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ABSTRACT
Motivation: High-throughput and high-resolution mass spectrometry
instruments are increasingly used for disease classification and thera-
peutic guidance. However, the analysis of immense amount of data
poses considerable challenges. We have therefore developed a novel
method for dimensionality reduction and tested on a published ovarian
high-resolution SELDI-TOF dataset.
Results: We have developed a four-step strategy for data pre-
processing based on: (1) binning, (2) Kolmogorov–Smirnov test,
(3) restriction of coefficient of variation and (4) wavelet analysis.
Subsequently, support vector machines were used for classification.
The developed method achieves an average sensitivity of 97.38%
(sd = 0.0125) and an average specificity of 93.30% (sd = 0.0174)
in 1000 independent k -fold cross-validations, where k = 2, . . . , 10.
Availability: The software is available for academic and non-
commercial institutions.
Contact: zlatko.trajanoski@tugraz.at

1 INTRODUCTION
The novel biotechnology of high-throughput and high-resolution
MALDI-TOF (matrix-assisted laser desorption and ionization time-
of-flight) mass spectrometry (MS) makes it promising to explore
the low-molecular-weight (LMW) region of the blood proteome
for the diagnosis of significant patterns for various diseases (Lilien
et al., 2003; Liotta et al., 2003; Petricoin and Liotta, 2003, 2004;
Wulfkuhle et al., 2003). Molecular and statistical approaches to
identifying ovarian cancer in the early stage are urgently needed,
and much work has already been done (Anderson et al., 2003;
Bao-Ling et al., 2002; Petricoin et al., 2002a,b; Qu et al., 2002;
Vlahou et al., 2003; Wu et al., 2003; Yu et al., 2004). In this work
we considered the SELDI-TOF (surface-enhanced laser desorption
and ionization time-of-flight) low-resolution and high-resolution raw
MS data provided by National Cancer Institute (NCI),1 relative to a
study conducted to discriminate ovarian cancer from normal tissue.

∗To whom correspondence should be addressed.
1See http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp for details.

The published high-resolution data achieved with extensive quality
control and assurance (QC/QA) analysis allow superior classifica-
tion patterns when compared to those obtained with low-resolution
instrumentation (Conrads et al., 2004). Recently NCI has published
on its website the ovarian high-resolution QqTOF SELDI data min-
ing results of the concordant m/z regions found by some particular
classifications, with both sensitivity and specificity of almost 100%.
Even now, universal robust methods for identifying ovarian cancer
from MS data are still in development.

One of the best challenges is to keep the discriminatory features
between two classes of interest while reducing the intolerable dimen-
sionality (Duda et al., 2001). Petricoin et al. (2002a) used genetic
algorithms and self-organizing clustering analysis to extract the dis-
criminatory proteomic pattern from the low-resolution training set,
achieving sensitivity and specificity of 100% simultaneously in some
particular testing trials. Since the result of genetic algorithm con-
verges to a local optimal solution, distinct random initializations
of this iterative searching algorithm may lead to distinct solutions.
This brings some problems when trying to identify significant bio-
markers. Still, it is believed that there should be some interesting
relationships between the extracted discriminatory patterns (Zhu
et al., 2003). From the ovarian high-resolution MS data, Conrads
et al. (2004) showed that the most frequent m/z ratios extracted by
a similar method are 845.0895, 8602.237 and 8709.548. Vlahou
et al. (2003) tested the method of classification and regression tree
(CART) on the ovarian cancer discrimination from benign diseases
and healthy controls, which resulted in a cross-validation accuracy
of 81.5%.

In this work we have developed a novel method for dimensionality
reduction and tested on a published ovarian high-resolution SELDI-
TOF data set. We will show that the accuracy can be improved to
85–90% on the binned MS data. Several statistical methods for the
classification of ovarian cancer based on MS spectra have been com-
pared in Wu et al. (2003), and the method of random forest was
demonstrated to outperform other methods like linear discriminant
analysis, quadratic discriminant analysis, k-nearest neighbor (k-NN),
bagging (Bauer and Kohavi, 1999) and boosting classification trees.
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Fig. 1. Classification tree on the binned MS ovarian data, where xi denotes the intensity at the i-th binned m/z ratio.

