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e classification of protein sequences obtained
with various immunoglobulin-related conform-
S may provide insight into structural correl-
enicity. However, clinical data are very sparse
se of antibody-related proteins, the collected
ve large variability with only a small subset
levant to the protein pathogenicity (function).
these sequences represent a model system
nt of strategies to recognize the small sub-
determining variations among the much larger
ary structure diversifications introduced during
er such conditions, most protein classification
e limited accuracy. To address this problem, we
yort vector machine (SVM)-based classifier that
lence and 3D structural averaging information.
id in the sequence is represented by a set of
mical properties: hydrophobicity, hydrophilicity,
e area, bulkiness and refractivity. Each position
e is described by the properties of the amino
sition and the properties of its neighbors in 3D
 sequence. A structure template is selected to
)hbors in 3D space and a window size is used
he neighbors in the sequence. The test data
proteins of human antibody immunoglobulin
ach represented by aligned sequences of 120
he methodology is applied to the classification
ences collected from patients with and without

1 INTRODUCTION

Critical information relating amino acid changes with the
spectrum of functional attributes exhibited by a protein is usu-
ally buried among sequence mutations irrelevant for invest-
igated attributes. Immunoglobulin-type beta-domains, which
are found in approximately 400 functional distinct forms in
humans alone, provide the immense genetic variation within
limited conformational changes. A protein database com-
piled from patients with and without amyloidosis provides
unique features to serve as a model system, not only for
conformational disease studies but also for the development
of computational methods for analysis of structure—function
relationships among evolutionarily related families. We are
developing computational tools based on the support vector
machine (SVM) (Vapnik, 1998) algorithm to classify proteins
into pathogenic and benign classes and to identify amino acid
variations that contribute to the functional attribute of patho-
genic self-assembly in some human antibody light chains
produced by patients with amyloidosis.

SVMs have been used recently in a wide variety of applica-
tions in computational biology (Noble, 2004). Most applica-
tions of the SVM algorithm for protein classification are based
on sequence information alone (Jaakkola ez al., 2000; Hua
and Sun, 2001; Leslie et al., 2002; Cai et al., 2003), as pro-
tein structures are usually unknown. Earlier, we developed
an iterative SVM-based algorithm for immunoglobulin light
chain classification based on protein sequence information
(Zavalievski et al.. 2002). where each amino acid in the



1ined by the absence of significant single point
1is family and/or by a higher degree of sequence
in the available data.

of some proteins to amyloid formation could
ed by specific sequence motifs, as recently
1 some experimental studies (Lopez de la Paz
2004). In addition, more genetic variability is
g the A light chains than among the « light
ms et al., 1996). To enable the analysis of mul-
've mutations and account for the high degree of
bility, we perform classification based on pos-
orhoods where both sequential and structural
considered, separately.

sumptions are made in considering structural
s. Although there are a large number of immun-
ctures in the PDB, the vast majority of them
not humans—and the detailed structural neigh-
not known for most of the light chains in
However, since immunoglobulin light chains
r 3D structure, we assume that the structure of
n can be used for the classification of closely
hains. We anticipate that classification could
in the future, by combining information from
lamics simulations with that of experimentally
ructures to infer structural information that is
each sequence.

ACH
ts

abase of human light chain sequences from
with and without amyloidosis. Many of
es are reported in a previous paper (Stevens

and others are available in flatfiles at ftp://
.anl.gov/VL-Database/. The database includes
ene families encoded on separate chromosomes
substantial amino acid variation. The « family
by four major subgroups, of which the «; sub-
nost common. The XA family is represented by
, of which three subgroups are analyzed in this
Juences are manually aligned to 120 positions,
count conserved positions in immunoglobulin
uctures. The variability of the sequences in the
et can be auantified bv similaritv scores based

Table 1. Data similarity scores (mean values)

Subgroup Al A2 A3 K1

Size 28/21% 19/20 20/31 36/34
S(b,b) 363(173)° 427(65) 376(90) 474(43)
S(p,p) 419(116) 416(90) 402(90) 467(31)
S, p) 385(154) 416(81) 387(93) 468(37)

