. 3 and the
conceptual data flow in Fig. 5. To illustrate, consider
classifying “faculty pages” in a university site. POS is a
given sample of faculty (positive) pages. U is a sample of
the university site (an unbiased sample of the universal set).
NEG is the set of the other pages in the university site
excluding faculty pages. Given POS and U , our goal is to
construct NEG, which is initially set to null. The algorithm
�1 is to extract strong negatives from U . Fig. 4 shows a simple
monotone disjunction (1-DNF) algorithm for �1. Steps 1
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and 2 in Fig. 3 correspond to the mapping stage which
extracts strong negatives from U . The mapping stage fillsN1

with the strong negatives and P1 with the others. Step 3
initiates a set and a variable for the convergence stage. The
convergence loop starts at Step 4. Then, the strong negatives
are put into NEG, and a class boundary is constructed from
the NEG and POS using the algorithm �2 (e.g., SVM). �2

generates a boundary between NEG and POS, which keeps
a maximal margin between them in the feature space (Fig. 6a).
We then use the boundary to divide P1 into N2 and P2.
Now, N2 is accumulated into NEG, and then �2 is re-
trained with NEG (currently containing N1 [N2) and the
given POS. �2 generates another boundary between NEG
and POS with a maximal margin between them in the
feature space as Fig. 6b shows. Then, this new boundary is
used to divide P2 into N3 and P3. This process iterates until
Ni becomes empty. The final class boundary will be close to
the real boundary of the positive data set. We provide the
convergence proof in Section 4.2 and empirical evidence in
Section 5.

The performance of the algorithm �1 does not affect the
performance of M-C. Poor performance of �1 only increases
the training time by increasing the number of iterations in
M-C. (We will discuss this in Section 4.2.) Our experiments
also show that regardless of the poor performance of the

mapping stage, classification accuracy of M-C converges

into that of the traditional SVM trained from labeled data in

every class. (See Figs. 7 and 8 mentioned in Section 5.2.)

4.2 Analysis

This section provides theoretical justification of the M-C

algorithm.
Let U be the space of an iid (identically independently

distributed) sample of the universal set U , and POS be the

space of the positive data set POS. In Fig. 3, let N 1 be the

negative space andP1 be the positive spacewithin U divided

by h (a boundary drawn by �1), and let N i be the negative

space and Pi be the positive space within Pi�1 divided by h0
i

(a boundary drawn by �2). Then, we can induce the

following formulae from the M-C algorithm of Fig. 3.

U ¼ Pi þ
[i

k¼1

N k; ð1Þ

Pi ¼ POS þ
[n

k¼iþ1

N k; ð2Þ

where n is the number of iterations in the M-C algorithm.

Theorem 1: Fast Convergence of Boundary. Suppose U and

POS are uniformly distributed. If the algorithm �1 does not

generate false negatives and the algorithm �2 maximizes

margin, then the class boundary of M-C converges into the

boundary that maximally separates POS and U outside POS.
The number of iterations for the convergence in M-C is

logarithmic to the size of U � ðN 1 þ POSÞ.
Proof. N 1 \ POS ¼ ; because a classifier h constructed by

the algorithm �1 does not generate false negative. A

classifier h0
1 constructed by the algorithm �2, trained

from the separated space N 1 and POS, divides the rest

of the space (U � ðN 1 þ POSÞ which is equal to [n
k¼2N k)

into two classes with a boundary that maximizes the

margin between N 1 and POS. The first half becomes N 2

and the other half becomes [n
k¼3N k. Repeatedly, a

classifier h0
i constructed by the same algorithm �2,

trained from the separated space [i
k¼1N k and POS,

evenly divides the rest of the space [n
k¼iþ1N k into N iþ1

and [n
k¼iþ2N k with equal margins. Thus, N iþ1 is always

half of N i. Therefore, the number of iterations n will be

logarithmic to the size of U � ðN 1 þPOSÞ.
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Fig. 5. Data flow diagram of the Mapping-Convergence (M-C) algorithm.



M-C stops when Niþ1 ¼ ;, i.e., there exists no sample
of U outside POS. Therefore, the final boundary will be
located between POS and U outside POS. tu

Theorem 2: Convergence Safety. If �1 does not generate false
negatives and �2 does not misclassify separable data set in the
feature space, the final boundary h0

n of M-C does not trespass
the positive space POS regardless of the number of iterations
in the algorithm.