2 SYSTEMS AND METHODS
We make the following assumptions:

(1) If the intensity distributions of control and cancer are distinct at a
specific m/z, this m/z ratio is supposed to be a useful feature to the
classification.

(2) For the control and cancer data respectively, the m/z at which the
random variable of intensity has a small coefficient of variation (CV)
is representative.

The MS dataset can be written as S = {(xi , yi)|xi ∈ R
m, yi = ±1, i =

1, 2, . . . , n}, where xi is an intensity vector according to a sorted sequence of
m/z ratios and yi is the class label of xi (−1 for the healthy, +1 for cancer).
A binary optimal classifier is a function f :Rm → ±1 such that f (xi) = yi

for both a training subset and testing subset of S. When the feature space is
high-dimensional, feature selection becomes crucial as the first step towards
pattern recognition. For the raw ovarian high-resolution SELDI-TOF dataset
composed of 95 control samples and 121 cancer samples, the dimension of
the original feature space is over 370 000.

To improve the performance of identifying ovarian cancer, we make use
of a four-step data preprocessing procedure: (1) binning, (2) Kolmogorov–
Smirnov (KS)-test based feature selection, (3) restriction of coefficient of
variation and (4) discrete wavelet transformation. All the procedures do not
depend on the particular classifier that will be used later, since they act just
on the numerical characteristics of the MS data. Therefore, various classifiers
could be trained and tested on the preprocessed data.

3 BINNING OF RAW MS DATA
In the first step, binning of raw MS data is performed (Fig. 1). Since
the length of the observed m/z sequence varies in the raw MS data,
we prepared the data as follows:

(1) Align the study sets according to the sorted union of m/z ratios
into an intensity frame with missing data.

(2) To reduce the dimensionality, we binned the frame, at a given
bin length l > 0, into a matrix A of m-by-n, where n = 216

Table 1. Mass spectrometry data matrix of control and cancera

m/z −1 · · · −1 1 · · · 1

r1 x1,1 · · · x1,k x1,k+1 · · · x1,n

r2 x2,1 · · · x2,k x2,k+1 · · · x2,n

...
...

rm xm,1 · · · xm,k xm,k+1 · · · xm,n

x1 · · · xk xk+1 · · · xn

aFor the sake of following preprocessings and support vector machine (SVM) classific-
ation, the intensity observation is recorded in the column vector.

(121 ovarian cancer samples and 95 control samples) and m

is determined by l (Table 1). Each bin is an interval of the
form [b, b + l], where b, l ∈ R

+. For the binned data, without
ambiguity, the m/z ratio stands for the left boundary of an
interval. After binning with b ∈ N, l = 1, the dimension is
reduced from 373 401 to 11 301.

The missing data are ignored in binning. Using 0-1 cost and 10-fold
cross-validation, the classification tree achieves a precision of 85–
90% on the binned MS data. But since CART is a greedy algorithm
that decreases the Gini impurity the most at each step (Duda et al.,
2001), in general it does not guarantee an optimal reduction of
entropy. The precision of the decision tree is regarded as a reference
base line for the ovarian cancer diagnosis.

4 KS-TEST BASED FEATURE SELECTION
For each m/z ratio ri , we compare the distributions of values in data
vectors Xi = (xi,1, . . . , xi,k) and X′

i = (xi,k+1, . . . , xi,n) by a two-
sided KS-test (i.e., the null hypothesis H0 is that Xi and X′

i have
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(a)
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Fig. 2. (a) The estimated densities of raw m/z ratios selected by the KS-test with different p-values. The most frequent m/z ratios are around 8000, in accordance
with m/z regions found by NCI. (b) The same experiments as (a) on the unit-binned m/z values. The dotted lines are the estimated distributions of binned m/z
ratios further selected by a coefficient of variation (CV) restriction with threshold t = 0.4. This figure can be viewed in colour on Bioinformatics online.

the same distribution) with a given significance level α. For instance
with α = 5%, H0 cannot be rejected at m/z = 703, but rejected at
m/z = 8000. The dimension of feature space is reduced to 8094 after
choosing only the features that do not pass the KS-test at 5% level.