2The number of sequences in the pathogenic and the benign classes.
YThe number in parenthesis represents the standard deviation of the score.

the « family. Second, for each family and each subgroup,
there are negligible differences between the average intraclass
similarity scores, S(b, b) and S(p, p), and the interclass simil-
arity scores, S(b, p), which represents a problem for sequence
encoding based on tEi_lrnino acid alphabet alone. This implies
that a successful classifier ought to use additional information,
such as that contained in 3D and sequence structural neighbor-
hoods, so that the encoding (i.e. the weight) of each residue
in the sequence is based not only on the amino acid type but
on its position in the sequence.

2.2 SVM encoding strategy

Since experimental studies have indicated significant correl-
ation between protein physicochemical and structural prop-
erties and protein structural stability (Gromiha et al., 1999;
Raffen er al., 1999), we implement sequence encoding based
on six physicochemical properties: hydrophobicity, hydro-
philicity, volume, surface area, bulkiness and refractivity
(Lohman er al., 1994). This type of encoding, therefore,
provides additional information for amyloid and benign
protein discrimination.

Hence, the encoding of the protein sequence into the SVM
algorithm is represented by a real-value vector of dimen-
sionality equal to the length of the protein sequence (120)
multiplied by the number of physicochemical properties (6)
used to represent each residue. This method enables the
SVM kernel function to account for the physicochemical
changes in the protein sequences and simplifies the incorpor-
ation of the neighborhood information in the SVM algorithm.
It is important to point out, however, that while the selec-
ted set of physicochemical properties used here was proven
to be <iccescfiill 1in onr nrevionie work (7Zavalievelki ot Al
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such as the linear kernel (LK), the Gaussian
polynomial kernel, a variety of string kernels,
smatch kernels (Leslie et al., 2002), have been
ally for protein and gene classification. The
els are based on inexact-matching occurrences
ysequences (kmers).
xtend a standard kernel that takes the inner
) vectors representing two protein sequences
t first average the properties of a residue and
r geometrical neighbors for each residue of the
then take the inner product of the two vectors
property entries. This allows for an area-to-
n instead of a position-to-position comparison
a standard kernel. The position-to-position
 the simplest representation, is able to discrim-
ygenic proteins characterized by point muta-
1to account environmental structural changes
ood area, the area-to-area comparison should
ble to discriminate amyloidogenic and non-
- proteins characterized by multiple mutational
ferences in the amino acid sequence.

are introduced in this paper, sequential and
metric) kernels. The geometric kernel, denoted
lefined as

:xk’xm) = K(S(xk7 T)’ S(xmv T))
= K(Sk,Sm), (1)

X, are vectors representing two amino acid
1d m respectively. S denotes a mapping from
ence to the 3D structure, and 7 is the threshold
size of the 3D neighborhood to be considered.
ximum neighbor distance suggested in protein
es,i.e. T = 8.0 A (Gromiha et al., 1999). The
> vectors s and s, are represented by weighted
e physicochemical properties in the geometric
The average value of property j for position p
is denoted by s, ; and given by

np
Dl Xm0, (), WL G0)
np
il W)

e vector of neighbor positions for position p,
value of nropertv 7 for the re<idue at po<ition

) @

Sm,p,j =

position in the amino acid sequence. It is assumed that the
geometrical neighborhoods are conserved, i.e. the neighbor
positions and their distances for each sequence in the database
are the same as those of the template. This assumption could
be lifted in the future through the use of molecular dynamics
refinement algorithms for the template structural information.

The second kernel, denoted as SeqNB, is the sequential
kernel. This kernel is also described by Equations (1) and (2),
but the number of neighbors around the residue, designated
by n, is specified a priori along the sequence. A fixed average
distance A = 1.3 A between any two consecutive residues is
assumed and used to compute the weights wy ;). The distance
between two residues separated by i positions in the sequence
is i A. For symmetric neighborhoods with n/2 neighbors on
each side, the threshold T for the weight computationisnA /2.