Proof. N 1 \ POS ¼ ; because h does not generate false
negatives. When N i \ POS ¼ ;, N iþ1 \ POS ¼ ; be-
cause h0

i, trained from [i
k¼1N k and POS, classifies Pi

into N iþ1 as negative and Piþ1 as positive, and h0
i does

not misclassify separable data set, so N iþ1 \ POS ¼ ;.
Therefore, h0

n, trained from [n
k¼1N k and POS, does not

trespass POS regardless of the number of iterations n
because ð[n

k¼1N kÞ \ POS ¼ ;. tu

By Theorem 1, in order to guarantee the fast convergence
of the boundary, the learning algorithm �1 must not
generate false negatives, and �2 must maximize margin.
First, we can adjust the threshold � of the monotone
disjunction learning algorithm (Fig. 4) so that it makes
100 percent recall by sacrificing precision. (Note that false
positives determine precision and false negatives determine
recall.) Second, SVM maximizes margin. Thus, M-C
guarantees that the boundary converges fast with the 1-
DNF and SVM.

Theorem 2 shows that the boundary does not trespass
the area of positive data set even if we do the iteration an
infinite number of times in M-C. SVM also does not
misclassify separable data set. Thus, M-C also guarantees
that the convergence is safe as well as fast.

We can induce a fact from Theorem 1 that the
performance of the mapping algorithm �1 does not affect
the accuracy of the final boundary but does affect the
training time. The training time of M-C is the training
time of SVM multiplying the number of iterations. By
Theorem 1, the number of iterations is logarithmic to the

size of the negative space (more precisely, the size of U �
ðN 1 þ PÞ which is the negative space subtracted by the
“strong negatives”). The “strong negatives” are deter-
mined by the mapping algorithm �1. Therefore, the
performance of the mapping stage affects only the
training time, but not the accuracy of the final boundary
because the boundary will converge. Our experiments in
Section 5.2 also show that the final boundary becomes
very accurate although the initial boundary of the
mapping stage is very rough. The classification time of
M-C depends on the algorithm �2 because the final
boundary of M-C is a boundary function of �2.

Theorem 1 also shows that the final boundary will be
located between the positive data set (POS) and the
unlabeled data (U) outside the positive area (POS) in the
feature space, which implies that the boundary accuracy
depends on the quality of the samples: POS and U .
Specifically, we can observe that the final boundary will
overfit the true positive concept space if the positive data is
“undersampled”. If the positive data set does not cover
major directions of the positive space, the unlabeled data
outside the area of the positive data set but inside the real
positive concept space will be considered negative by the
final boundary. In this case, an intermediate boundary may
actually be closer to the true boundary because the final
boundary may be overfitting. In practice, positive data set
tends to be undersampled especially when the concept is
highly complicated or the data is manually sampled
because it is often hard to sample the positive data set that
completes the true concept space. In our experiments, the
homepage class and college admission class in Fig. 7, and
the project class and faculty class in Fig. 8 show the peak
performance in an intermediate iterations because their
final boundaries overfit. We discuss this phenomenon more
in Section 5.2.

4.3 One-Class SVM (OSVM)

OSVM also draws a boundary around positive data set in
the feature space [27], [28]. However, its boundary cannot
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Fig. 6. Marginal convergence of SVM: (a) Training first SVM (from N1 and POS) that divides P1 into N2 and P2. (b) Training second SVM (from

N1 [N2 and POS) that divides P2 into N3 and P3.



be as accurate as that of M-C. In this section, we supply the
theoretical justification of why M-C outperforms OSVM. We
also show the empirical evidence of it in Section 5.

Let fxig � � be a data set of N points, with � � <d, the
input space. Using a nonlinear transformation � from � to
some high-dimensional feature space, OSVMs look for the
smallest enclosing sphere of radius R, described by the
constraints:

jj�ðxiÞ � ajj2 � R2 þ �i; 8i; �i � 0; ð3Þ

where jj � jj is the Euclidean norm, a is the center of the
sphere, and �i are slack variables to incorporate soft
constraints. After applying the Lagragian method to solve
this problem, the Lagrangian W is written as:

W ¼
X

i

�iKðxi; xiÞ �
X

i;j

�i�jKðxi; xjÞ: ð4Þ

We use the Gaussian kernel for K because the Gaussian
kernel performs the best for single-class classification as
noted in [27]. That is,

Kðxi; xjÞ ¼ e��jjxi�xjjj2 ; ð5Þ

where � is a parameter that controls the number of support
vectors.

