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Abstract: A new method has been developed for prediction of transmembrane helices using support vector machines.
Different coding schemes of protein sequences were explored, and their performances were assessed by crossvalidation
tests. The best performance method can predict the transmembrane helices with sensitivity of 93.4% and precision of
92.0%. For each predicted transmembrane segment, a score is given to show the strength of transmembrane signal and
the prediction reliability. In particular, this method can distinguish transmembrane proteins from soluble proteins with
an accuracy of !99%. This method can be used to complement current transmembrane helix prediction methods and
can be used for consensus analysis of entire proteomes. The predictor is located at http://genet.imb.uq.edu.au/predictors/
SVMtm.
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Introduction

Transmembrane proteins (TM proteins) represent about 15–30%
of the protein sequences in higher eukaryotes, and play important
roles across a range of cellular functions.1 Due to the difficulty in
solving their 3D structures by X-ray or NMR, theoretical predic-
tion is important for revealing structures and functions of TM
proteins. The goals of transmembrane prediction include (1) dif-
ferentiation of TM proteins from other proteins, i.e., the soluble
proteins, (2) prediction of the locations of TM segments (including
accurate prediction of TM segment boundaries), and (3) prediction
of the orientation of a TM segment within the membrane. The
secondary structure of a membrane-spanning segment can be an
!-helix or "-strand, but the TM "-strand usually has fewer resi-
dues than an !-helix. Nearly all TM "-strand proteins are found in
prokaryotes, and belong to a few protein families. Because of this,
we have focused our attention on the prediction of transmembrane
!-helices.

Previously, nearly all the computational prediction methods
have been based on protein amino acid sequences. A recent com-
parison of different methods2 showed that nearly all aspects of
prediction need improvement, for example, only around 50% of
membrane proteins can be predicted with all segments correct for
most methods. Furthermore, accurate differentiation of N-terminal
TM helices and signal peptides is still problematic for existing

predictors. These shortcomings have a serious impact on the reli-
ability of computational annotation for proteomes. Karin et al.3

estimated that only 53–59% of all predicted topologies for the
proteomes of Escheria coli, Saccharomyces cerevisiae, and Cae-
norhabditis elegans were correct. The comparison performed by
Chen et al.2 also showed that no method performed consistently
best based on various measures of accuracy. Therefore, the devel-
opment of new independent methodologies that are able to predict
transmembrane segments with advantages on some aspects can
complement the current methods and will further strengthen the
ability to computationally predict transmembrane segments.

In this work, we develop a new method based on the support
vector machine (SVM) approach4 to predict transmembrane heli-
ces. Many membrane prediction methods are based on amino acid
hydrophobicity, while advanced methods use different sequence
coding schemes. For our method, we compare the performances of
coding schemes when using the same SVM model. Through this
comparison, we select the best performing coding scheme and
implement the algorithm as a predictor. To reflect the reliability of
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a predicted TM segment, a TM score is given as well. A detailed
analysis of the relation between score and reliability is performed,
and finally, we examine this method’s capability of distinguishing
membrane proteins from soluble proteins and signal peptides.

Methods

Like neural network (NN), SVM is a well-developed machine-
learning algorithm given by Vapnik,4 with many successful appli-
cations in a variety of research areas. The general concept of SVM
can be introduced as following. For a two-class problem, there are
a series of samples described by the feature vectors xi (i " 1,
2, . . . , N) with corresponding labels yi ! {#1, $1} (i " 1,
2, . . . , N). In this particular study, the two classes are defined as
transmembrane residues (labeled as #1) and nontransmembrane
residues (labeled as $1). To classify the two classes of samples,
SVM learns the boundary regions between samples belonging to
two classes by mapping the input samples into a high-dimensional
space, and then seeking a separating hyperplane. The hyperplane
(determined by coefficient !i) can be obtained by solving the
following optimization problem: Maximize
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where C is a parameter that controls the trade-off between margin
and classification error. K( xi, xj) is a kernel function, which is
used to map the input vectors to a more complicated feature space.
In this study, radial basis function (RBF) is selected and given as
follows,

K% xi, xj& $ exp%$&"xi # xj"2& (3)

The distance of an unlabeled test sample to the hyperplane can be
calculated as

f% x& $ !
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N

yi!iK% xi, xj& ' b (4)

where b is a constant used to balance the support vector machine
outputs. The distance f( x) is used to reflect the propensity of a
residue being a transmembrane residue or not. The larger the
value, the more likely the residue is a TM residue. It is worth
noting that the optimization problem in SVM is a convex
optimization problem, which ensures a global optimum. There
is no risk of getting stuck to a local minimum, which may occur
in gradient-based training of neural networks. To use the pre-
diction function [eq. (4)], we can obtain all the coefficients by

using the SVM_Light5 package and setting & " 0.1 [eq. (3)] and
C " 0.5 [eq. (2)].