More flexible feature selection can be based on the reason-
ably accurate p-values that are guaranteed by nin

′
i/(ni + n′

i ) ≥ 4,
where ni and n′

i are the sample sizes of Xi and X′
i respect-

ively (Lehmann, 1975). As a comparison, Figure 2a shows the

distributions of raw m/z ratios selected by KS-tests with dis-
tinct p-values (ignoring the missing intensity observations) which
are quite different from those of the binned data plotted in
Figure 2(b).

As Liotta et al. (2003) pointed out, the traditional single biomarker
for a particular cancer makes little sense from a biological perspect-
ive, with poor identification of early-stage cancer and the benign. For
instance, the widely used biomarker of cancer antigen 125 (CA125)
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Fig. 3. Empirical cumulative distributions of intensity CV for control and cancer on the sets of binned m/z ratios selected by KS-tests with different p-values.
Given a CV threshold tH = tC = 0.4, for the healthy, the proportion of m/z features with CV ≤ tH is more than that for the cancerous, especially when − lg p

increases. This figure can be viewed in colour on Bioinformatics online.

for ovarian cancer can only detect 50–60% of patients with stage
I ovarian cancer. In contrast to the traditional way, the LMW bio-
markers foreshow a satisfiable clinical application to early diagnosis
of ovarian cancer (Petricoin et al., 2002a,b). From the viewpoint of
pattern recognition, the biomarkers are those key features that allow
a well-done classification. Usually, classification and feature selec-
tion are entangled. To avoid the over-fitting problem, several trials of
feature selection are suggested, independent of classifiers as much as
possible. Also, in our opinion, the biomarkers could be many selec-
ted binned m/z ratios, not necessarily particular m/z ratios if they are
not able to yield a satisfiable result (Diamandis, 2004).

5 RESTRICTION OF COEFFICIENT OF
VARIATION

For a positive random variable X, the coefficient of variation (CV)
is defined as c = sd(X)/E(X), which can be estimated by ĉ = s/X̄

where s and X̄ are the sample standard deviation and sample mean
respectively. The m/z ratio with relatively small CV is considered
as a useful feature for the classification. The CV of intensity for the
healthy and cancerous will be considered separately.

Given CV thresholds of intensity, for instance tH = 0.4, tC = 0.4
for the healthy and cancerous, the feature space dimension is reduced
from the second to the fourth column in Table 2.

The estimated distributions of binned m/z ratios selected by
the KS-test with distinct p-values and a CV restriction of t = tH =
tC = 0.4 are illustrated in Figure 2b. We suggest a threshold such that
85–95% of the binned m/z ratios are included by the respective empir-
ical cumulative distribution function (CDF) of CV for control and
cancer. By empirical CDFs of CV, one can choose the probabilities
for control and cancer in advance, then get the corresponding CV

Table 2. Feature selection by KS-test and CV restrictiona

− lg p Count of selected m/z ratios
CV restriction

KS-test tH = 0.4 tC = 0.4

2 6936 6459 5703
3 5757 5366 4678
4 4818 4489 3855
5 3854 3585 3000
6 2950 2749 2208

aThe italicized numbers are the consequential dimensions of feature space after a CV
restriction.

thresholds (Fig. 3). In the following, we will set p-value = 0.05 and
tH = tC = 0.4, which reduces the dimension of the feature space
from the original 373 401 to 6757.

Alternatively, for normally distributed n control (or cancer) intens-
ities at a particular binned m/z ratio, the point estimate of c can
be replaced by a (1 − α)-confidence upper bound c̃ conservatively,
determined by the following equation:

Ft(n−1,
√

n/c̃)(
√

n/ĉ) = 1 − α (1)

where Ft(n−1,
√

n/c̃)(·) is the non-central t distribution function with
freedom degree n − 1 and non-central parameter

√
n/c̃. Especially

when ĉ ≤ 0.3, by McKay’s theorem (McKay, 1932),

n(s/X̄)2(1 + c2)

[1 + (s/X̄)2]c2
∼ χ2(n − 1) (2)
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Fig. 4. Single-level DWT of binned m/z data (the X-axis in the first figure is the ordering of binned m/z ratios, not m/z values). This figure can be viewed in
colour on Bioinformatics online.

we have a (1 − α)-confidence upper bound

c̃ ≈
{

χ2
α(n − 1)[1 + (s/X̄)2]

n(s/X̄)2
− 1

}−1/2

(3)

6 WAVELET TRANSFORMATION
Wavelet analysis has achieved a broad and successful application to
pattern recognition in the last decade, such as in image compres-
sion, turbulence or earthquake prediction. It is also an efficient way
to compress self-similar data, localizing a signal in both time and
frequency (Chui, 1992; Daubechies, 1992). Compared with Fourier
transformation, wavelets have advantages in analyzing physical situ-
ations where the signal contains discontinuities and sharp spikes.
Recently, there is a growing interest in applying wavelet analysis to
biomolecular related signals (Liò, 2003).