OSVMs require much more positive training data in

order to draw an accurate boundary because support

vectors (SVs) in OSVMs are only supported by positive

data whereas M-C utilizes unlabeled data in addition. SVs

determine the boundary shape. As the number of SVs is

decreasing, the boundary shape is becoming a hypersphere

which will underfit the true concept. When the number of

SVs is increasing, the boundary shape is getting more

flexible and it starts overfitting at some point. Since the SVs

in OSVM are only supported by positive data, the OSVM

overfits and underfits more easily before it draws an

accurate boundary because the small number of positive

support vectors can hardly cover the major directions of the

positive area in the high-dimensional feature space. In our

experiments, OSVM performs poorly even with careful

parameter settings.

5 EXPERIMENTAL RESULTS

In this section, we provide empirical evidence that our
PEBL framework using positive and unlabeled data per-
forms as well as the traditional SVM using manually labeled
(positive and unbiased negative) data. We present experi-
mental results with two different universal sets: the Internet
(Experiment 1) and university computer science depart-
ments (Experiment 2). The Internet (Experiment 1) is the
largest possible universal set in the Web, and CS depart-
ment sites (Experiment 2) is a conventional small universal
set. We design these two experiments with the two totally
different sizes of universal sets so that we verify the
applicability of our method on various domains of
universal sets.

We first consider three different classes for each
universal set and then merge the three into one positive
class of a mixture model. The experiment on the merged
class is to verify the ability of our method on dealing with
the positive classes of mixture models.

5.1 Data Sets and Experimental Methodology

Experiment 1: The Internet. The first universal set in our
experiments is the Internet. To collect random samples of
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Fig. 7. Convergence of performance (P-R: precision-recall breakeven point) when the universal set is the Internet. TSVM indicates the traditional

SVM constructed from manually labeled (positive and unbiased negative) data.

Fig. 8. Convergence of performance (P-R: precision-recall breakeven point) when the universal set is computer science department sites. TSVM
indicates the traditional SVM constructed from manually labeled (positive and unbiased negative) data. UN indicates the SVM constructed from
positive and sample of universal set as a substitute for unbiased negative training data.



Internet pages, we used DMOZ,2 which is a free open
directory of the Web containing millions of Web pages. A
random sampling of a search engine database such as
DMOZ is sufficient (we assume) to construct an unbiased
sample of the Internet. We randomly selected 2,388 pages
from DMOZ to collect unbiased unlabeled data. We also
manually collected 368 personal homepages, 192 college
admission pages, and 188 resume pages to classify the three
corresponding classes. (Each class is classified indepen-
dently.) We used about half of the pages of each class for
training and the other half for testing. For testing negative
data (for evaluating the classifier), we manually collected
449 nonhomepages, 450 nonadmission pages, and 533 non-
resume pages. (We collected negative data just for evaluat-
ing the classifier we construct. The PEBL does not require
collecting negative data to construct classifiers.) For
instance, for personal homepage class, we used 183 positive
and 2,388 unlabeled data for training, and used 185 positive
and 449 negative data for testing.

Experiment 2: University computer science department. The
WebKB data set [29] contains 8,282 Web pages gathered
from university computer science departments. The collec-
tion includes the entire computer science department Web
sites from various universities. The pages are divided into
seven categories: student, project, faculty, course, staff,
department, and others. In our experiments, we indepen-
dently classify the three most common categories: student,
project, and faculty, which contain 1,641, 504, and
1,124 pages, respectively. We randomly selected 1,052 and
589 student pages, 339 and 165 project pages, and 741 and
383 faculty pages for training and testing, respectively. For
testing negative data, we also randomly selected 662 non-
student pages, 753 nonproject pages, and 729 nonfaculty
pages. We randomly 4,093 picked up pages from all
categories to make a sample universal set and the same
sample is used for all the three classes as unlabeled data.
For instance, for faculty page classification, we used
741 positive and 4,093 unlabeled data for training, and
used 383 positive and 729 negative data for testing.

We extracted features from different parts of a pa-
ge—URL, title, headings, link, anchor-text, normal text, and
metatags. Each feature is a predicate indicating whether
each term or special character appears in each part, e.g., “~”
in URL, or a word “homepage” in title. In Web page
classification, normal text is often a small portion of a Web
page and structural information usually embodies crucial
features for Web pages, thus the standard feature repre-
sentation for text classification such as TFIDF is not often
used in the Web domain because it is tricky to incorporate
such representations for structural features. For instance,
occurrence of “~” in URL is more important information
than how many times it occurs. For the same reason, we did
not perform stopwording and stemming because the
common words in text classification may not be common
in Web pages. For instance, a common stopword, “I” or
“my,” can be a good indicator of a student homepage.
However, our feature extraction method may not be the
best way for SVM for Web page classification. Using more
sophisticated techniques for preprocessing, the features
could improve the performance further.

