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Support Vector Machines (SVM) is a powerful classification and regression tool that is becoming increasingly
popular in various machine learning applications. We tested the ability of SVM, in comparison with well-
known neural network techniques, to predict drug-likeness and agrochemical-likeness for large compound
collections. For both kinds of data, SVM outperforms various neural networks using the same set of
descriptors. We also used SVM for estimating the activity of Carbonic Anhydrase II (CA II) enzyme inhibitors
and found that the prediction quality of our SVM model is better than that reported earlier for conventional
QSAR. Model characteristics and data set features were studied in detail.

INTRODUCTION

Computer-aided screening of new drugs relies heavily
upon various filters aimed at retaining promising, drug-like,
compounds while throwing away those unlikely to be drugs.
During stepwise filtering, the complexity and specificity of
filters gradually increase: from simple rules similar to
Lipinsky’s rule1,2 to sophisticated QSAR models. As a
computational technique behind the most sophisticated filters,
artificial neural networks (ANN) are becoming the de facto
standard. In general, ANN are a relatively easy to use,
powerful, and versatile tool, but there are some drawbacks
associated with this prediction method. Among them are (i)
the “black-box” character of ANN, which may hamper the
interpretation of derived models and fine-tuning; (ii) the risk
of overfitting (i.e., ability to fit to training data noise rather
than to true data structure, resulting in poor generalization);
and (iii) a relatively long training time.

Recently, a relatively novel method has become popular
in the machine learning community, which seems to be at
least as powerful and versatile as ANNs. These are the so-
called Support Vector Machines (originally proposed and
developed by Vladimir Vapnik3), which exist in classification
and regression versions. SVM applications are being actively
pursued in various areas, from genomics to face recognition.4-6

The first brief reports on the application of SVMs to drug
design problems are quite promising. Burbidge et al.7

compared the performance of SVMs, ANNs, and C5.0
decision trees for predicting the inhibition of dihydrofolate
reductase by 55 substituted pyrimidines. SVM classifiers
demonstrated the best prediction rating and were also much
less time-consuming than ANNs. A subsequent paper8

reported similar results for blood-brain barrier (BBB) perme-
ability predictions (learning set of 172 compounds; overall
prediction quality on SVM slightly outperformed ANNs).
Another type of SVM application was reported by Warmuth
and co-workers,9 who performed the selection of “actives”
in large data sets. The authors demonstrated that on two data
sets provided by DuPont Pharmaceuticals to predict the
permeability of compounds, selection strategy based on SVM
performs efficiently and is much better than random selec-
tion.

In the research presented here, we applied SVM to real-
life large-scale drug discovery problems, specifically, the
creation of drug- and agro-likeness filters10 for screening
large compound collections. One particular objective was
to compare the performance of SVM and ANN classifiers
on the same data. Additionally, we tested SVM in QSAR-
related analysis of Carbonic Anhydrase II inhibition data and
compared our results with literature reports on more con-
ventional techniques.

METHODOLOGY

There exist a number of excellent introductions into SVM,
both printed3,11,12 and electronically available.13 For this
reason we will only briefly summarize the main ideas and
terms of SVM classification here.

From the practioner’s viewpoint, a particularly important
feature of SVM is that it explicitly relies onStatistical
Learning Theory3 and directly addresses the issue of avoiding
overfitting. The key concept here isStructural Risk Mini-
mizationprinciple (SRM)14 proposed by Vapnik and Cher-
vonenkis in the early 1970s.

Suppose we have a set ofm training data points{(x1,y1)...
(xm,ym)} wherex are features (descriptors;X is called input
space) and ym is a class label, typically,-1 and 1 in binary
classification tasks. Suppose also that there exists an
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unknown probability distribution P(x,y), which describes a
relation of features to classes. We attempt to associate the
descriptors with classes by introducing prediction, or deci-
sion, function f(x,a), which value changes from-1 to +1,
dependent on the class.