After applying the pyramidal algorithm (Mallat, 1989) of discrete
wavelet transformation (DWT, linear complexity), the binned selec-
ted MS spectrum is compressed further to a 3382-dimensional vector
of approximation coefficients, which contains most key information
for classification (Fig. 4). Considering the dimension reduction, the
undecimated DWT without restriction on the length of signal (tradi-
tionally it must be a power of 2) is not preferred, although it is superior
to the ordinary one in many statistical applications (Nason et al.,
2000). The mother wavelet used in the experiment is Daubechies
family (db4) and the boundary values are symmetrically padded.
The vector of approximation coefficients acts as a fingerprint of the
original raw MS data, with a compression rate of more than 100.
What is more, the two samples are separated in a manner of keeping
the main discriminatory information for classification. Theoretically,
a heavier compression rate can be achieved, at the risk of losing some

Table 3. Average performances of SVMs on the low-resolution and wavelet-
reduced ovarian data in 1000 independent 2-fold cross validations

Data Control Cancer
Mean SD Mean SD

Approximate coefficients 0.9113 0.0148 0.9975 0.0042
Detail coefficients 0.9116 0.0200 0.9919 0.0102
Original 0.9112 0.0147 0.9975 0.0042

useful information, by choosing a higher level of approximation
coefficients.

When applying the procedure recursively, a KS-test on the dataset
of wavelet approximation coefficients, with a significance level α =
5%, can hardly reduce the dimension of the feature space any more,
neither does the reasonable restriction of CV. Therefore, in a sense
of data reduction, the vector of approximation coefficients inherits
the key discriminatory traits of MS data.

For the high-resolution ovarian data, the vector of detail coeffi-
cients contains almost no information for the healthy, since SVMs
identify all the data as cancers. In contrast, the detail coeffi-
cients calculated from the low-resolution ones lead to acceptable
results (Table 3). Without KS-test based feature selection and
restriction of CV, the original low-resolution ovarian dataset 8-7-
02 (91 controls versus 162 cancers, http://ncifdaproteomics.com/
lowresovarian.php) with 15 154 features are well classified by SVMs
of Gaussian kernel parameterized by γ = 2, C = 1 (Section 4).
Compressed by db2, even the data of detail coefficients yield a good
result, especially on the identification of ovarian cancer.
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(a) (b)

Fig. 5. (a) Distribution of precision in 1000 independent 2-fold proportional validations. There are totally 106 times that the classifier yields more than
98.3% sensitivity and 97.8% specificity simultaneously in the 1000 random experiments, in which eight times of both 100% sensitivity and 100% specificity.
(b) Distribution of SV number in the last experiment. To achieve both 100% sensitivity and 100% specificity, at least 72 support vectors (35 controls and
37 cancers) are needed. The median counts of control SVs and cancer SVs are 35 and 39 respectively. In general, �(Control SVs)/�(Training Controls) <

�(Cancer SVs)/�(Training Cancers), except 24 accidents. This figure can be viewed in colour on Bioinformatics online.

7 CLASSIFICATION BY SVM
The SVM method is a widely used classification method of Statistical
Learning Theory, originally started by Vapnik and Chervonenkis in
the 1960s (Vapnik, 1998). In case that the training set S is linearly
separable, the support vector (SV) classifier (Burges, 1998; Cortes
and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Schölkoft,
1997) is the hyperplane H :wTx+b = 0 (where w ∈ R

m, b ∈ R) with
the maximal margin separating the two classified subsamples of S.

Generally in the linearly non-separable case, we reach at a
soft margin allowing training errors (Shawe-Taylor and Cristianini,
2000), where the classifier H is the solution of the optimization
problem that is solved by the method of quadratic programming.

