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ABSTRACT� A Support Vector Machine learn-
ing system has been trained to predict protein
solvent accessibility from the primary structure.
Different kernel functions and sliding window sizes
have been explored to find how they affect the
prediction performance. Using a cut-off threshold of
15% that splits the dataset evenly (an equal number
of exposed and buried residues), this method was
able to achieve a prediction accuracy of 70.1% for
single sequence input and 73.9% for multiple align-
ment sequence input, respectively. The prediction
of three and more states of solvent accessibility was
also studied and compared with other methods. The
prediction accuracies are better than, or compa-
rable to, those obtained by other methods such as
neural networks, Bayesian classification, multiple
linear regression, and information theory. In addi-
tion, our results further suggest that this system
may be combined with other prediction methods
to achieve more reliable results, and that the
Support Vector Machine method is a very useful
tool for biological sequence analysis. Proteins
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INTRODUCTION

The important issue in structural genetics is to solve the
structures of gene products generated from the Human
Genome Project and, further, to determine their functions.
Compared with experimental techniques, computational
methods are quick, automatic, and applicable for the
analysis of a large amount of data, but the accuracies of
current prediction methods are not good enough to identify
the conformation of functional sites. Because the active
sites of a protein are always located on its surface,
accurately predicting the surface residues can be regarded
as an important step toward determining its function. It
has been observed that the distribution of surface residues
of a protein is correlated with its subcellular environments
and, consequently, using the information of surface resi-
dues has made an improvement in the prediction of protein
subcellular location.1 Prediction of protein surface resi-
dues from primary sequence has been intensively studied
in the area of protein structure analysis.2–9 Various meth-
ods developed in the last few years, although based on

different databases and computational techniques, have
reported prediction accuracies of approximately 70% for
single sequence and 75% for multiple alignment se-
quences. One way to improve the prediction performance
is to combine different prediction methods instead of
relaying only on one method,10,11 whereas another way is
to modify the methods of defining surface residues of
proteins.9 In this study, the Support Vector Machine
(SVM) method has been used as a new approach and
compared with other methods.

The SVM method, recently developed by Vapnik and his
collaborators,12,13 is based on the structural risk minimiza-
tion principle from computational learning theory. SVM
maps the samples to a high-dimensional feature space,
then constructs an optimal separating hyperplane that
separates two classes (it can also be extended to multi-
class problems). The hyperplane output by the SVM is
given as an expansion on a small number of training points
known as support vectors. The support vectors are always
closest to the hyperplane and correspond to those points
that are hardest to classify. SVM methods have been
introduced to solve biological pattern recognition problems
such as microarray data analysis,14,15 protein fold recogni-
tion,16 prediction of protein–protein interaction,17 predic-
tion of protein secondary structure,18 and cancer diagno-
sis.19 In this study, we applied SVM methods to the
problem of protein solvent accessibility prediction. The
SVM approach can achieve results better than or compa-
rable to those of extant methods, such as neural net-
works,3 Bayesian classification,4 multiple linear regres-
sion,8 and information theory.9 Our results further suggest
that the SVM approach can be combined with other
methods to improve the prediction accuracy.

METHODS
Database and Prediction Accuracy Measurement

The non-redundant set of 531 protein domains selected
by Cuff and Barton11 was taken as the basis for training
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and testing of SVM. The residue solvent accessibility can
be obtained by referring to their correspondent secondary
structures files (DSSP-defined files) generated by the
method of Kabsch and Sander.20 Because this database
was large enough for the training and testing, when we
extracted the solvent accessibility value from the files, we
simply excluded those with an inconsecutive residue num-
ber, which may contain mutation or deletion on protein
sequence. However, the short-chain effect is not elimi-
nated because several domains included in this database
are less than 30 amino acids long. Thus, a total of 421
protein domains that remained were randomly divided
into 10 groups with each one having 42 or 43 proteins. The
relative solvent accessibility was calculated by normaliz-
ing the value over the maximum solvent accessibility
values of amino acids. Residues were classified into two
states (buried/exposed) by a cut-off threshold, three states
(buried/partially buried/exposed) by two cut-off thresholds
or more states.

