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ABSTRACT
Motivation: Since the gap between sharply increasing known
sequences and slow accumulation of known structures is
becoming large, an automatic classification process based on
the primary sequences and known three-dimensional struc-
ture becomes indispensable. The classification of protein
quaternary structure based on the primary sequences can
provide some useful information for the biologists. So a fully
automatic and reliable classification system is needed. This
work tries to look for the effective methods of extracting attrib-
ute and the algorithm for classifying the quaternary structure
from the primary sequences.
Results: Both of the support vector machine (SVM) and the
covariant discriminant algorithms have been first introduced
to predict quaternary structure properties from the protein
primary sequences.The amino acid composition and the auto-
correlation functions based on the amino acid index profile
of the primary sequence have been taken into account in
the algorithms. We have analyzed 472 amino acid indices
and selected the four amino acid indices as the examples,
which have the best performance. Thus the five attribute para-
meter data sets (COMP, FASG, NISK, WOLS and KYTJ) were
established from the protein primary sequences. The COMP
attribute data set is composed of amino acid composition,
and the FASG, NISK, WOLS and KYTJ attribute data sets
are composed of the amino acid composition and the auto-
correlation functions of the corresponding amino acid residue
index.The overall accuracies of SVM are 78.5, 87.5, 83.2, 81.7
and 81.9%, respectively, for COMP, FASG, NISK, WOLS and
KYTJ data sets in jackknife test, which are 19.6, 7.8, 15.5,
13.1 and 15.8%, respectively, higher than that of the covari-
ant discriminant algorithm in the same test. The results show
that SVM may be applied to discriminate between the primary
sequences of homodimers and non-homodimers and the two
protein sequence descriptors can reflect the quaternary struc-
ture information. Compared with previous Robert Garian’s
investigation, the performance of SVM is almost equal to that
of the Decision tree models, and the methods of extracting
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feature vector from the primary sequences are superior to
Robert’s binning function method.
Availability: Programs are available on request from the
authors.
Contact: quanpan@nwpu.edu.cn; shaowuzhang@
hotmail.com

INTRODUCTION
It is generally accepted that the amino acid sequence of most,
not all, proteins contains all the information needed to fold the
protein into its correct three-dimensional structure (Afinsen
et al., 1961; Afinsen, 1973). At the next level of protein organ-
ization, tertiary structures associate into quaternary structures
forming multimeric proteins. The association of tertiary struc-
ture subunits depends upon the existence of complementary
‘patches’ on their surfaces. The patches are buried in the
interfaces formed by the subunits, thus, play a role in both
tertiary and quaternary structure. This suggests that primary
sequences contain quaternary structure information (Robert
Garian, 2001). Since protein sequence information grows sig-
nificantly faster than information on three-dimensional (3D)
structures of proteins, the need for predicting the structure
of a given protein sequence naturally arises. Thus, predicting
the spatial structure based a given protein primary sequence
information could play a significant role, in conjunction with
experimental methods.

The concept of quaternary structure was first put forward
by Bernal in 1958 (Klotz et al., 1975). Quaternary structure
is the interaction of non-covalently bound monomeric pro-
tein subunits to form oligomers. Such complexes are involved
in various biological processes (Terry and Richard, 1998),
including metabolism, signal transduction and chromosome
replicating etc. The oligomeric proteins have more advantages
than the monomers in the scope of functional evolution of bio-
macromolecules (Price, 1994). Thus, the study of quaternary
structure is very interesting in biology.

Robert Garian investigated the prediction of quaternary
structure from primary structure using decision-tree mod-
els and the feature extraction function (the simple binning
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function), and found that protein sequences contain quatern-
ary structure information (Robert Garian, 2001). However,
up to now, we have not seen other feature extracting methods
and algorithms to predict the protein quaternary structure. In
this paper, we try to apply support vector machine (SVM)
(Vapnik, 1995, 1998), covariant discriminant algorithm (Duba
and Hart, 1973; Chou and Elord, 1999) and two of protein
sequence descriptors to approach this problem.

SVM is a new type of learning machine based on statistical
learning theory. Due to its powerful discrimination, it was
applied with success to medicine, bioinformatics, computa-
tional biology, and structure–activity relationships, such as
translation initiation sites (Zien et al., 2000), membrane pro-
tein types (Cai et al., 2002, http://www.biochempress.com),
protein–protein interactions (Bock and Gough, 2001), pro-
tein subcellular localization (Hua and Sun, 2001), protein
fold (Ding and Dubchak, 2001), etc.

MATERIALS AND METHODS
Database
We use Robert Garian’s Database R (Robert Garian, 2001).
The Database R consisted of 1639 homo-oligomeric pro-
tein sequences, 914 of which are homodimers and 725
non-homodimers. It was obtained from Release 34 of the
SWISS-PROT database (Bairoch and Apweiler, 1996) and
limited to the prokaryotic, cytosolic subset of homo-oligomers
in order to eliminate membrane proteins and other specialized
proteins.

Support vector machine
The basic idea of applying SVM to pattern classification can be
stated briefly as follows. First, map the input vectors into one
feature space (possible with a higher dimension). Then, within
this feature space, construct a hyperplane which can separate
two classes. The mapping function will involve only the rel-
atively low-dimensional vectors in the input space and dot
products in the feature space. These dot products are repres-
ented by kernel functions. Thus the ‘curse of dimensionality’
can be avoided. SVM training always seeks a globally optim-
ized solution and avoids over-fitting, so it is of the ability to
deal with a large number of features.