The feature vector representing a residue is extracted by the
sliding window technique. In a protein sequence, whether a residue
belongs to a TM segment or not is determined by its neighboring
residues. With a window centered at the residue, 13–20 residues
are usually considered. The feature vector for the windowed se-
quence to represent the residue can be coded in two different ways.
First, we adopted the scheming method previously used by the
neural network method,6 in which a residue is coded in a 21-
dimensional vector. Within the vector, the first 20 units stand for
20 types of amino acids and the last one represents the break or
uncommon amino acid. For convenience, this coding scheme is
called the “21-UNIT” method. Because many TM prediction meth-
ods are based on hydrophobicity scales, to compare with those
methods, protein sequences are also coded by using amino acid
hydropathy scales. In a given window, all the residues are replaced
by their normalized hydropathy values. When the break or uncom-
mon amino acid occurs, the value is regarded as zero. Three
hydropathy scales (JTT, EB, KD) have been used to generate
protein profiles. All the scales are normalized with mean zero and
standard deviation one.7 Under this condition, the coding method
is simply nominated as the name of the hydropathy scale. One
problem to be mentioned is the window size. A large window
contains more local sequence information but takes longer for a
method to train and test. When selecting the first coding scheme,
we found that the window size had very minor impact on the final
results, as observed previously when we applied SVMs for protein
solvent accessibility prediction.8 Therefore, the window size is
selected as 15 amino acids for the 21-UNIT method. For hydrop-
athy methods, a larger window size is selected and set at 19 amino
acids.

Generated by eq. (4), each residue has a real value (transmem-
brane profile value) and a protein sequence is represented by a
series of real values. Based on the transmembrane profile, some
algorithms can be used to define TM segments. Dynamic program-
ming has been successfully applied in finding TM segments.9

MaxSubSeq was an algorithm based on dynamic programming and
showed a very promising application in this problem.10 MaxSub-
Seq locates the TM segments by maximizing a global score de-
fined as

S $ !
i"1

n

si (5)

where si is the local score for the ith TM segment. n is the number
of predicted TM segments, and si is defined as,

si $ !
j"k

k#m$1

p%i, j& (6)

where p(i, j) is the transmembrane profile value at position j in the
ith TM segment. m is the length of the TM segment, and is limited
to a range of [lmin, lmax]. In this work, we set lmin " 15 and lmax "
35 because nearly all the transmembrane helices have lengths
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within this range. n and m can be extracted from a score matrix
generated by a recursive algorithm.10 For the predicted ith TM
segment, the si is given to show the strength of TM signal.

To examine the performance of our methods, a variety of
accuracies were defined. Based on TM segments, specificity (Qsp)
is the percentage of correctly predicted segments over the pre-
dicted segments and sensitivity (Qse) is the percentage of correctly
predicted segments over the true segments. A correctly predicted
segment is defined as one that has at least nine residues overlap-
ping the true segment. If all the TM segments in a protein are
correctly predicted and the number of predicted segments is cor-
rect, it is a correctly predicted protein. Therefore, based on pro-
teins, Q0 is the percentage of correctly predicted proteins over total
proteins. Q1 is the accuracy when we tolerate one segment pre-
diction error. That means if a protein has one mis-predicted TM
segment it can still be regarded as a correctly predicted protein.
This could be due to overprediction or underprediction of one TM
segment, or correct prediction of the number of segments but
misplacement of one segment. Thus, Q1 can be defined as the
percentage of correctly predicted proteins plus proteins with one
segment mis-predicted over total proteins. The difference of Q1

and Q0 indicates the miss-one-segment errors and the success rate
when we overcome this problem.

A nonredundant dataset11 consisting of 148 well-annotated
transmembrane proteins was used to examine our methods. To
avoid overestimating the accuracies, the sevenfold crossvalidation
test is performed. That means that 148 proteins are divided into
seven groups with roughly equal numbers of proteins. Each group
is tested after training SVMs on the remaining samples.

Results and Discussions

Table 1 shows the performances of our methods when various
coding schemes are used. On all prediction aspects, 21-UNIT is
slightly better than the methods coding with hydrophobicity scales.
The results indicate that the amino acid hydropathy scales derived
from experiments or transmembrane protein datasets may over-
simplify the information contained in transmembrane segments,