Prediction accuracy is defined as the number of correctly
predicted cases over the total number of cases. Tenfold
cross-validation is adopted here by choosing one group in
turn as the testing group, whereas the proteins in the
other groups are merged, making the training group.
Therefore, the prediction accuracy is finally given as the
average of 10-fold cross-validation. Matthews coeffi-
cients21 were used to reflect the correlation between
predicted and observed results.

SVM Implementation and Sequence Coding

SVM was implemented using SVMlight (http://www-ai.
cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT).22 Dot,
polynomial, and radial basis functions are examined in
this report.

The application of SVMs to a multi-class problem (e.g.,
three or more states of solvent accessibility) was extended
by using one-versus-others technique.16 When protein
solvent accessibility is classified into m states by m-1
cut-off thresholds, m SVMs are needed to predict m states.
For each state, a SVM is trained on the samples of this
state as positive and all samples of other states as nega-
tive. Because 10-fold cross-validation is used here to test
the prediction accuracy, 10 m SVMs are trained for an
m-state problem. In the testing procedure, the state of a
residue is simply predicted as the one with maximum SVM
output value.

For sequence coding, we adopted the same sliding-
window coding schemes as used in the references.3,18 Each
residue can be represented by a 21-dimensional vector.
The first 20 units stand for 20 types of amino acids; the last
one represents the break or uncommon amino acid. When
the window size n is chosen, a residue can be represented
by a vector of 21 ! n units. The N and C terminal breaks
are added to make a complete vector for those positions.
The evolution information is considered to improve the
prediction accuracy by using multiple alignment protein
sequences. The elements of the 21-dimensional vector are
the occurring frequencies of 20 amino acids for each
residue position.

RESULTS AND DISCUSSION
Effect of Different Kernel Functions

Because the power of SVM comes from the kernel
representation that allows a nonlinear mapping of the
input space to a higher dimensional feature space, the
choice of a proper kernel function is an important issue for
SVM training. Under many circumstances, using the
function that can map the data to some other Euclidean
space and using an appropriate decision function can give
a better classification. The decision function can be ex-
pressed as:

f"x# ! !
i ! 1

Ns

$iK"si, x# " b (1)

where ai is the multiplier, si is a support vector, b is the
bias, and x is the vector that represents a certain residue.
K(si, x) is the kernel function that can take different forms.
Here, we use the commonly used kernel functions, includ-
ing dot, polynomial, and radial basis functions, illustrated
in Table I. For a two-state (buried/exposed) problem, a
residue is predicted to be exposed if f(x) % 0; otherwise, it is
predicted to be buried. The parameters can be obtained by
training SVMs on the training samples. In the training
procedure, after a certain kernel function is chosen, the
regularization parameter C needs to be tuned. For the dot
function, C was set at 0.07; for the polynomial functions, it
was set at 0.005 & 0.01, whereas it was 0.5 for the radial
basis function.

Protein residues have been classified into two states by a
cut-off threshold of 20%, and the size of sliding-window
has been chosen as 15. Prediction accuracies are given by
averaging over the results of the 10-fold cross-validation
test shown in Table I. It can be observed that, except for
the dot function, the choices of other kernel functions did
not make a significant difference to the prediction results.
Using the dot kernel function gives a slightly lower
accuracy, but the learning and testing time is quite short.
On the contrary, although the higher-order polynomial
function and radial basis function can give slightly better
prediction performance, they also need a much longer
training and testing time. Ignoring the marginal differ-
ence generated by the nonlinear kernel functions, we chose
a certain function [i.e., K(si,x) ' (si ! x ( 1)2] as the basic

TABLE I. Prediction Results for Different Kernel
Functions and Parameters†

Kernel function Parameters Accuracy (%)
Dota 69.0
Radial basisb ) ' 0.1 70.8
Polynomialc $ ' 1, * ' 1, d ' 2 70.5

$ ' 1, * ' 1, d ' 3 70.8
$ ' 1, * ' 1, d ' 4 70.9
$ ' 0.1, * ' 0, d ' 2 70.0

†For details, refer to References 12 and 22.
aKernel function is si ! x.
bKernel function is exp(+)"si + x"2).
cKernel function is ($si ! x ( *)d.
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kernel function for the following computer simulations
because it can retain the prediction accuracy and takes
shorter learning and testing time.

