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Purpost. To determine whether topographical measurements
of the parapapillary region analyzed by machine learning clas-
sifiers can detect early to moderate glaucoma better than sim-
ilarly processed measurements obtained within the disc margin
and to improve methods for optimization of machine learning
classifier feature selection.

MEeTHODS. One eye of each of 95 patients with early to moder-
ate glaucomatous visual field damage and of each of 135 nor-
mal subjects older than 40 years participating in the longitudi-
nal Diagnostic Innovations in Glaucoma Study (DIGS) were
included. Heidelberg Retina Tomograph (HRT; Heidelberg En-
gineering, Dossenheim, Germany) mean height contour was
measured in 36 equal sectors, both along the disc margin and
in the parapapillary region (at a mean contour line radius of 1.7
mm). Each sector was evaluated individually and in combina-
tion with other sectors. Gaussian support vector machine
(SVM) learning classifiers were used to interpret HRT sector
measurements along the disc margin and in the parapapillary
region, to differentiate between eyes with normal and glauco-
matous visual fields and to compare the results with global and
regional HRT parameter measurements. The area under the
receiver operating characteristic (ROC) curve was used to
measure diagnostic performance of the HRT parameters and to
evaluate the cross-validation strategies and forward selection
and backward elimination optimization techniques that were
used to generate the reduced feature sets.

ResuLts. The area under the ROC curve for mean height con-
tour of the 36 sectors along the disc margin was larger than
that for the mean height contour in the parapapillary region
(0.97 and 0.85, respectively). Of the 36 individual sectors along
the disc margin, those in the inferior region between 240° and
300°, had the largest area under the ROC curve (0.85-0.91).
With SVM Gaussian techniques, the regional parameters
showed the best ability to discriminate between normal eyes
and eyes with glaucomatous visual field damage, followed by
the global parameters, mean height contour measures along
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the disc margin, and mean height contour measures in the
parapapillary region. The area under the ROC curve was 0.98,
0.94, 0.93, and 0.85, respectively. Cross-validation and optimi-
zation techniques demonstrated that good discrimination (99%
of peak area under the ROC curve) can be obtained with a
reduced number of HRT parameters.

Concrusions. Mean height contour measurements along the
disc margin discriminated between normal and glaucomatous
eyes better than measurements obtained in the parapapillary
region. (Invest Ophthalmol Vis Sci. 2004;45:3144-3151) DOL
10.1167/i0vs.04-0202

Various imaging technologies are being used to assist the
clinician in the assessment of the optic disc and RNFL.
Each of these technologies has the advantage of providing
independent quantitative, objective, and reproducible mea-
surements of the optic disc and retinal nerve fiber layer (RNFL)
without relying on the subjective clinical examination or qual-
itative review of photographs. One such technique, confocal
scanning laser ophthalmoscopy (CSLO), provides reproducible
measurements of the optic disc and parapapillary retina.'™
Although studies have assessed the ability of topographic optic
disc measurements obtained with the Heidelberg Retina Tomo-
graph (HRT, Heidelberg Engineering, Dossenheim, Germany),
a confocal scanning laser ophthalmoscope, to detect early to
moderate glaucoma,*~° few studies with the HRT have focused
on RNFL layer measurements implied by retinal thickness in
the parapapillary area.”

There are several possible advantages to measuring the
overall RNFL and particularly to measuring the parapapillary
RNFL. First, there is evidence that subjective assessment of
change in the RNFL often precedes change in the cup-disc ratio
in eyes in which glaucomatous visual field damage subse-
quently develops.® Therefore, quantitative objective measure-
ments of the RNFL may be particularly useful in detecting early
glaucoma. Second, HRT RNFL thickness measurements have
been shown to correlate with histomorphometric axon counts
in monkey eyes.® Third, HRT measurements in the flat para-
papillary retina have been shown to be more reproducible than
measurements along steeper areas of the cup within the disc
margin.'?