The decision function parametersa are to be found via
minimization of the functional of expected error

whereQ(x,a,y) is a loss function. For example,Q ) (y -
f(x,a))2 corresponds to the common least-squares estimate.
The obvious problem is that the integral depends on the
unknown true distributionP defined for the whole input
space, but all we have is a sampling from that distribution,
our training set. So for practical purposes, the integral should
be replaced with the sum over the training points only,
empirical risk. However, there could be a number of different
functions which all give a good classification. Our selection
criterion among these functions is then that we should select
the decision function that performs best not only at training
set examples but also on previously unseen data, that is, the
function with the bestgeneralizationability. According to
SRM, this may be achieved by minimizing both empirical
risk andconfidence interVal. The latter term is proportional
to the ratio of model complexity (measured by the so-called
Vapnik-CherVonenkis dimension) to the number of training
data points. Omitting formulas, SRM states that the optimal
classifier is given by a tradeoff between reduction of the
training error and limiting model complexity, that is limiting
the chances of overfitting.

Consider an example of classification in two-dimensional
input space (Figure 1). Given the depicted training set,
both solid and dashed separation lines (Figure 1a) are
acceptable; but which one is better? Intuitively, it is clear
that the better-generalizing line is one less sensitive to small
perturbations in position of data points, so it is the solid
line in Figure 1a. In other words, the decision line must lie
in some sense maximally far apart from the training points
of different classes. This is exactly what follows from SRM
application to the task and what constitutes the essence
of SVM: the optimal classifier is the one providing the
largestmargin separating the classes (margin is defined as
the sum of shortest distances from decision line to the closest
points of both classes, Figure 1b). Geometrically, the optimal
line bisects the shortest line between the convex hulls of
the two classes. Notably, it appears that a relatively small
number of data points which are closest to the line (lie on
the margin; so-calledsupportVectors, SV) are completely
enough to determine the position of optimal separation line
(optimal separation hyperplane, OSH, for a high-dimension
case).

Both SVs and OSH can be found by solving a related
quadratic programming problem. If the separating hyperplane
is Wx+ b ) 0, which impliesyi(Wxi+b) g 1, i ) 1..m, the
decision is found by minimization Euclidian norm1/2|W|2:

Only if the corresponding Lagrange multipliersRi > 0, these
xi are support vectorx. After minimization, the decision
function is written as

Note that only a limited subset of training points, named
support vectors, contribute to the expression.

In a linearly inseparable case, where no error-less clas-
sification can be achieved by hyperplane, there still exist
two ways to proceed with SVM.

The first one is to modify linear SVM formulation to allow
misclassification. Mathematically, this is achieved by intro-
ducing classification-error (slack) variables êi > 0 and
minimizing the combined quantity

under the separation constraints asyi(Wxi+b) g 1 - êi, i )
1..m. Here the parameterC regulates a tradeoff between
minimization of training error and maximization of margin.
Such an approach known assoft margin techniqueis
exemplified geometrically by Figure 2a.

Another way isnonlinear SVM, which has achieved a great
deal of attention in the past decade. The most popular current
approach is “transferring” data points from initial descriptor
space to higher-dimensional space, which is derived by
adding new degrees of freedom through nonlinear transfor-
mations of initial dimensions (Figure 2b). The hope is that
problems that are nonlinear in original space may be linear
in higher dimensions, so linear solution techniques become
applicable.

Importantly, direct transfer of the points from original to
higher-dimensional space is not necessary, as all SVM
mathematics deals with dot products of variables (xi,xj) rather
than with variable valuesxi,xj themselves. All that is
necessary is to replace dot products (xi,xj) with their higher-
dimensional analogues, functionsK(xi,xj) expressed over
original variablesx. The suitable functionsK are called
kernels, and the whole approach is known askernel trick.

Figure 1. a. Two possible linear discriminant planes. b. Best plane
maximizes the margin.