For SVM implementation, we used LIBSVM.3 As we
discussed in Section 3, we used Gaussian kernels because of
its high accuracy. For a positive example-based learning
problem, Gaussian kernels perform the best because of its
flexible boundary shape that fits complicated positive
concept [27]. Table 2 shows the performances of Gaussian
kernels and linear kernels on a mixture model of positive
class. Both TSVM and M-C show better performance with
Gaussian kernels. We discuss more about the choice of
kernels within our framework in Section 6.

We report the result with precision-recall breakeven point

(P-R), a standard measure for binary classification. Accu-

racy is not a good performance metric because very high

accuracy can be achieved by always predicting the negative

class. Precision and recall are defined as:

Precision ¼ # of correct positive predictions

# of positive predictions
;

Recall ¼ # of correct positive predictions

# of positive data
:

The precision-recall breakeven point (P-R) is defined as the

precision and recall value at which the two are equal. We

adjusted the decision threshold b of the SVM at the end of

each experiment to find P-R.

5.2 Results

We compare three different methods: TSVM, PEBL, and

OSVM. (See Table 1 for the full names.) We show the

performance comparison on the six classes of the two

universal sets: the Internet and CS department sites. We

first constructed an SVM from positive (POS) and

unlabeled data (U) using PEBL. On the other hand, we

manually classified the unlabeled data (U) to extract

unbiased negatives from them, and then built a TSVM

(Traditional SVM) trained from POS and those unbiased
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2. Open Directory Project, http://dmoz.org. 3. http://www.csie.ntu.edu.tw/cjlin/libsvm/.

TABLE 1
Precision-Recall Breakeven Points (P-R) Showing Performance

of PEBL (Positive Example-Based Framework), TSVM
(Traditional SVM Trained from Manually Labeled Data),

and OSVM (One-Class SVM) in the Two Universal Sets (U)

The number of iterations to the convergence in PEBL is shown in
parentheses.



negatives. We also constructed OSVM from POS. We tested
the same testing documents using those three methods.

Table 1 shows the P-R (precision-recall breakeven points)
of each method, and also the number of iterations to
converge in the case of the PEBL. In most cases, PEBL
without negative training data performs almost as well as
TSVM with manually labeled training data. For example,
when we collect 1,052 student pages and manually classify
4,093 unlabeled data to extract nonstudent pages to train
TSVM, it gives 94.91 percent P-R (precision-recall breakeven
point). When we use PEBL without doing the manual
classification, it gives 94.74 percent P-R. However, OSVM
without the manual classification performs very poorly
(61.12 percent P-R).

Figs. 7 and 8 show the details of performance convergence
at each iteration in the experiment of the universal set, the
Internet, and CS department sites, respectively. For instance,
consider the graphs of the first column (personal homepage
class) in Fig. 7. The P-R ofM-C is 0.65 at the first iteration, and
0.7 at the second iteration. At the seventh iteration, the P-R of
M-C is very close to that of TSVM. The performance (P-R:
precision-recall breakeven point) of M-C is converging
rapidly into that of TSVM in all our experiments.

The P-R convergence graphs in Fig. 8 show one more line
(P-R of UN), which is the P-R when using the sample of
universal set (U) as a substitute for negative training data.
As we discussed at the end of Section 1, they obviously
show the performance decrement when using U as a
substitute for negative training data because a small
number of false positive training data affects significantly
the set of support vectors which is critical to classification
accuracy.

As we discussed in Section 4.2, for some classes, the
performance starts decreasing at some point of the itera-
tions in M-C. For instance, the convergence graph of the
project class in Fig. 8 shows the peak performance at the
sixth iteration and the performance starts decreasing from
that point. This happens when the positive data set is
undersampled so that it does not cover major directions of
positive area in the feature space. In this case, the final
boundary of M-C, which fits around the positive data set
tightly, tends to end up overfitting the true positive concept
space. Finding the best number of iterations in M-C requires
a validation process which is used to optimize parameters
in conventional classifications. However, M-C is assumed to

have no negative examples available, which makes im-
possible to use the conventional validation methods to find
the best number of iterations. Determining the stopping
criteria for M-C without negative examples is an interesting
further work for the cases that the positive data is seriously
undersampled.

In order to experiment with the ability of M-C on dealing
with the positive classes of mixture models, we combined
the three classes of each universal set to compose one big
composite positive class. In other words, for the first
universal set, the Internet, we made the positive class from
personal homepage, resume page, and college admission
page. For the second universal set, CS department sites, we
compose the positive class of student, project, and faculty
pages. Table 2 shows that both TSVM and M-C perform
well with mixture models. As expected, Gaussian kernels
performs better than linear kernels for this positive
example-based learning problem.