Effect of Different Window Sizes

Using the kernel function K(si,x) ' (si ! x ( 1)2 and a
surface residue classification threshold of 20%, we chose
different window sizes to observe the prediction results.
Increasing the window size can provide more local informa-
tion. It is reasonable to expect that prediction accuracy
would increase with the enlargement of the window size.
However, from Table II, we find that window size has a
very limited effect on prediction accuracy. The standard
deviations of prediction accuracies for different window
sizes are all less than 1%. Therefore, we selected 15 for the
window size for the following computer simulations.

Prediction by Multiple Sequence Alignment With
Different Cut-Off Thresholds

The buried or exposed state of a residue is always
defined according to different cut-off thresholds. As shown
in Figure 1, thresholds from 3 to 40% have been used to
explore the prediction accuracy. With the threshold set at
15%, which can approximately split the database evenly,
the prediction accuracy is 70.1%. This percentage of accu-
racy can properly reflect the prediction capability for
single-sequence input, because other cut-off thresholds
may artificially elevate the percentage of accuracy result-
ing from an uneven splitting of the database.4

It was well known that including the evolutionary
information could improve the prediction accuracy of
secondary structure or solvent accessibility by about
3–5%.3,11 The prediction accuracies are listed in Table III.
With the same threshold, the results are compared accord-
ing to different input information: single sequences and
multiple sequences. Large improvements can be obtained
when cut-off thresholds of 15 and 20% are chosen and the
correlation coefficient between predicted and observed
results are 0.47 and 0.46, respectively.

Residues can be classified into three states by two cut-off
thresholds (e.g., 4 and 16%). We set up three SVMs and
each of them represents an accessibility state. The train-
ing procedure for each SVM is the same as that for the
buried/exposed problem, assigning the samples of the
state as positive and samples of other states as negative.
Every residue is run against each SVM and it is predicted
to the state with maximum SVM output value. The

prediction results for three or four states problems with
one-versus-others scheme are listed in Table IV. Predic-
tion accuracies were averaged over 10 groups and ex-
pressed as the mean , standard deviation. Multiple
alignment sequence input can gain 2–4% prediction perfor-
mance improvement.

Comparison With Other Methods

Because we used a different database (421 protein
domains) from those used by other authors, a direct
comparison is not valid. To compare the methods on the
same dataset, the dataset previously used by Rost and
Sander3 to train and test neural networks, is also applied
here to train and test the SVM method. The 126 proteins
were equally divided into seven groups for cross-validation

TABLE II. Prediction Accuracies for
Different Window Sizes

Window size Accuracy (%)
Standard deviation

of accuracy (%)
11 70.3 0.9
13 70.3 0.8
15 70.5 0.8
17 70.5 0.8
19 70.5 0.7
21 70.5 0.7

Fig. 1. Prediction accuracies versus cut-off thresholds. The cut-off
threshold set at 15% equally split the dataset (an equal number of
exposed and buried residues) and gave a prediction accuracy of 70.1%.

TABLE III. Prediction Accuracies From Different Input
Information (Single Sequences and Multiple Sequences)

Input information
Threshold (%)

15 20 25 30
Single sequences 70.1 70.4 71.8 74.8
Multiple sequences 73.9 73.8 74.6 76.2

TABLE IV. Prediction Accuracies for Three and
Four States of Solvent Accessibility Using

Support Vector Machines

States
Threshold

(%)