In an effort to summarize the large amount of data provided
by the HRT, several different analysis strategies, including lin-
ear discriminant functions''~'% and machine learning classifiers
(including neural networks),'* have been used to improve the
discriminating ability of HRT parameters. Recently, machine
classifiers, such as support vector machines (SVMs) trained on
HRT global and regional topographic optic disc parameters,
have been shown to improve on previously used linear dis-
criminant functions for detecting early to moderate glauco-
ma.'> However, the HRT images can provide more information
that has not been previously included in analyses using ma-
chine learning classifiers, including sectoral RNFL measure-
ments.
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TasLE 1. Demographic Characteristics of the Glaucoma and Normal Study Groups

Glaucomatous Eyes

Normal Eyes

n =95) (n = 135) P

Age (y, mean * SD, range) 65.9 = 12.2 (40.0-93.0) 59.5 = 12.0 (40.0-80.0) <0.0001
Gender (% male) 54 67 0.046
Race (% white) 80 90 0.045
Optic disc area (mm?, mean

* SD, range) 1.93 = 0.51 (0.95-3.63) 1.83 * 0.38 (0.96-2.90) 0.085
Visual field mean deviation

(dB, mean * SD, range) —5.73 = 5.32 (—21.86-0.67)  0.06 * 1.32(—3.66-3.51) <0.0001
Visual field pattern standard

deviation (dB, mean * SD,

range) 6.2 * 3.5 (5.70-6.70) 1.74 = 34 (1.30-2.10) <0.0001

We therefore focused this investigation on evaluating HRT
parapapillary RNFL measurements using machine learning clas-
sifier techniques. The purpose of this study was to use machine
learning classifiers to determine whether assessment of HRT
sectoral measurements in the parapapillary retina, where mea-
surements are often less variable,'® can improve differentiation
between normal eyes and eyes with early to moderate glau-
coma compared with sectoral measurements along the disc
margin. A secondary objective of the study was to use these
data to improve previously described methods'> for optimiza-
tion of machine learning classifier feature selection to develop
robust methods for identifying a reduced feature set of HRT
parameters that discriminate as well as the full set of features.

METHODS

Subjects

One randomly selected eye from each of 95 patients with glaucoma
and from each of 135 normal subjects participating in the longitudinal
Diagnostic Innovations in Glaucoma Study (DIGS) was included in the
study. All subjects completed an ophthalmic examination, including
slit lamp biomicroscopy, intraocular pressure (IOP) measurement, ste-
reoscopic fundus examination, stereoscopic photography of the optic
disc, and full-threshold standard automated perimetry (SAP; Humphrey
Field Analyzer, Carl Zeiss Meditec Inc., Dublin, CA). Best corrected
visual acuity at the time of testing was 20/40 or better.

For purposes of this study, patients were classified as having glau-
coma if they had at least two consecutive standard automated perim-
etry examinations with either a corrected pattern standard deviation
outside the 95% normal limits or a glaucoma hemifield test result
outside the 99% normal limits. At least one of the abnormal fields was
obtained on or before the date of CSLO imaging. The appearance of the
optic disc was not used as a criterion for designation of glaucoma. The
average age (95% confidence interval) of patients with glaucoma was
65.9 (63.4-068.3) years. Average mean deviation and pattern standard
deviation (95% confidence interval) of the SAP closest to the CSLO
imaging date was —5.74 (—4.64 to —6.83) dB and 6.2 (5.7-6.7) dB,
respectively, indicating early to moderate glaucomatous visual field
damage.

Healthy eyes had intact rims, with no evidence of notching, glau-
comatous excavation, or RNFL defect, and had symmetrical optic discs
(asymmetry of vertical cup-disc ratio <0.2) based on a dilated clinical
examination. IOP was =22 mm Hg with no history of elevated 10P.
SAP results were within normal limits. Healthy patients had no history
of diabetes and no ophthalmic or neurologic surgery or disease. The
average age (*=SD) of healthy subjects was 59.5 (57.4-61.5) years.
Healthy subjects were significantly younger than patients with glau-
coma (#-test, P < 0.001; Table 1).

The research adhered to the tenets of the Declaration of Helsinki.
Informed consent was obtained from all participants and the University

of California, San Diego, Human Subjects Committee approved all
methodology.

Confocal Scanning Laser Ophthalmoscopy

The HRT provides topographical measures of the optic disc and para-
papillary retina and has been described in detail elsewhere.>'®

Three 15° field of view scans centered on the optic were obtained
in each test eye. A mean topography image of these three scans judged
to be of acceptable quality was created with the HRT (software version
2.01). The optic disc margin was outlined on the mean topography
image by trained technicians while viewing simultaneous stereoscopic
photographs of the optic disc. All mean topography images had an SD
of =50 um.