6 DISCUSSION

In this section, we discuss several important issues
pertinent to the PEBL framework.

6.1 Possible Extensions of the PEBL Methodology
to Non-SVM Learning Method?

Other supervised learning methods such as probabilistic
(e.g., naive Bayes) or mistake-driven learning methods (e.g.,
perceptron, winnow) do not maximize the margin. As we
discussed in Section 3, SVM maximizes the margin, which
ensures that the initial class boundary converges into the
true boundary of the two (positive and negative) classes.
Other learning methods do not guarantee the convergence
of the class boundary, and even if they converge the
boundary occasionally, the rate of convergence would be
slower.

6.2 Choice of Kernel Functions

SVMs provide nonlinear transformation of input space to
another feature space using advanced kernels (e.g., poly-
nomial or Gaussian kernels) [11]. Polynomial kernels combine
the input features to create high-dimensional features in the
feature space. As the degree of polynomial kernels grows,
higher-dimensional function is used to try to fit more
training data, which may end up overfitting at some point.
In our experiments with Web pages, even the second degree
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TABLE 2
Precision-Recall Breakeven Points (P-R) Showing the Performance
of PEBL and TSVM on Mixture Models in the Two Universal Sets

The number of iterations to the convergence in PEBL is shown in parentheses.



of polynomial kernels degraded the accuracy due to the
overfitting. Gaussian kernels perform the best for positive
example-based learning because they draw flexible bound-
aries to fit a mixture model by implicit transformation of the
feature space. Gaussian kernels have an additional para-
meter � which needs to be optimized. In our experiments,
we used Gaussian kernels of a fixed �, the same value as
used for TSVM, for fair comparisons with TSVM and OSVM
(which also performs the best with Gaussian kernels [27]).
However, linear kernels also showed very comparable
performance as Gaussian kernels in our experiments
because Web page classification is often considered linearly
separable problem due to its high dimensionality as in text
classification [25]. For pattern recognition problems in other
domains where linear kernels do not work well, optimizing
the parameters of the advanced kernels is necessary at each
iteration of M-C, which could be further work for applying
M-C to other domains. Identifying or building proper
kernel functions for specific problems is still ongoing
research.

6.3 Further Improvements of Algorithm
Performance

The M-C algorithm takes multiple times longer to train one
class than traditional SVM since the iteration of training
SVM has to be serialized due to data dependency between
adjacent iterations. However, only part of the NEG (the
negatives accumulated at each iteration) is dependent
between two iterations, which leaves some room for
speeding up by parallel processing, such as pipelining
techniques. Using pipeline architecture to speed up this
training process and using advanced kernel methods to
increase classification accuracy for specific problems could
be good research directions. Once training is done (a
classifier is constructed), however, the speed of testing
(classifying) is the same as traditional SVMs, which makes
our framework practical in many real-world problems.

6.4 PEBL for Diverse Domains

As based on SVM, PEBL can be applied to other problem
domains where SVM also works well, e.g., pattern recogni-
tion or bioinformatics. The major adaptation would be for
the mapping algorithm to handle numerical attributes
which other domains often use (unlike our current binary
features). Once the mapping stage initializes the strong
negatives from unlabeled data, the convergence stage will
have no difficulties in handling numerical features since
SVMs work well with numerical attribute values.

7 SUMMARY AND CONCLUSIONS

Web page classification is one of the essential techniques for
Web mining because classifying Web pages of an interesting
class is often the first step of mining the Web. However,
constructing a classifier for an interesting class requires
laborious preprocessing, such as collecting positive and
negative training examples. In particular, collecting negative
training examples requires arduouswork and caution to avoid
bias. The Positive Example Based Learning (PEBL) framework
for Web page classification eliminates the need for manually
collecting negative training examples in preprocessing. The
Mapping-Convergence (M-C) algorithm in the PEBL frame-

work achieves classification accuracy (with positive and
unlabeled data) as high as that of traditional SVM (with
positive and negative data). Our experiments show that,
given the same set of positive examples, the M-C algorithm
outperforms one-class SVMs, and it is almost as accurate as
traditional SVM. Currently, PEBL needs an additional
multiplicative logarithmic factor in the training time on top
of that of a SVM. However, as training is typically an offline
process, its increased time may not be critical in practice. For
the more critical online testing, PEBL requires the same time
as SVMs. PEBL contributes to automating the preprocessing
ofWeb page classificationwithoutmuch loss of classification
performance.We believe that further improvements of PEBL
will be interesting, e.g., for applications that require fast
training or numerical attributes.
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