Another approach to the linearly non-separable case is the kernel
method (Shawe-Taylor and Cristianini, 2004; Schölkoft and Smola,
2002), by which the training data are mapped into a higher dimen-
sional feature space H (may be infinite) and become more separable,
provided that the map ϕ makes K(x, y) = ϕ(x)Tϕ(y) a kernel
function guaranteed by the Mercer’s condition (Vapnik, 1998).

Besides these techniques, there are still many significant methods
of SVM in the published literature that are far more than what it would
be appropriate to include here. Quite a few linkages to free SVM
softwares or packages, implemented in C (or C++), Fortran, Java,
Perl, R and MatLab are available at http://www.support-vector.net/
software.html, for instance some popular ones like Joachims’
SVMlight (Joachims, 1999) and Lin’s libSVM (Lin, 1999).

Applied to the vectors of normalized wavelet approximation
coefficients, the Gaussian radial basis function K(xi , xj ) =
exp(−γ ‖xi − xj‖2) was adopted as the kernel of the non-linear
SV classifier.

The performance of classification, for a more comprehens-
ive review, was examined by (1) k-fold cross-validation, where
k = 2, 3, . . . , 10; (2) k-fold proportional validation: randomly
select 100(1 − 1/k)% controls and 100(1 − 1/k)% cancers as
the training set and test the classifier on the remaining samples;

and (3) leave-one- out cross-validation. For each k-fold valida-
tion, the random experiment was repeated 1000 times independently
(Fig. 5).

In leave-one-out cross-validation, six controls and two cancers
were misclassified (NCI’s high-resolution ovarian data contain 95
controls and 121 cancers). In addition, by the comparison of standard
deviation between the classification precisions, all the k-fold (cross,
proportional) validations show that the SV classifier is relatively
stable to the cancer samples but mutable to those controls (Table 4),
which coincides with our intuition about the nature of noise in control
data. For each k-fold validation, the average precisions are estimated
by the results of 1000 independent random experiments. Obviously,
k-fold proportional validation is stricter than k-fold cross-validation,
and better at surveying the robustness of classifier for each category.
For instance, the worst specificity and sensitivity in 2-fold cross-
validations were 85.96 and 90.30%, respectively, while for 2-fold
proportional validations they were 76.60 and 86.67% [Fig. 5(a)].
Moreover, the fact of bigger and bigger deviations of control pre-
cision in k-fold proportional validations indicates that the SVM
overfitting problem seems more serious for the control samples. The
same thing also happens to the SV classification on the more reduced
data by principal component analysis (PCA) discussed in the next
section.

Another compelling application is the bagging (Bauer and Kohavi,
1999) of one-hidden-layer neural network. In leave-one-out cross-
validation, each training set is resampled 100 times to estimate the
output (Fig. 6, Table 5). Totally, only one cancer and four controls
are misclassified. However, its complexity is inferior to SVMs.

Besides decreasing the computational complexity, the procedure
of ‘raw MS data → binned MS data → KS-test based feature selec-
tion → restriction of CV → wavelet analysis’ depurates the original
data, and explores their category traits for the coming classification.
Some other classifiers are able to benefit from the procedure as shown
in the next section.
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Table 4. k-fold (cross, proportional) validation of SVM (γ = 20, C = 0.7) on the preprocessed data

k k-fold cross-validation k-fold proportional validation
Control Cancer Control Cancer
Mean SD Mean SD Mean SD Mean SD

2 0.9330 0.0174 0.9738 0.0125 0.9335 0.0362 0.9747 0.0217
3 0.9393 0.0188 0.9783 0.0115 0.9411 0.0397 0.9772 0.0234
4 0.9409 0.0200 0.9786 0.0118 0.9431 0.0456 0.9780 0.0279
5 0.9425 0.0203 0.9794 0.0119 0.9451 0.0503 0.9811 0.0266
6 0.9411 0.0223 0.9806 0.0118 0.9429 0.0597 0.9800 0.0320
7 0.9412 0.0210 0.9805 0.0118 0.9432 0.0646 0.9812 0.0326
8 0.9414 0.0222 0.9815 0.0117 0.9401 0.0708 0.9814 0.0336
9 0.9423 0.0231 0.9817 0.0117 0.9433 0.0716 0.9806 0.0397

10 0.9406 0.0226 0.9819 0.0113 0.9447 0.0739 0.9829 0.0385
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Fig. 6. The average prediction of each testing sample point in leave-one-out cross-validations, based on the resampled training set.