Figure 2. a. Explanation of the soft margin technique: best plane
bisects the reduced convex hulls. b. Nonlinear mapping into higher
dimensions: kernel application.
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Decision function in this case is written as

The most common kinds of kernels are

Finally, let us list the main SVM advantages below:15

1. We can build any complex classifier, and the solution
is guaranteed to be the global optimum (no danger of getting
stuck at local minima). This is a consequence of the quadratic
programming approach and of the restriction of possible
decision space.

2. There are few parameters to elucidate. Besides the main
parameterC, only one additional parameter is needed to
determine polynomial or RBF kernels, which typically (as
can be judged from the literature) demonstrate high clas-
sification power.

3. The final results are stable, reproducible, and largely
independent of the optimization algorithm. The absence of
a random constituent in SVM scheme guarantees that two
users which apply the same SVM model with the same
parameters to the same data will receive identical results
(which is often not true with ANNs).

DRUG-LIKENESS ESTIMATION

A drug-likeness model was profiled and validated by using
available databases of drugs and pharmaceutical leads
(15 000 molecules from the Ensemble database,16 a licensed
database of known pharmaceutical agents compiled from the
patent and scientific literature) and 15 000 nondrugs. The
active (drug-like) molecules were reported pharmaceutically
active agents (compounds at the stages of (pre)clinical trials,
launched drugs, or compounds with proven pharmaceutical
activity). Care was taken to avoid over-representation of any
single class of compounds with the main chemical classes
of known drugs having a similar distribution.

Inactive (nondrug-like) compounds were representatively
selected from the Sigma-Aldrich catalog,17 based on an
assumption that the collection of compounds without a
defined type of activity will show minimal drug-likeness.
The nondrugs set was filtered to remove compounds with
reactive functionalities and other unwanted substructures.

A list of calculated descriptors used for building drug-
likeness models is presented in Table 1.

These descriptors were calculated using the ChemoSoft
software.18 The key feature of this descriptor set which
distinguishes it from similar ones19,20 is the presence of
ADME-specific (ADME - absorption, distribution, metabo-
lism, excretion) descriptors logD74, logSw, and FA (calculated
by the SLIPPER program21 integrated into ChemoSoft). We
believe that ADME-related properties are highly significant
in the context of pharmacokinetic characteristics of the drug
candidates and should contribute significantly to the predic-
tive power of the developed model.

The performance of the model can be enhanced by the
use of additional 2D/3D descriptors that contain information
about specific functional groups within the molecule. How-
ever, increasing the number of descriptors is impractical for
very large compound sets. The results shown below dem-
onstrate good predictive power of the model built using this
minimal set of descriptors.

The whole set of all 30 000 compounds was divided into
three parts (see Table 2): training set (for building drug
likeness model by neural networks and SVM), validation set
(for checking model quality while training neural networks,
useful for avoidance of overfitting), and the test set (for
checking prediction quality of the best models). The valida-
tion set was also used to check SVM models instead of leave-
one-out cross-validation, as the latter is too slow for large
data sets.

Before creating models, each descriptor was evaluated
according to its capacity to separate drugs from nondrugs,
as illustrated in Figure 3.

From these diagrams (Figure 3) one can easily observe
the threshold value of the descriptor which provides the best

Table 1. Descriptors Used for Building Drug- and Agro-likeness Estimation Models

no. descriptor description
software used for

caclulation
drug-likeness

model
agro-likeness

model

1 MW molecular weight Chemosoft18 + +
2 FA fractional absorption Chemosoft + +
3 LogD log of 1-octanol/water partition coefficient at pH 7.4 Chemosoft + +
4 LogP log of 1-octanol/water partition coefficient (neutral form) Chemosoft - +
5 LogSw log of water solubility (g/mL) at pH 7.4 Chemosoft + +
6 H_don number of hydrogen bond donors Chemosoft + +
7 H_acc number of hydrogen bond acceptors Chemosoft + +
8 B_rot number of rotatable bonds Chemosoft + +
9 RG molecular radius of gyration Cerius2 a - +
10 AP atomic polarizability Cerius2 - +
11 DM dipole moment Cerius2 - +
12-21 JDD set of Jurs descriptors Cerius2 - +

a Accelrys, Inc. 2000. URL: http://www.accelrys.com/.