We included sectoral measurements along the operator-drawn con-
tour line outlining the margin of the optic disc and in the parapapillary
retina along a contour of 1.7 mm radius concentric with the contour
line (Fig. 1). Specifically, 36 ten-degree sector measurements of the
mean height contour along the operator-drawn contour line surround-
ing the optic disc margin (called mean height contour at disc margin,
or MHCDM) and 36 ten-degree sector measurements of the mean
retinal height or mean height contour around a contour of 1.7-mm
radius (MHC1.7), with its center at the center of the optic disc were
included in the analysis. The contour of 1.7-mm radius was established
by automatically changing the radius of the contour line outlining the
disc margin to 1.7 mm. As illustrated in Figure 1, the shape of the
contour in the parapapillary retina therefore matches the shape of the
contour line outlining the disc margin.

The sectoral mean height contour at the disc margin measurements
describe the height of the neuroretinal rim at the optic disc mar-
gin relative to the standard reference ring. In addition, HRT RNFL
measurements along the contour line outlining the disc margin
(RNFLDM) and also along the contour of the 1.7-mm radius
(RNFL1.7) concentric with the contour line were included in the
analysis. HRT RNFL measurements are an indirect measure of RNFL
thickness. The RNFL measurements are calculated by subtracting
the mean height contour from the reference plane height. The
reference plane height is defined as the mean thickness 50 um
posterior to mean retinal heights between 350° and 356° temporal
along the contour line.

In addition to the parameters just described, we included the
following global topographic measures for evaluation: disc area, area
below reference, mean height of contour, peak height of contour,
height variability of contour, volume below surface, volume above
surface, volume below reference, volume above reference, maximum
cup depth, cup shape, mean cup depth, RNFL thickness, RNFL cross-
sectional area, reference plane height, rim area, cup-disc ratio, and
rim-disc ratio. Six regional topographic measures of each parameter
except mean cup depth, RNFL cross-sectional area, and reference
plane height were also included. Regions were defined as temporal
superior (46°-90° unit circle), nasal superior (91°-135°), nasal (136°-
225°), nasal inferior (226°-270°), temporal inferior (271°-315°), and
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FIGURE 1.
margin contour line at a radius of 1.7 mm.

temporal (316°-45). These parameters have been discussed in more
detail elsewhere.>'°~'® A total of 22 global and 86 regional parameters
were included in these analyses.

Machine Learning Classifier Techniques

There are many techniques for classifying data. Machine learning
classifiers have the advantage that they can adapt their internal param-
eters to account for structure in data, thus often achieving perfor-
mance superior to that of nonadaptive classifiers. Among machine
learning classifiers SVMs'?*” have recently gained popularity because
of their consistent and high classification performance.' They are
especially suitable for binary classification (two-class problem) and for
data of relatively small size and high dimensions.'® These properties
match well with our task.

We evaluated the performance of two machine learning classifier
techniques, linear SVM (SVM linear) and Gaussian SVM (SVM Gaussian)
for classifying eyes as glaucomatous or healthy. Both SVM linear and
SVM Gaussian have been described elsewhere and have been used to
classify eyes as glaucomatous or nonglaucomatous, based on HRT'
and visual field data.>*** SVM classifiers were chosen because they
yielded the highest area under the ROC curves for discriminating
between healthy and glaucomatous eyes in another study using HRT
parameters."” In brief, SVMs are techniques used for solving classifica-
tion and regression problems. During training, the SVM with a nonlin-
ear kernel maps the training data to a high dimensional space where a
hyperplane is fitted that maximizes the margin of separation between
classes while minimizing the generalization error (ability to generalize
results from finite training set to previously unseen data set) using
statistical learning theory. Constraints imposed on the construction of
the separating surface result in a subset of training data that is involved
in the decision function (called support vectors). The hyperplane that
splits the positive and negative vectors is oriented to maximize the
distance between itself and the nearest positive and negative exam-
ples. SVM linear and SVM Gaussian differ because they assume different
distributions of input data. SVM linear uses linear mapping, resulting in
a dot product kernel and SVM Gaussian uses nonlinear mapping result-
ing in a Gaussian kernel.'®-*°
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(A) Thirty-six sectors along the contour line outlining the disc margin. (B) Thirty-six sectors along a contour concentric with the disc