Table 5. 2,10-fold cross-validations for the bagging of one-hidden-layer
perceptron by the backpropagation algorithma

Cross-validation Control Cancer
Mean SD Mean SD

2-fold 0.9312 0.0182 0.9617 0.0155
10-fold 0.9484 0.0201 0.9775 0.0127

aThe number of hidden units is 300 and the transfer function is tansig.

8 ALTERNATIVE CLASSIFIERS
The method illustrated in the previous section leads to a good result
in classification, especially when dealing with cancer samples. In an
effort to reach a better precision of identifying controls, we tested
several algorithms (voted perceptron, discriminant analysis, decision
trees, naïve Bayes, some meta learning schemes like bagging and
decorate, random forest) on the preprocessed data as described in
Sections 2 and 3, but the precisions were generally inferior to those
obtained by SVMs (results are shown in Table 6).

Since the high number of features (3382) could affect the per-
formance of the mentioned classification algorithms, we performed
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Table 6. 2,10-fold cross-validations of some methods on the preprocessed data

Method 2-fold cross-validation 10-fold cross-validation
Control Cancer Control Cancer
Mean SD Mean SD Mean SD Mean SD

VP 0.9254 0.0284 0.9527 0.0231 0.9445 0.0133 0.9700 0.0123
ADAboost 0.8959 0.0304 0.9192 0.0254 0.9205 0.0269 0.9403 0.0164
1-NN 0.8320 0.0301 0.8935 0.0226 0.8598 0.0149 0.9245 0.0103
3-NN 0.8131 0.0352 0.8963 0.0273 0.8362 0.0162 0.9299 0.0117
ADtree 0.8180 0.0432 0.8621 0.0350 0.8377 0.0271 0.8805 0.0299
J48tree 0.7785 0.0441 0.8250 0.0378 0.8022 0.0302 0.8462 0.0305
Random forest 0.7760 0.0306 0.8178 0.0232 0.8226 0.0089 0.8389 0.008
Naive bayes 0.6591 0.0162 0.7186 0.0124 0.6604 0.0055 0.7212 0.0450

Table 7. k-fold (cross, proportional) validation of SVM (γ = 1.7, C = 0.7) on PCA-reduced data of the first nine componentsa

k k-fold cross-validation k-fold proportional validation
Control Cancer Control Cancer
Mean SD Mean SD Mean SD Mean SD

2 0.8930 0.0267 0.9492 0.0270 0.8983 0.0465 0.9533 0.0448
3 0.9034 0.0246 0.9650 0.0213 0.9041 0.0506 0.9640 0.0412
4 0.9058 0.0255 0.9722 0.0177 0.9102 0.0575 0.9715 0.0370
5 0.9066 0.0256 0.9740 0.0162 0.9095 0.0604 0.9746 0.0371
6 0.9094 0.0262 0.9760 0.0149 0.9091 0.0695 0.9764 0.0392
7 0.9083 0.0267 0.9773 0.0141 0.9083 0.0788 0.9782 0.0375
8 0.9098 0.0264 0.9784 0.0134 0.9104 0.0838 0.9769 0.0401
9 0.9098 0.0262 0.9801 0.0125 0.9088 0.0871 0.9785 0.0420

10 0.9096 0.0269 0.9801 0.0127 0.9081 0.0920 0.9803 0.0429

aCompared with the results recorded in Table 4, the data reduction by PCA does not affect the sensitivity very much, but makes the specificity worse (Fig. 7).

a PCA on the preprocessed data, in order to further decrease their
dimensionality. Since finding the optimal number of components
for accurate classification is a non-trivial task, we applied several
algorithms to the PCA-reduced dataset with a different amount
of components, and at last selected the first nine as the coordin-
ates of the updated feature space, which explain 90% variance of
the data.

In leave-one-out cross-validation, nine controls and two cancers
are misclassified by the SVM with parameters γ = 1.7 and C = 0.7.
The other experimental results of this SVM are reported in Table 7.
If the training set is large enough, for instance as big as those in
4-fold cross-validation, the PCA reduction affects the distribution of
sensitivity little. But it is not the case for specificity (Fig. 7).