f(x) ) sgn(∑
i)1

m

yiRi‚K(x,xi) + b)
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K(xi,xj) ) exp(-r|xi - xj|
2) s Radial Basis Function

(RBF)

K(xi,xj) ) sigmoid(η(xixj) + a) s Two-layer perceptron

Table 2. Subsets Used in Creating and Testing Drug-likeness
Models

train set validation set test set

total 15 000 7499 7500
drugs 7465 3755 3751
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separation. The proximity of these thresholds to optimal is
confirmed by one-descriptor SVM classifiers that are pre-
sented in Table 3.

All seven descriptors examined above were used to build
drug-likeness models. SVM classifiers were based on linear
or nonlinear (Radial Basis Functions, RBF) kernel. Before
modeling each descriptor was scaled to [-1;1] range (by
training set; scaled values for other subsets were derived
using train set scaling factors). The LibSVM22 and SVM-
light23 programs were used.

Besides SVM, several ANN models were built with
NeuroSolution software24 (feed-forward networks that consist

of input neurons, one hidden layer, and two output neurons).
The networks were trained with the molecular descriptors
as input values and the drug-likeness scores as output. The
final score was calculated by subtracting the “activity” from
the “inactivity” value. The back-propagation networks were
trained following the momentum-learning rule implemented
in the NeuroSolution program. For all the modeling proce-
dures, the training was performed over 1000 iterations.

The results of drug-likeness prediction for the best SVM
and ANNs on test set are presented in Table 4.

They are close to typical published10 quality of 70-80%
prediction accuracy. Interestingly, most of the studied

Figure 3. Distribution diagrams of descriptor values for examining the quality of separation between drugs and nondrugs.
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compounds meet the requirements of all four conditions of
Lipinsky’s rule, and nondrugs meet this rule better than
drugs.

The distribution of predicted scores for the test set allows
the determination of some interesting aspects of the models
we created (Figure 4).

The best RBF model has a distinctly nonnormal distribu-
tion of predicted scores, especially for drugs, compared to
the more balanced linear SVM and neural-network distribu-
tion curves. Obviously, this distribution discovers some
heterogeneity of compounds of the data set that is presented
in initial feature space, but this heterogeneity is nevertheless
reflected only in the nonlinear SVM model.

The typical time cost of establishing good SVM decisions
is comparable to that necessary to train ANNs, as finding
the best SVM model requires scanning the space of
parameters, giving rise to 50-70 RBF SVM models.
Commonly, it takes 2-3 h on the Athlon 1500 MHz
machine.

AGROCHEMICAL-LIKENESS ESTIMATION

For this study, we selected 500 diverse commercial
agrochemicals25 and 11 000 diverse nonagrochemical mol-
ecules from the Sigma-Aldrich catalog of organic com-
pounds.17 As in the case of nondrug-like compounds, an
assumption was made that the compounds without a defined
type of activity from the chemical catalog possess minimal
agrochemical activity. The structures were characterized with
an extended set of descriptors (21 in total, see Table 1) most
of which (Jurs descriptors) mainly combine shape and
electronic information about molecules.

For building models, the same approach as in the drug-
likeness experiment described above was used, except that
a new method was applied in ANNs. It combines feedforward
network learning with descriptor selection by a genetic
algorithm that removes insignificant and interfering descrip-
tors during learning. This method produces the lowest
error.