ROC curves for classifying eyes as glaucomatous or healthy were
determined for the linear and Gaussian SVMs applied to the sectoral
mean height contour at the disc margin and to RNFL at the disc margin
measurements only, to the sectoral parapapillary mean height contour
and parapapillary RNFL measurements only, to the global HRT param-
eters only, to the regional HRT parameters only, and to all these
measurements combined. For each area under the ROC curve re-
ported, 10-fold cross-validation techniques were completed to keep
training and testing data separate by dividing the glaucomatous and
healthy eyes randomly into 10 mutually exclusive subsets each. The 10
sets were composed of an approximately equal ratio of glaucomatous-
to-healthy eyes. One subset of data was used as the test set, and the
remaining nine composed the training set. This procedure was re-
peated, with each subset serving once as the test set. The results
obtained for the 10 test sets were combined to generate a single ROC
curve for each classification method. We also reported sensitivities at
specificities of 75% (representing moderate specificity) and 90% (rep-
resenting high specificity).

Feature Selection by Forward Selection and
Backward Elimination

We used feature-selection techniques to reduce the feature set to the
most important features. We determined how the number of HRT
parameters on which the SVM model was trained influenced its dis-
criminating ability. Feature selection was accomplished with forward
selection and backward elimination. The forward selection strategies
started with an empty feature set for input. In each round we added to
previously selected features the one parameter that improved most the
performance of the classifier. The process was repeated until all pa-
rameters were included in the feature set. For backward elimination
we started with a full feature set. In each round, we deleted from the
input feature set the one parameter that decreased least the perfor-
mance of the classifier. The process was repeated until the feature set
was empty.
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FIGURE 2. Area under the ROC curve by mean height contour and RNFL sectors along the disc margin and in the parapapillary region (at a radius
of 1.7 mm from the center of the disc). Mean height contour (#) and RNFL (&) sectors along the disc margin have a larger area under ROC curve

than mean height contour () and RNFL ([J) in the parapapillary region.

Cross-Validation Techniques

To minimize bias in the testing sets used during the process of opti-
mizing the feature sets, we used “external cross-validation.” The whole
data set was divided into a “selection set” and an “evaluation set.”
Eighty percent of the eyes were included in the selection set and 20%
in the independent evaluation set. Feature-selection methods were
applied only on the selection set, whereas the independent evaluation
set was used solely for assessing the performance of the reduced
feature sets obtained by the forward selection and backward elimina-
tion feature-selection methods.

With the 80% selection data set, internal cross-validation was used
during the feature selection to select the next HRT parameters, which
contributed most to the correct classification of eyes as healthy or
glaucomatous. The 80% of glaucomatous and healthy eyes were di-
vided again randomly into 10 mutually exclusive subsets. The 10 sets
were composed of an approximately equal ratio of glaucoma to healthy
eyes. One subset of data was used as the test set (8%), and the
remaining nine composed the training set (72%). This was repeated
with each subset serving once as the test set. The results obtained for
the 10 test sets were combined to generate a single ROC curve for each
classification method. The ROC area served as the performance mea-
sure to decide which HRT parameter to delete or add. After the
reduced feature set for any size (1) was established by either forward
selection or backward elimination, an SVM using that feature subset
was tested with the external evaluation data set. This was repeated for
various 7. Since the evaluation data set is not used in the feature-
selection process, this gives a less biased assessment of each feature-
selection method.

The whole process of an 80-to-20 split, forward selection-back-
ward elimination, and assessment using evaluation sets was repeated
five times, each time with a totally different 20% of the original data as
the evaluation set. This method provided five rankings of the param-
eters from backward elimination and another five rankings from for-
ward selection.

The various resulting rankings were unified by a simple voting
scheme. The parameter that appeared first the most often across the
different rankings was considered the most important and was re-
moved. The remaining parameters were shifted up accordingly. The
parameter that now appeared first the most often was considered the
next most important and was removed. The remaining parameters are
shifted up again. The process of voting and removal was repeated until
no parameters were left.