and therefore, give less accurate prediction results. However, the
difference is not very significant. Previous observations show that
hydrophobicity-based methods are less accurate than advanced
methods.2 We consider the lower accuracy may attribute to two
parts, the hydrophobicity scales and the methods used for gener-
ation of transmembrane profiles. This can be verified by the
following comparison. When the KD scale12 was selected and the
TM profile was a simple average of hydropathy values for each
amino acid in a sliding widow, Q0 could only reach 32%. After
MaxSubSeq filtering, Q0 increased to 51% given by Fariselli et
al.10 In our method, when the support vector machine based on the
KD scale is used to generate TM profiles, a significant improve-
ment can be achieved. Strict crossvalidation tests yield the predic-
tion accuracies Qsp " 91.0%, Qse " 92.9%, Q0 " 60.1% and
Q1 " 86.5%, only slightly lower than the 21-UNIT coding
method. The 21-UNIT coding scheme gives the accuracies: Qsp "
92.0%, Qse " 93.4%, Q0 " 63.5%, and Q1 " 86.5%. Its
performance is better than or comparable to the 28 methods
examined by Chen et al.2 based on a very similar dataset11 con-
sisting of 165 low-resolution proteins, even if some methods may
overpredict their accuracies due to including the testing proteins in
their training procedures.

To carefully evaluate the reliability of predicted TM segments,
we selected different score thresholds and calculated the prediction
accuracy for all TM segments with scores larger than the threshold.
The results are shown in Figure 1. As the score increases, the
accuracy also increases. Fluctuations of accuracy can be observed;
however, it can be concluded that prediction accuracies are
roughly proportional to the scores. To determine the prediction
reliability for a certain score, TM scores are divided into seven
groups of ranges; each of them has the same number of TM
segments. After calculating the prediction accuracy for each group,
the results are given in Table 2. TM segments located in the range
(0, 5.6] only have an accuracy of 75.0%. This range covers
one-seventh of all the predicted TM segments. A significant in-

Table 1. Prediction of Transmembrane Segments Based on Different
Sequence Coding Schemes.

Coding scheme

Prediction accuracy (%)

Qsp Qse Q0 Q1

21-UNIT 92.0 93.4 63.5 86.5
JTT 91.6 93.0 61.5 83.1
KD 91.0 92.9 60.1 86.5
EB 90.1 92.7 56.1 83.8

Specificity (Qsp) is the percentage of correctly predicted segments over the
predicted segments, and sensitivity (Qse) is the percentage of correctly
predicted segments over the true segments. Q0 is the percentage of cor-
rectly predicted proteins over total proteins, and Q1 the percentage of
correctly predicted proteins plus proteins with one segment mis-predicted
over total proteins.

Figure 1. Prediction accuracy of transmembrane segments according
to different score thresholds. Transmembrane segments with larger
scores are also predicted with more reliability.
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crease in accuracy can be observed for those TM segments with
scores higher than 5.6. Six-sevenths of TM segments have scores
higher than 5.6 and with accuracy more than 90.0%. Particularly,
if the score is larger than 15, the accuracy reaches 96–98% and
greater reliability can be achieved. The above analyses indicate
that low score TM segments need to be further verified by other
prediction methods or biochemical experiments. We illuminate
this phenomenon by giving an example of prediction results for
protein CYOE_ECOLI (SWISS-PROT ID), shown in Figure 2. It
is predicted to have eight TM segments. One segment, starting
from residue 160 to residue 174, has a score of 1.9, while the other
seven segments all have scores higher than 12. The low score
segment actually represents a false positive.

To further discuss this problem, we compared our method with
other methods based on lower score TM segments and higher score
TM segments. We collected all annotated TM segments (correctly
predicted by SVMtm with a score no more than 5.6) and tested
them using four transmembrane helix prediction methods: TM-
HMM2,13 HMMTOP2,14 SOSUI,15 and TopPred2;16 80.8, 83.3,
74.4, and 89.7% of the low score TM segments can be correctly
predicted by TMHMM2, HMMTOP2, SOSUI, and TopPred2,
respectively. When we use higher score TM segments (score larger
than 15.7), the accuracies increase to 98.7, 94.4, 97.4, and 95.7%,
respectively. The results suggest that the low score TM segments
are predicted in lower consensus by different methods. SVMtm
can correctly predict some low score TM segments mispredicted
by other methods, and therefore, can complement other methods.
When we compare different methods based on the 148 membrane
proteins, it is worth mentioning that a proportion of them have
been used by other authors for developing their methods. There-
fore, the comparison cannot be considered strict. Although the
accuracies of our method are yielded by strict crossvalidation tests,
they are better than or comparable with results of others. The
prediction accuracies (Qsp; Qse) for TMHMM2, HMMTOP2,
SOSUI, and TopPred2 are (94.3; 89.7%), (90.9; 89.0%), (92.4;
88.7%) and (85.4; 91.2%), respectively. The accuracies for
SVMtm are (92.0; 93.4%).