The whole set was divided into training, validation, and
test set. The validation set was used as an alternative to the
cross-validation procedure during selection of the model with
the most stable predictive results. Prior to SVM calculations,
descriptor values were scaled. The size of each of the data
subsets is presented in Table 5.

The disparity between the number of agro- and nonagro-
chemicals also was taken into account while deriving the
models.

None of the linear SVM models showed acceptable
classification results, so only the RBF kernel model is
described below (any linear kernel shows a high number of
classification errors). As was the case for drug-likeness
estimation, the RBF SVM model discriminates compounds
of the test set better than the best found neural network
model. Classification results of the SVM and ANNs (best
models) on compounds of the test set are shown in Table 6.

Table 3. Accuracy of Separation between Drugs and Nondrugs for the Best One-Descriptor SVM Models and for Thresholds Taken from
Histograms

descriptor kind of kernel
for train

set
for test

set
by histogram
for train set

threshold
(drug is..)

FA
RBF kernelc)1 g)1 63.02 61.29

62.97 e0.75
linear kernelc)1 62.12 60.79

LogD
RBF kernelc)1 g)1 56.56 56.25

56.58 e4.00
linear kernelc)1 56.33 55.16

LogSw
RBF kernelc)1 g)1 59.04 58.41

58.92 g-3.00
linear kernelc)1 58.81 58.11

a_acc
RBF kernelc)1 g)1 59.01 58.87

58.95 g3
linear kernelc)1 58.95 58.79

a_don
RBF kernelc)1 g)1 61.59 60.33

61.59 g2
linear kernelc)1 61.59 60.33

B_rotN
RBF kernelc)1 g)1 60.63 61.33

60.59 g10
linear kernelc)1 60.32 60.41

MW
RBF kernelc)1 g)1 64.00 62.65

61.66 g350
linear kernelc)1

Table 4. Prediction Quality for the Best Drug-likeness Models, Test Set

model
accuracy (%)

overall
accuracy (%)

drugs
accuracy (%)

nondrugs

SVM, RBF kernelc)2 g)10a (train. time∼ 5 minb) 75.15 72.19 78.10
SVM, linear kernelc)1a (train. time∼ 2 min) 68.68 66.12 71.25
multilayer perceptron, 1 hidden layer(train. time∼ 39 min) 72.52 69.63 75.41
modular feedforward network, 2 hidden layers(train. time∼ 110 min) 70.92 78.33 63.51
generalized feedforward network, 1 hidden layer(train. time∼ 37 min) 69.85 77.53 63.38
Lipinsky rule of 5 62.60 28.60

a While searching for the best SVM models, the whole parameter space was scanned (parameterc for linear kernel, 5-10 training cycles in total,
and parametersc andg for RBF kernel, 50-70 training cycles in total). In each run a training/validation cycle was performed. Models that have
shown the bestpredictiVe power (i.e. performance on validation set) were selected and applied totestset to check for “actual” performance, which
is reported in the table.b Athlon 1500 MHz, training time for SVM is reported for one training cycle.

Table 5. Subsets Used in Creating and Testing Agro-likeness
Models

train set validation set test set

total 5830 2902 2915
agrochemicals 208 116 112
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In addition to classification results, the distribution dia-
grams of predicted scores for the two best models are shown
in Figure 5.

The distribution of predicted scores for SVM RBF models
not only provides better separation but also has a more
regular shape (close to normal). The last fact allows us to
suppose that the SVM separation surface is near optimal for
the current descriptor space and, accordingly, will recognize
outliers better.