We also evaluated the ability of using a limited number of HRT
parameters to discriminate between glaucomatous and healthy eyes.
With the selection data set, the number of parameters included when
the area under the ROC curve reached its “peak” or the highest value
was determined. In addition, the number of parameters included in the
SVM Gaussian model that corresponded to 97.5%, 99.0%, and 99.9% of
peak area under the ROC curve was also identified. The area under the
ROC curve and sensitivities at fixed specificities were estimated for
these models with a reduced number of HRT parameters. This proce-
dure was completed to identify a smaller set of parameters that can
discriminate as well as the full set of 178 parameters.

The SVM was programmed on computer (MatLab, ver. 5.0; The
MathWorks, Natick, MA) and trained using the Platt sequential minimal
optimization algorithm. The programer chose the parameters for pen-
alty and the kernel by trial and error. The penalty used was C = 1.0.
Details and mathematical descriptions of the SVM techniques used
have been described elsewhere.?**>>” The method of DeLong et al.*®
was used to determine statistically significant differences in overall area
under the ROC curves between classifiers trained on each set of data
(e.g., mean height contour along the disc margin, global parameters).
The area under the ROC curve for the 36 sectors in Figure 2 was
determined on computer by using nominal logistic regression (JMP
software; SAS, Cary, NO).

REsULTS

Our results indicate that HRT mean height contour and RNFL
measurements along the disc margin better discriminated be-
tween normal and glaucomatous eyes than measurements ob-
tained in the parapapillary retina. We determined the area
under the ROC curve for each of the 36 mean height contour
and RNFL sectors individually to compare the discriminating
ability of measurements obtained along the disc margin and in
the parapapillary retina and to determine which locations were
most informative for classifying eyes as healthy or glaucoma-
tous. Figure 2 shows that measurements of RNFL and mean
height contour along the disc margin had larger areas under
the ROC curve than measurements in the parapapillary region.
In addition, the figure shows a double-hump-like pattern with
an apparent peak located inferiorly (approximately 240°-280°)
and superiorly (approximately 80°-120°), indicating that these
sectors have the largest area under the ROC curve and there-
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TABLE 2. Area under the ROC Curves and Sensitivities at Set Specificities from SVM Gaussian for Different Data Sets

ROC Area Sensitivity at 75% Sensitivity at 90%
Training Set Classifier (SE) Specificity (%) Specificity (%)

All parameters combined* SVM-G 0.964 (0.010) 97 85
Regional parameters* SVM-G 0.959 (0.011) 94 86
Global parameterst SVM-G 0.935 (0.016) 89 81
Sectoral mean height contour along

the disc margin (MHCDM)t SVM-G 0.914 (0.018) 87 77
Sectoral parapapillary mean height

contour (MCH1.7) SVM-G 0.808 (0.027) 70 46
Sectoral RNFL thickness along the

disc margin (RNFLDM)# SVM-G 0.863 (.026) 81 68
Sectoral Parapapillary RNFL

thickness (RNFL1.7) SVM-G 0754 (.032) 59 38

* Area under the ROC curve significantly larger than area under the ROC curve for global parameters, sectoral mean height contour and RNFL
along the disc margin (MCHDM and RNFLDM) and sectoral parapapillary mean retinal height contour and RNFL measurements (MCH1.7 and

RNFL1.7).

1 Area under the ROC curve significantly larger than area under the ROC curve for sectoral parapapillary mean retinal height contour and RNFL

(MCH1.7 and RNFL1.7).
F AUROC significantly larger than parapapillary RNFL (RNFL1.7).

fore the greatest ability to discriminate between normal and
glaucomatous eyes compared with other sectors.

The next objective was to use machine learning classifiers
to compare the area under the ROC curve of mean height
contour and RNFL measurements along the disc margin with
measurements obtained in the parapapillary retina (Table 2).
With training sets using SVM Gaussian techniques, the area
under the ROC curve (*SE) was significantly greater when
using the 36 sectoral mean height contour measurements along
the disc margin (0.914 = 0.018) than when using the 36
sectoral parapapillary mean height contour measurements
(0.808 * 0.027). Sensitivities at 75% and 90% specificity were
higher with the 36 mean height contour along the disc margin
sectors (87% and 77%, respectively) than with the 36 parapap-
illary mean height contour sectors (70% and 46%, respec-
tively). Similarly, the area under the ROC curve when using the
36 RNFL thickness sectors along the disc margin (0.863 =+
0.026) was higher than when using measurements in the para-
papillary retina (0.754 * 0.032).