Accuracy (%)
Single

sequences
Multiple

sequences
Three states 4; 36 54.4 , 0.8 58.1 , 0.9

9; 16 66.3 , 0.9 68.4 , 1.4
9; 36 55.2 , 1.0 57.1 , 1.3

Four states 9; 16; 36 50.8 , 1.0 52.5 , 1.3
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tests, and 16% was selected as the cut-off threshold. Under
these conditions, the SVM method achieved an accuracy of
72.6% (standard deviation 2%), regardless of the selection
of kernel functions. On the same dataset, the accuracy of
the neural network approach was 70.0% with sevenfold
cross-validation,3 whereas the Bayesian method4 was
71.1% by the Jack-knife test. On the same dataset, the
SVM method gave the best prediction result compared
with other different methods. As shown above, when SVM
is applied to a large dataset (421 domains), it can only
reached an accuracy of 70.1% (threshold 15%). One reason
for this is that a smaller dataset often results in larger
fluctuations of prediction results. This was also reflected
by the larger standard deviation of 2%, in contrast with
those in a larger dataset, which were always less than 1%.
The multiple linear method8 achieved an accuracy of
71.5% based on a different database and the Jack-knife
test, when a threshold of 20% was chosen. It is worth
noting that the information theory method9 achieved
higher prediction accuracies when it used a different
definition of surface residues, even based on the same
database. The authors of this method also found that,
when their method was applied to DSSP-defined 215
proteins, the accuracies were less than 70.0% regardless of
various thresholds. However, these methods can achieve
comparable results because a 1–2% accuracy difference
may be attributable to the different databases and test
procedures these methods used.

As for the 126-protein dataset, when three states of
solvent accessibility were defined by thresholds 9 and 36%,
the prediction accuracies for neural networks and Bayes-
ian classification were 52.4 and 54.2%, respectively. With
the same dataset and same definition of states, SVM
achieved an accuracy of 52.8% (,1.8%). But when applied
to the large dataset, the accuracy was 55.2% (,1.0%).
Because we used a different dataset from the information
theory method, an astrict comparison shows that, using
DSSP definition of the solvent accessibility, SVM can
obtain better prediction performance. For example, when
four states were adopted, the SVM method achieved an
accuracy of 50.8%, whereas information theory obtained
39.3%.

The SVM approach has been shown to be better than
other machine learning methods on some problems,18,23,24

and the application of SVM on this problem can also
achieve better results or at least comparable prediction
accuracies with other methods. A significant lack of im-
provement by the SVM method in some parts of the
problem is attributable to its complexity. The local se-
quence information is not accurate enough for determining
the protein solvent accessibility. However, the SVM ap-
proach can be combined with other methods for the
problem. When complicated features, such as the structure
and long-distance residue correlation are considered, the
SVM approach may be a suitable method for further
application because of its advantages—computational effi-
ciency, data adaptability, easy representation, etc.17

It is obvious that the accurate prediction of protein
solvent accessibility is helpful to determining protein

structure and function. Secondary structure has been
regarded as an important feature for recognition of protein
folds and identification of distantly related protein se-
quences.25–30 The predicted secondary structure can assist
in the identification of remote homologs in the absence of
clear sequence homology. Protein solvent accessibility can
also be a factor to consider for prediction of protein
function.29 Furthermore, there is a strong relationship
between secondary structure and its environment. Be-
cause solvent accessibility has an important role in deter-
mining protein secondary structure,31 proper consider-
ation of it makes the prediction of secondary structure
more effective. Accurate prediction of the surface residues
and definition of the surface residue patches are still the
basis for reliable prediction of protein functional sites.32

Therefore, future work will focus on improving the predic-
tion accuracy and using the predicted results to enhance
the methods for predicting protein structure and function.

CONCLUSION

In this report, we have applied the SVM approach to
predicting protein solvent accessibility. The prediction
accuracies were averaged over 10-fold cross-validation
results, and their standard deviations are approximately
1% based on the large non-redundant database. We found
that the selection of different kernel functions only led to a
marginal difference to the prediction accuracies, and that
the window size has only minor impact on the prediction
accuracy. Because the goal of this report was to provide a
new approach for protein solvent accessibility prediction,
the results suggest that SVM is a successful one. However,
to further improve the accuracy with only local informa-
tion (e.g., using the sliding window technique) is a difficult
task, because protein solvent accessibility is somewhat
determined by information from the whole sequence and
even the structure. The SVM approach can be selected as a
method to combine with other methods for this problem.
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