STUDY OF CARBONIC ANHYDRASE II (CA II)
INHIBITORS

CA II is a well-characterized zinc-dependent enzyme. Its
own spatial structure and the structures of its complexes with
inhibitors have been determined by X-ray crystallography.
Several hundred diverse CA II inhibitors were synthesized
in the last 50 years because of its applicability in different
areas: diuretics, antiepileptics, modulators of cancer che-

Table 6. Summary of Prediction Quality for the Best Agro-likeness Models on Test Set

model
agrochemicals,

errors (from 112)
nonagrochemicals,
errors (from 2786)

SVM, RBF kernelc)5000g)1 (train. time∼ 3 mina) 17 821
genetic algorithm+ generalized feedforward network, 1 hidden layer(train. time∼ 300 min) 22 1109
generalized feedforward network, 1 hidden layer(train. time∼ 25 min) 33 1021
modular feedforward network, 1 hidden layer(train. time∼ 69 min) 41 1081

a Athlon 1500 MHz, training time for SVM is reported for one training cycle.

Figure 4. Distribution of drug-likeness predicted scores for test set.

Figure 5. Distribution of agro-likeness predicted scores for test set.
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motherapy, agents for the treatment of glaucoma, etc.
Moreover, structure-activity relationships have been exten-
sively studied for this molecule. It is known that common
pharmacophore groups are the terminal sulfonamide group
connected to an aromatic ring or heterocyclic portion with
several hydrogen bonding groups.

The main reason for using this set to test SVM is the
presence of a relatively large collection of CA II inhibitors
in Gao’s paper26 from his series26-28 where the author
develops thebinary QSAR approach (compounds are
considered concerning concrete biological activity as actives
or inactives).

Results of deriving and testing binary QSAR and SVM
classifiers on a set of 337 diverse CA II inhibitors are shown
in Table 7. Both classifiers were built in space of six
descriptors: 1. HI1, first-order atomic valence connectivity
index; 2. HI2, second-order atomic valence connectivity
index; 3. K1, Kier first shape index; 4. HBA, number of
hydrogen bond acceptors; 5. LogP, calculated octanol/water
partition coefficient; 6. FN, number of R-SO2NH2 frag-
ments. The results of binary QSAR and descriptor values
for SVM were taken from Appendix I of Gao’s source
paper,26 where they are fully described. The same training
and test sets we used for deriving SVM classification models,
so the “starting points” of two methods were identical and
the results can be directly compared. In contrast to experi-
ments on both drug- and agro-likeness, for building these
SVM models the initial descriptor values were used without
scaling or other preprocessing.

It is evident from Table 7 that an advantage of the best
SVM classifier in common prediction results was found in
this case as well.

Further it is reasonable to ask the following questions: (1)
What are the advantages and disadvantages of SVM models?
(2) What is the inherent “classifying power” of the given
set of descriptors? (3) How can one correctly separate
compounds into active and inactive?

As shown in Table 7, the overall number of errors for the
RBF SVM model is half as much as for the others. Cross-
validation and counting of errors on the test set, however,
demonstrated that actual RBF SVM model quality surpasses
binary QSAR model less than 2-fold. Principal Component
Analysis (PCA) on all six descriptors showed that (1) FN
descriptor (number of unsubstituted sulfanilamide groups)
almost fully describes the presence or absence of activity.
(2) It is possible to select two (or at maximum, three)
principal components (PCs) that are necessary for reproduc-
tion of initial set of descriptor variance with adjusted
exactness.

These points are illustrated by Figure 6. Both the scree
plot and eigenvalue table demonstrate the contribution of
PCs to total variance. Loadings plot shows descriptor
similarity (the smaller is the angle between two vectors, the
more similar are the corresponding descriptors). Scores plot
visualizes distribution of compounds in the space of two first
PCs and SVM separation surfaces. Note that this picture is
essentially two-dimensional (two first PCs) and incomplete;
however, it represents the main features of class-separating
surfaces well.

Visual representation of all compounds and separation
surface in space of two first PCs allows us to understand
how compounds of both sets (train and test) are distributed
in descriptor space. Moreover, it allows us to discover a
significant feature of SVM RBF separation surfacesits
locality. The decision surface “envelops” points of inactive
compounds (more clearly it is visible in 3D space of three
first PCs). In essence, a linear SVM approach that actually
takes into account one FN descriptor (linear SVM and FN
descriptor models results coincide) derives a rough but more
adequate separation surface.