We also compared the sectoral measurements along the
disc margin and parapapillary retina to other HRT regional and
global parameters. The area under the ROC curve and sensitiv-
ities at specificities of 90% and 75% for these training sets and
for the SVM Gaussian for all parameters combined are pre-
sented in Table 2. When SVM Gaussian results for the different
training sets (global, regional, mean height contour at the disc
margin, parapapillary mean height contour, and all combined)
were compared, two training sets had the largest area under
the ROC curve (£SE): the set containing all parameters com-
bined (0.964 *= 0.010) and the set that included regional
parameters only (ROC area, 0.959 * 0.011). The area under the
ROC curve (£SE) of these two training sets was significantly
larger than that of the training sets including global parameters
only (0.935% 0.0106), sectoral mean height contour measure-
ments along the disc margin (0.911=% 0.020), sectoral parapap-
illary mean height contour measurements (0.796* 0.030), sec-
toral RNFL measurements along the disc margin (0.863 =
0.020), and sectoral parapapillary RNFL measurements
(0.754 £ 0.032) (all comparisons, P = 0.014; Table 2). Further,
two training sets, the set that included global parameters only
and the set containing sectoral mean height contour measure-
ments along the disc margin had significantly larger areas under
the ROC curves than training sets that included sectoral RNFL
measurements along the disc margin, and parapapillary mean
height contour and RNFL measurements (all comparisons, P =
0.03). Finally, the area under the ROC curve for sectoral RNFL

measurements along the disc margin was significantly greater
than that for sectoral parapapillary RNFL measurements (P =
0.007).

For each training set in Table 2, the area under the ROC
curve was somewhat larger for SVM Gaussian than for SVM
linear, but these differences did not reach statistical signifi-
cance except when global parameters were used in the model
(P = 0.023; data not shown). We therefore limited the report-
ing to results using SVM Gaussian techniques.

Optimizing Machine Learning Classifiers by Using
Feature Selection

Additional analyses were completed to determine whether
better performance of the model, as measured by the area
under the ROC curve, could be achieved by including only the
most effective features (HRT parameters). Forward selection
and backward elimination procedures were completed as out-
lined in the Methods section. Figure 3 illustrates the area under
the ROC curve (y-axis) by the number of features included in
the model (x-axis). The top curve in Figures 3A (forward
selection) and 3B (backward elimination) indicate the estimate
of the area under the ROC curve after the selection process,
without independent verification. As expected, when the se-
lection of features is verified in an independent data set, the
estimate for the area under the ROC curve is lower (Fig. 3A, 3B,
bottom curves).

Figures 3A and 3B also illustrate that good performance
(99% of peak area under the ROC curve) can be attained when
less than 10 of the features are included in the model. With
forward-selection techniques, the number of parameters nec-
essary to obtain 97.5%, 99.0%, and 99.9% of peak area under
the ROC curve for SVM Gaussian including all 178 parameters
was 4, 8, and 26, respectively. With backward-elimination
optimization techniques, the number of parameters necessary
to obtain 97.5%, 99.0%, and 99.9% of peak area under the ROC
curve for SVM Gaussian was 4, 7, and 14, respectively.

Di1scUSSION

HRT sectoral mean height contour and RNFL measurements
obtained along the disc margin were found to discriminate
between healthy eyes and eyes with early to moderate glau-
coma better than measurements obtained in the parapapillary
retina. In addition, global and regional parameters also had
better discriminating ability (larger area under the ROC curve)
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FIGURE 3. SVM Gaussian optimization using a combination of parameters: global, regional, and mean height contour along disc margin.

Optimization using (A) forward selection and (B) backward elimination show that the area under ROC curve is higher for the selection (thick
dashed line) ROC curve than the verification (thick solid line) ROC curve. Five cross-validation replications (represented by the five thin dashed
lines) surrounding the selection ROC curve and five replications (represented by the five thin dotted lines) were used to create the selection and
verification ROC curve, respectively. In addition, forward selection and backward elimination show that less than 10 HRT parameters are required

for a model to discriminate at 99% of the peak area under ROC curve (arrows).

than sectoral measurements in the parapapillary region. Fur-
thermore, it was found that machine learning classifiers can
summarize large amounts of data and that optimization tech-
niques can be used to identify a reduced set of features that
provide good discrimination.