Note that Equation (2) explicitly defines the feature space
and that the kernel in Equation (1) is computed as the inner
product of these features. As a consequence, the Mercer con-
dition (Vapnik, 1998) is satisfied and these kernels are valid
kernels.

This classification problem is run on a previously developed
computer program, ActiveSVM (Yu and Zavaljevski, 2003),
which employs an efficient implementation of the active set
method for solving the quadratic optimization, along with two
regularization parameters to provide control for the sensitivity
and specificity of the classifier (Veropoulos et al., 1999).

3 RESULTS
3.1 Classification performance

The ActiveSVM algorithm with three different kernels was
applied to four subgroups of immunoglobulin light chains.
The geometric kernel is denoted by GeoNB(id), where id rep-
resents the PDB identification of the selected template. The
sequential kernel is denoted by SeqNB(#), where n represents
the number of sequential neighbors in the sequence segment of
length n+1, with n/2 neighbors on each side. The third kernel
in our implementation is LK. The LK is selected here to rep-
resent a standard kernel, as it was found to be the best kernel in
our previous study (Zavaljevski ez al., 2002). Table 2 shows the
performance based on the leave-one-out training/testing pro-
cedure. In addition to the overall classification error, Table 2
also presents the classifier sensitivity. For this application,
sensitivity 18 considered more imbportant than specificitv. The



~ation performance

K  SeqNB(n) GeoNB(id)
n=2 n=4 1BIM IDCL 1LIL 1REI
(A1) (*2) A3) (k1)

3 22 22 39 29 29 31
] 86 82 68 71 75 71
4 35 28 39 39 41 39
3 63 74 58 63 53 63
5 43 37 35 33 26 31
5 45 55 55 55 75 55
3 30 26 30 36 30 34
2 69 75 69 64 67 64
ty.

in Table 2 show significant variability in kernel
or different subgroups. The best results for each
righlighted in bold face.

ging improves performance for the highly vari-
, it has a detrimental effect on the « family.
1s study, several critical point mutations were
« family. When the sequences that have low
are averaged, averaging reduces information
he contrary, for sequences with high variabil-
can improve the signal to noise ratio and thus
ification. This is the case for the A family, where
sistently provides better performance than the

irprising result is the critical dependence of
ice of the geometric kernel on the selection
ral templates. A significant improvement is
only the Az subgroup. However, it is prob-
e specific structural templates could improve
r the other groups as well. Without a struc-
, the classification error for the A3 subgroup
the structural template 1LIL reduces the error
1 significant increase in sensitivity from 45 to
the best kernel for the A3 subgroup. The per-
Its using the structural templates from the other
lin light chains (1BJM, 1DCL and 1REI) are
| for this subgroup, when compared with the
>d by the LK. The best kernels for subgroups 1
aNB(() and SeaNB(4) respectivelv althouch
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Fig. 1. ROC curve for the A family.
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nsitivity and significance results of the SVM classification

Error (%) Sensitivity (%)
Mean Significance (P-value)* Mean Significance (P-value)
LK SeqNB LK SeqNB
37.9 283 6.0 x 107! 58.1 67.3 1.0 x 1078
37.3 33.1 1.0 x 107 59.8 66.5 9.2 x 1076
433 38.0 45x 1073 534 62.5 1.5 x 1073
40.2 38.2 5.4 x 1072 57.9 63.1 1.5x 1074
es the probability that the differences between two results are due to chance.
a are pooled together to produce a dataset of 4 COR1 CORY COR3
3
3

15 pathogenic proteins. Averaging is performed
ighbors for the 1| and A, subgroups andn = 6
he A3 subgroup, as Table 2 and additional sim-
hown here) suggest a larger neighborhood for
e results over 50 such resamplings are given
> Wilcoxon signed rank test (Myers and Well,
med on the error and sensitivity results for each
results show statistically significant improve-
nance when sequential averaging is used in the
mprovement in sensitivity is more significant.
ice for the pooled data is worse than the per-
he individual subgroups and is driven by the
ation error of the A3 data.