The overall large number of prediction errors for the best
models suggests that the data may be poorly preconditioned,
which results in a bad representation of data set inner
structure. The most probable reason is inadequate division
of compounds into active and inactive ones. To illustrate
this point, distribution diagram for measured continuous
value of biological activity (Log1/C) is shown (Figure 7).

Apparently, the border between active and inactive com-
pounds (Log1/C) 6.0) which was used in the source work26

is displaced relative to the “statistically justified” range (2-5
values of Log 1/C). If the border is shifted to a smaller value,
the number of errors for FN descriptor model decreases, as
shown in Table 8.

The minimum number of errors, 5, is found for a border
value of 4.5. Further decreasing (or shifting) of the border
does not change the number of errors. Note that it is thus
possible to estimate the quantitative contribution of a
functional group to the measured value of activity, Log1/C.
These 5 incorrectly classified compounds have no unsub-
stituted RSO2NH2 fragments but one-substituted RSO2NHR1.
Thus these errors are due to a failure to take into account
the presence of substituted sulfonamide groups, which can
appreciably influence value of activity.

As a result of this detailed analysis, it was possible not
only to define the main characteristics of derived models
but also to reveal a peculiarity relating to the usage of
descriptors and definition of the border between active and
inactive samples. This peculiarity is critical for deriving

Table 7. Comparison of Binary QSAR, SVM, and “FN Descriptor” Models of CA II Inhibition Activity, Number of Classification Errors

training set errors test set errorstraining set errors,
cross-validation

model
active,

from 225
inactive,
from 55

overall,
from 280 active inactive overall

active,
from 52

inactive,
from 5

overall,
from 57

overall
errors,

from 337

FN descriptora 5 18 23 0 1 1 24
binary QSAR 10 (pred.

quality 96%)
9 (84%) 19 (93%) 96%b 82%b 93%b 3 1 4 23

SVM linear kernelc)1 5 18 23 5 (98%) 18 (67%) 23 (92%) 0 1 1 24
SVM RBF kernelc)10g)1 3 6 9 4 (98%) 11 (80%) 15 (95%) 2 1 3 12

a “FN descriptor” model means that if FN) 0 then compound predicted as inactive; otherwise, as active.b In source work26 only these values
are presented.
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adequate classification models (subsequently, Gao derived28

a new binary model of CA II inhibition activity with genetic
selection of descriptors, but these did not lead to a significant

improvement of classification). The construction of such
models is a subject of ongoing investigation in our laboratory.

CONCLUSION

In summary, we tested Support Vector Machines as a
classification tool in several real-life drug-discovery problems
and found it typically outperforming other approaches, in
particular, artificial neural networks. However, SVM is
definitely not a panacea which always produces the best
models; the key to the latter often lies in selection of proper
descriptors. A particular case of CA II inhibition study
provides interesting insights into this relationship, by dis-
covering that the best SVM decision is “local”.
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Figure 6. Application of PCA to set of descriptors used for derivation of CA II inhibition activity models. Visualization of SVM separation
surfaces in space of two first principal components.

Figure 7. Distribution diagram of measured CA II inhibition
activity26 for all 337 compounds. Dashed line marks the border
(taken from source work26) used for separating active and inactive
compounds. However, the distribution shows that shifting the border
to smaller values is statistically more reasonable.

Table 8. Dependence of Error Amount for “FN Descriptor” Model
on the Border Value of Measured Inhibition Activity that Separates
Active from Inactive Compounds

separation border for Log1/C
(if more or equal is active)

train set overall
(active/inactive)

test set overall
(active/inactive)

7 51 13
6 23 (5/18) 1 (0/1)
5 8 (5/3) 0

4.5 5 (5/0) 0
4 5 (5/0) 0
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