Among the sectoral measurements along the disc margin, a
relatively small number of sectors in the inferior and superior
region discriminated between healthy and glaucomatous eyes
better than other sectors. The graph of the area under the ROC
curve for the disc margin measurements in Figure 2 resembles
the anatomic double-hump pattern of RNFL thickness distribu-
tion around the optic disc, with the largest area under the ROC
curve in the inferior and superior regions, corresponding to
the known pattern of thicker RNFL in these regions. The use of
sectoral data to discriminate between healthy eyes and eyes
with early to moderate glaucoma confirms previous reports
using other imaging instruments that also found that inferior or
superior RNFL parameters often provide better discrimination
than measurements in other areas.>*%3°

To our knowledge, this is the first report comparing the
discriminating ability of HRT measurements along the disc
margin to measurements in the parapapillary area. HRT RNFL
thickness along the disc margin has been reported to be among
the best parameters for discriminating between normal and
healthy eyes.®'? Furthermore, HRT RNFL thickness along the
disc margin was the HRT parameter most strongly correlated
with histomorphometric axon counts in monkey eyes.” As
RNFL damage, as assessed by review of red-free RNFL photo-
graphs of the parapapillary region, has been shown to precede
visual field damage by as many as 6 years, it is of interest to
determine whether parapapillary measurements available with
each HRT image can discriminate as well as measurements
along the disc margin. In addition, it is of interest to evaluate
whether the parapapillary measurements in combination with
traditional measurements along and within the optic disc pro-
vide an improvement in discriminating ability above that of

optic nerve head parameters alone. Our results indicate that
HRT measurements in the parapapillary area did not discrimi-
nate better than measurements obtained along the disc margin
and did not provide additional discriminating power when
evaluated in combination with other optic nerve head param-
eters.

There are several possible explanations of why HRT mean
height contour and RNFL measurements along the disc margin
discriminate better than measurements obtained in the para-
papillary region. The HRT measures retinal surface topography
and only indirectly measures RNFL thickness. The sectoral
measurements along the disc margin are thicker and may better
reflect the tissue of interest, the RNFL. Compared with mea-
surements along the disc margin, the thinner measurements in
the parapapillary region may include in its measurement a
greater proportion of the other layers of the retina in addition
to RNFL tissue. A standard reference plane was used to calcu-
late RNFL thickness measurements both along the disc margin
and in the parapapillary retina. Because the discriminating
ability of mean height contour measurements, which are not
based on a reference plane, performed as well or better than
RNFL measurements, it is unlikely that the reference plane per
se is the reason for the better discriminating ability of measure-
ments taken at the disc margin.

The better discriminating ability of HRT measurements
along the disc margin compared with the parapapillary should
not be generalized to RNFL measurements obtained by other
imaging methods, such as scanning laser polarimetry and op-
tical coherence tomography, that are designed to measure
directly the RNFL in the parapapillary region. For the present
study, we defined the parapapillary measurements at a fixed
distance (1.7-mm radius) from the center of the optic cup
rather than at a distance relative to the disc margin, so that data
from eye to eye would be more comparable. Other imaging
instruments that measure features of the parapapillary RNFL,
including the GDx variable corneal and lens compensator
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(VCC; Laser Diagnostic Technologies, Inc., San Diego, CA) and
the Optical Coherence Tomograph (Carl Zeiss Meditec Inc.),
obtain measurements at fixed distances from the center of the
optic cup. Both instruments include a default measurement
along a circle of 1. 7-mm radius, as it has been shown to be
among the most reproducible locations.>' More important,
perhaps, if measurements are obtained relative to the disc
margin, then they will be located at different locations relative
to the center of the disc, limiting the comparability of the
measurements across eyes. For example, if two subjects have
the same number of nerve fibers and axons, but one eye has a
larger optic disc diameter than another, the RNFL thickness
should be similar in both subjects if measured at a fixed radius,
as long as it is sufficiently far from the disc margin. However,
if measurements are obtained at a parapapillary location rela-
tive to the disc margin, such as 1.5 disc diameters from the disc
margin, then thinner measurements would likely be obtained
in the larger disc (compared to smaller disc), because the
location of the measurement would be more peripheral.