e biological interpretations

esults suggest that the mechanisms of amyloid
oht be different for the Az subgroup, perhaps
fference in intrinsic propensity towards fibril

ght into possible mechanisms for this sub-
d by calculating the scores X; for position p
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Fig. 2. Difference in X;% scores for each position without and with
the 1LIL template.

where X§|W denotes the score computed without the struc-

tural template and XI% |7 denotes the score computed with the
template 1LIL. This difference for the 120 amino acid posi-
tions is presented in Figure 2. The three highlighted regions
are highly variable regions outside of the protein hydrophobic
core, known as the complementarity-determining regions
(CDRs). It has been suggested that amyloidosis is related to
the protein hydrophobic core (Hoshino ez al., 2002). As a con-
sequence, CDRs contribute less to amyloid formation. When
the structural template is introduced, a significant increase in
importance (denoted by a negative value in X ;) of some pos-
itions outside of the CDRs can be observed. The importance
of the variable regions is either suppressed or insignific-
ant, except for a few positions in CDR3. The overall effect
of the structural template improves amyloid discrimination,
since the importance of regions that are expected to contrib-
ute to amvloid formation s<such as hvdrophobic recions i<



wmyloidosis. The difference at the position of
1s structural importance. This amino acid is
le classic ‘tyrosine corner’ in which it forms
ygen bond to the backbone carbonyl of Asp82.
e between Asp82 and Arg61 was implicated as
in x family amyloidogenesis (Stevens, 2000).

USIONS

sults presented in this study indicate that modi-
1e standard SVM kernels improve discrimin-
on and pathogenic sequences in the presence
ence variability. Proper neighborhood struc-
ed for averaging of physicochemical properties
>quence data. Thus, the major contribution of
he provision of an encoding strategy, which
special kernel functions tailored for this applic-
a mechanism for differential weighting of each
sequence that considers the interactions with
sidues. In this way, the encoding of each residue
e considers not only the amino acid type in that
so the location of the amino acid in the sequence.
“ific case of immunoglobulin light chains, the
neighborhood structures among light chain
ght suggest various mechanisms of amyloid
each subgroup. For example, for the «; sub-
sity for amyloid formation could be traced to
witations at specific positions. For the A; and
. short motifs of 3-5 amino acids in protein
1ld indicate propensity for amyloid formation.
of mechanisms for the A3 subgroup is more
night suggest effects of non-local interactions
yrmation, since a significant improvement is
his subgroup only when structural neighbor-
led. However, due to very limited data, these
re only tentative and should be validated as
ental data become available. The importance
tabase of human immunoglobulin light chains
critical for determination of risk factors in the
> point mutations or sequence motifs. For lar-
nore sophisticated methods for sequence motif
1d be implemented.

ction, i.e. the identification of the key amino
1ence that are important in the characterization

to classification. In this manner, we could reduce the dimen-
sionality of the encoding vector input to the SVM, reducing
noise and potentially improving classification accuracy.

Another future direction for potentially improving pro-
tein classification is the computation of optimized structural
templates. Strategies to be evaluated could include: cre-
ating models that incorporate all (human and non-human)
sequences in the database and employing molecular dynamics
for protein structure refinement. A second strategy addresses
missing templates, i.e. germline representatives for which no
structural representative currently exists in the database. In
this case, models would be constructed by amino acid replace-
ments of the most similar representative in the database,
followed by energy minimization/molecular dynamics.

Many functionally diverse proteins share very similar
folds. The distinction between amyloidogenic and non-
amyloidogenic proteins is analogous to the distinction of
proteins that have known function from those that do not have
that function. Increasingly, due to increases in the number of
known structures and improvements in recognition of fold at
low levels of sequence similarity, it is possible to identify a
probable fold. We anticipate that optimized incorporation of
structural information with SVM algorithms could contribute
significantly to the generation of functional hypotheses for
proteins of currently unrecognized function.
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