The lower reliability of low score TM segments is a reason for
the large difference between Q0 and Q1 (!26% for nearly all
coding schemes). The low score segments also include the mispre-
dicted hydrophobic regions of signal peptides as we will discuss
later. It is clear that low score TM segments need further attention
if we want to improve the prediction performance. The consensus
approaches recently developed for TM predictions can reduce the
uncertainty of weakly predicted TM segments17,18 and thus im-

prove the overall accuracy. Using some methods that can accu-
rately distinguish signal peptides and N-terminal transmembrane
helices can also reduce the error between Q0 and Q1.

Minimizing the false positive and false negative rates is an
important task for transmembrane prediction methods. Methods
are effective in locating transmembrane segments in real proteins,
but they tend to incorrectly identify other hydrophobic clusters in
soluble proteins as helical transmembrane segments.19 The ability
to distinguish membrane proteins from soluble proteins is also
important for the prediction of protein subcellular localizations. In
prediction of subcellular localization, new proteins are initially
classified as membrane or nonmembrane proteins because these
basic classes have different functions and demand different exper-
imental techniques. Further classification is then performed to
predict their destinations in the cell. Here, we select two datasets
to examine our methods. One is a nonredundant set of 1993 soluble
proteins with known structures and pair-wise identity less than
25%.20 The other one is the dataset of 1523 signal peptides derived
from SignalP predictors.21 Using the 21-UNIT coding scheme, we
ran our prediction methods against three datasets (transmembrane,
soluble, and signal peptide) and gathered all the scores for pre-
dicted TM segments. In Figure 3A, the score distributions of TM
segments from different datasets are compared. It can be found that
the predicted TM segments in soluble proteins have lower average
scores compared with signal peptides and transmembrane proteins.
The TM proteins have the largest average TM scores. These results
indicate that the scores provide useful insight into the problem of
differentiation among the putative TM segments from transmem-

Figure 2. Transmembrane profile and predicted transmembrane seg-
ments for protoheme IX farnesyltransferase (SWISS-PROT ID: CY-
OE_ECOLI). The transmembrane profile is represented by the dashed
line while predicted transmembrane segments are represented by solid
bars. For each predicted transmembrane segment, its start position, end
position, and TM score are listed as (start_end;score). The predicted
transmembrane segments are (13_28;13.91), (38_55;15.54), (80_105;
24.40), (108_126;18.70), (160_174;1.9), (209_224;14.91), (229_247;
14.14) and (266_281;12.77). The segment from residue 160 to residue
174 is a false positive with a score of 1.9.

Table 2. The Prediction Accuracy for Different Groups of Scores.

Score range Accuracy (%)

(0, 5.6] 75.0
(5.6, 9.30] 90.4
(9.30, 12.28] 93.3
(12.28, 15.71] 93.3
(15.71, 18.73] 98.0
(18.73, 23.08] 98.1
[23.08, #') 96.2
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brane proteins, soluble proteins, and signal peptides. To distin-
guish a TM protein from a soluble protein, we select only the
maximum TM score to represent each protein. If a protein has no
predicted TM segment, its maximum TM score is set as 0. Figure
3B gives the distributions of maximum TM scores for different
datasets. It is obvious that the difference between TM proteins and
soluble proteins is enlarged when we only use the maximum TM
scores. If the score threshold is set as 10, 98.8% of soluble proteins
have maximum scores lower than the threshold, while 98.6% of
TM proteins have maximum scores higher than the threshold. If
this threshold is also applied to signal peptides, we found 75.2% of
these sequences have maximum scores lower than the threshold.
Although the information is not accurate enough for differentiation
of TM segments and signal peptides, it is obviously a useful
feature when developing a differentiation method for N-terminal
signal peptides and TM helices.

In conclusion, we have developed a new transmembrane helix
prediction method. First, support vector machines and the 21-
UNIT coding input scheme are used to generate protein transmem-
brane profiles. Then, MaxSubSeq is used to define the transmem-
brane segments. Finally, we filter the predicted TM segments to
minimize the false positives from globular proteins and signal
peptides. If the maximum TM score is not larger than 10, the
protein is reassigned as a soluble protein. For a secreted soluble
protein, the signal peptide may be recognized by this filtering step.
Specified differentiation methods for N-terminal signal peptides
and transmembrane helices are needed to solve this problem.22,23

The above method has been implemented as a web predictor
hosted at http://genet.imb.uq.eud.au/predictors/SVMtm, which can
predict single sequence or multiple sequences and SVMtm can be
used in combination with other methods for consensus prediction.
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Figure 3. (A) Score distributions of predicted transmembrane seg-
ments from soluble proteins (dotted line), signal peptides (dashed
line), and transmembrane proteins (solid line). (B) Distribution of
maximum scores from soluble proteins (dotted line), signal peptides
(dashed line), and transmembrane proteins (solid line). Each protein is
represented by its maximum transmembrane score. If no transmem-
brane segment is predicted, the maximum score is assigned as zero.
The comparison in (A) is based on per segment, while the comparison
in (B) is based on per protein.
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