Investigators have applied several analysis strategies in an
effort to summarize the large amount of data provided by the
HRT and other diagnostic instruments, including standard au-
tomated perimetry. Discriminant functions, Fourier analy-
sis,®>% and machine learning classifier techniques have been
shown to improve the ability of these instruments to discrim-
inate between normal and glaucomatous eyes.'”>**?> More
recently, machine classifiers and neural network techniques
including SVM have been shown to improve the ability of HRT
optic disc parameters,'®> and visual field results***® to differ-
entiate between normal and glaucomatous eyes. Specifically,
using HRT regional parameters, SVM techniques improved the
ability to detect early glaucoma (area under the ROC curve,
0.97) compared with commercially available and previously
published HRT-based linear discriminant functions (area under
the ROC curves all <0.91).'®> For these reasons, SVM tech-
niques were included in the study as the method to use to
integrate the large quantity of data automatically provided by
the HRT.

The area under the ROC curves in the present study are not
as large as those reported by Bowd et al.,"> probably because
one of the objectives of this study was to refine cross-validation
and optimization techniques to provide better estimates (re-
duce bias) of the area under the ROC curve. Extension of
cross-validation techniques with a separate evaluation test set
is a more conservative statistical approach. It is preferred
because it avoids overstating the discriminating ability (area
under ROC curve) of the models that might occur from using
the selection set as the evaluation set. In contrast to our
previous study,'® the present study used an evaluation set
separate from the selection set. As illustrated in Figure 3, it is
likely that the verification ROC curve (solid line), based on
separate selection and evaluation sets, provides a better esti-
mate of the discriminating ability than the selection ROC curve
(dashed line), which used the selection set as the evaluation
set, too.

Another objective of the present study was to identify a
smaller set of HRT parameters that would discriminate as well
as the full dimensional data. It was found that using fewer than
10 parameters can result in discrimination at 99% of the peak
area under the ROC curve using the full data set. Identifying a
smaller set of parameters will not reduce patient testing time
(all data are available from a single scan). However, using a
reduced number of variables may facilitate postprocessing of
these data. It can also indicate which features are likely to be in
a well-performing reduced feature set.

A machine learning classifier can combine features into its
input from several tests, such as automated perimetry, optic
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nerve topography, and various risk factors. Eliminating less
useful features from each of the tests may ease the integration
of these data for analysis by one classifier. Our data from this
study and others'>?*?> suggest that machine learning classifi-
ers in general, and SVMs in particular, may be well suited to
integrate data on both structural and functional tests to provide
the clinician with a more comprehensive diagnostic tool for
detecting glaucoma.

In the present study, our inclusion criteria for normal sub-
jects required a normal visual field and normal optic nerve
appearance at the clinical examination, whereas the criteria for
our glaucoma group required a glaucomatous visual field. The
requirement for a normal clinical examination was necessary to
avoid the inclusion of subjects with glaucomatous optic neu-
ropathy but normal visual fields in the control group. Although
disc appearance was not used explicitly as one of the inclusion
criteria in our glaucoma group, it can be assumed that nearly all
eyes with visual field damage also had optic disc damage. It can
be argued that these inclusion criteria lead to an overestimate
of the area under the ROC curve. Therefore, our results may
not be generalizable to other studies where the diagnosis is not
known and borderline cases are present. It should be noted
that this is a methodological issue common to glaucoma diag-
nostic studies and no practical solution to this problem is
available at this time.

In conclusion, mean height contour measurements along
the disc margin discriminated better between healthy eyes and
eyes with visual field damage than parapapillary measurements
away from the disc margin. Optimization of machine learning
classifier techniques can be used to identify a reduced set of
features that provide good discrimination. Extension of cross-
validation techniques with a separate evaluation test set avoids
overstating the discriminating ability of the models. This study
provides further evidence that the use of machine learning
classifiers, trained with adequate cross-validation methods, can
assist in identifying which combination of HRT parameters can
best detect glaucoma. The application of these results in clin-
ical practice could result in a more accurate diagnosis of glau-
coma than possible with any single optic disc parameter such
as cup-disc ratio or rim area.
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