The classifier of Voted Perceptron (VP) (Freund and Schapire,
1999), a method of combining Rosenblastt’s perceptron algorithm
(Duda et al., 2001) with Helmbold and Warmuth’s leave-one-out
method (Helmbold and Warmuth, 1995), is also an approach to
small sample analysis, taking advantage of the ‘boundary data’ of
largest margin just as SVM does. Using the more reduced data pro-
jected on the first nine components, VP achieves a best performance
in k-fold cross-validations, compared with quadratic discriminant
analysis (QDA), linear discriminant analysis (LDA), Mahalanobis
discriminant analysis (MDA), k-NN, naïve Bayes (NB), bagging
(bootstrap aggregating), ADtree and J48tree (Table 8). When the

pooled covariance matrix of training data is not positive definite, a
common solution is to randomly perturb the training data.

9 IMPLEMENTATION
The software was implemented by OSU SVM toolbox for MATLAB,
based on Dr Lin’s libSVM-v.2.33. Most of the other classification
algorithms were taken or re-adapted from the versions present in
WEKA (Witten and Frank, 2000).

10 DISCUSSION
We have developed an efficient method for dimensionality reduc-
tion from MS data based on a 4-step strategy: (1) binning;
(2) two-sample KS test, (3) restriction of coefficient of variation and
(4) wavelet analysis. By efficient preprocessing of high-resolution
ovarian MS data, SVMs achieve a satisfiable performance of
identifying cancer and the healthy. On the one hand, data pre-
processing reduces the dimension of feature space; on the other
hand it extrudes the most significant category traits for the coming
classification.

Although low-resolution data also lead to a high precision in identi-
fying cancers, a recent study (Baggerly et al., 2004) pointed out many
of the problems that seem to characterize this dataset, partly connec-
ted with experimental procedure and design, partly with technical
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Fig. 7. Estimated densities of precisions in k-fold cross-validations, where k = 2, 3, . . . , 10. This figure can be viewed in colour on Bioinformatics online.

Table 8. 2,10-fold and leave-one-out cross-validations of VP, QDA, LDA, MDA, NB, bagging, k-NN, ADtree and J48tree on PCA-reduced data of the first
nine componentsa

Method 2-fold cross-validation 10-fold cross-validation �(misclassifications) of leave-one-out
Control Cancer Control Cancer
Mean SD Mean SD Mean SD Mean SD Control Cancer

VP 0.9393 0.0209 0.9583 0.0192 0.9482 0.0140 0.9691 0.0096 3 3
QDA 0.9202 0.0224 0.9429 0.0226 0.9255 0.0264 0.9647 0.0161 4 2
LDA 0.9179 0.0189 0.9467 0.0156 0.9255 0.0267 0.9522 0.0193 7 1
MDA 0.9392 0.0243 0.9154 0.0291 0.9591 0.0201 0.9267 0.0237 3 10
NB 0.8803 0.0280 0.9190 0.0203 0.8979 0.0130 0.9249 0.0088 9 9
Bagging 0.8835 0.0307 0.9174 0.0224 0.8977 0.0145 0.9232 0.0113 9 10
1-NN 0.8575 0.0288 0.8889 0.0259 0.8902 0.0326 0.9018 0.0269 10 12
2-NN 0.7260 0.0375 0.9641 0.0164 0.8063 0.0409 0.9745 0.0140 17 3
ADtree 0.8238 0.0483 0.8878 0.0343 0.8498 0.0274 0.9025 0.0226 18 8
J48tree 0.7818 0.0220 0.8507 0.0405 0.8245 0.0280 0.8825 0.0201 18 14

aExcept MDA, all the methods discussed in this paper work better on the identification of ovarian cancer than that of control.

problems (especially calibration issues). One of the most relevant
observations in our experiments is the fact that it is possible to get
very good classification results employing just detail coefficients of
DWT. This can either mean that ‘noise’ is in fact still enough for
classification purposes, or that the whole data is affected by some
form of corruption that prevents achieving a perfect classification.

The classifier-independent data preprocessing of proteomic MS
data shows a promising approach to the coming classification. More
robust classifiers (such as Bayesian SVM and Bayesian neural
network) are still urgently needed, as well as their ensemble. In

addition, the precisions could be further improved by some res-
ampling method (Gelman et al., 2004), which assigns every testing
sample point a probability of being cancer.
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