The decision function implemented by SVM can be
written as:

f (�x) = sgn

(
N∑

i=1

yiαik(�x, �xi) + b

)
.

Two typical kernel functions are listed below:

Polynomial function

k(�xi , �xj ) = (�xi • �xj + 1)d .

Radial basis function (RBF)

k(�xi , �xj ) = exp(−γ ‖�xi − �xj‖2).

The software used to implement SVM was SVMlight by
Joachims (1999) which can be freely downloaded from
http://ais.gmd.de/~thorsten/svm_light for academic use.

Covariant discriminant algorithm
Suppose the j th protein in the ρ-class can be denoted as:

x
ρ
j =

[
x

ρ
j1, xρ

j2, . . . , xρ
jn

]T
,

j = 1, 2, . . . , Nρ ; ρ = 1, 2, . . . , l,

where Nρ is the numbers of ρ-class protein, l is the numbers
of protein classes.

Denoted by Xρ the average vector for the proteins in the
ρ-class, we have

Xρ = [xρ
1 , xρ

2 , . . . , xρ
n ]T,

where

x
ρ
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Nρ

Nρ∑
j=1

x
ρ
ji i = 1, 2, . . . , n ρ = 1, 2, . . . , l.

Denoted by Cρ the covariance matrix for the protein in the
ρ-class, we find
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Suppose that the attribute vector associated with the query
protein is denoted by X. The similarity or dissimilarity
between the average vector Xρ and X is characterized by the
covariant discriminant function F(X, Xρ) and

F(X, Xρ) = D2(X, Xρ) + ln |Cρ |,
where

D2(X, Xρ) = (X − Xρ)T(Cρ)−1(X − Xρ).

The criterion to perform the classification is based on the
principle of the least covariant discriminant function.

F(X, Xτ ) = Min{F(X, X1), F(X, X2), . . . , F(X, Xl)}.
If τ = ρ, (ρ = 1, 2, . . . , l), then the query protein is classified
as a member of ρ class.
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Extraction of the sequence descriptor
According to the studies of Nakashima et al. (1986); Klein
(1986) and Chou and Maggiora (1998); Chou and Elord
(1999) etc, the 20D(dimension) attribute vector �xa is used
to represent a protein primary sequence.

�xa = [f1, f2, . . . , f20]T

where fi(i = 1, 2, . . . , 20) are the occurrence frequencies of
the 20 amino acids in the protein concerned, arranged alpha-
betically according to their signal letter codes, and T means a
transpose operator.

Since the information within the primary sequence is greatly
reduced by considering the amino acid composition alone, the
sequence orders of amino acids in the query protein have been
taken into account. Thus the auto-correlation functions based
on the physicochemical properties of amino acid along the
primary sequence of the query protein have been considered
here. In other words, in addition to the 20D components of
the amino acid frequencies, other mD components should be
added in to form a (20+m)D vector. Thus the attribute vector
will be defined as:

�xb = [f1, f2, . . . , f20, r1, r2, . . . , rm]T

where rj (j = 1, 2, . . . , m) are the auto-correlation functions,
and m is an integer to be determined by the optimum classi-
fication. In order to calculate the auto-correlation functions,
we replace each residue in the primary sequence by its amino
acid index (Shuichi Kawashima et al., 1999). Here an amino
acid index is a set of 20 numerical values representing any
of the different physicochemical properties of the 20 amino
acids. Consequently, the replacement results in a numerical
sequence: h1, h2, . . . , hL.

The auto-correlation functions rj are defined as (Cornette
et al., 1987; Zhang et al., 1998):

rj = 1

L − j

L−j∑
i=1

hihi+j , j = 1, 2, . . . , m, (1)

where hi is the amino acid index for the ith residue, and L is
the length of protein sequence.

According to the above description, we extract five attribute
parameter sets from protein primary sequences, which are
clearly shown in Table 1.

Classification of system assessment
The classification quality can be examined using the jack-
knife test and 10-fold cross-validation (10CV) test (Weiss and
Kulikowski, 1990), which are objective and rigorous testing
procedures. In the jackknife test, each protein is singled out
in turn as a test protein and the remaining proteins are used
as training protein set. In 10CV test, the protein data set will
be randomly partitioned into 10 blocks of proteins of approx-
imately equal size, and one of them is singled out in turn as

Table 1. Five parameter data sets extracted from protein primary sequences

Symbol Parameter data set

COMP This set is composed of amino acid compositions
FASGa This set is composed of amino acid compositions and the

auto-correlation functions of amino acid residue index
of Fasman

NISKb This set is composed of amino acid compositions and the
auto-correlation functions of amino acid residue index
of Nishikawa–Ooi

WOLSc This set is composed of amino acid compositions and the
auto-correlation functions of amino acid residue index
of Wold et al.

KYTJd This set is composed of amino acid compositions and the
auto-correlation functions of amino acid residue index
of Kyte–Dolittle

These index values can be found in the web http://www.genome.ad.jp/dbget/
aaindex.html
aFASG760104 pK-N (Fasman, 1976).
bNISK860101 14 A contact number (Nishikawa–Ooi, 1986).
cWOLS870101 Principal property value zl (Wold et al., 1987).
d KYTJ820101 Hydropathy index (Kyte–Doolittle, 1982).

test proteins and the other 9 blocks are used as training pro-
tein set. This process is repeated for 10 iterations, each time
setting aside a different test block. Thus, each of the blocks
will serve both as part of the training set and as a test block.
The overall classification accuracy (Q), the true positive rate
(TPR), the false positive rate (FPR) and Matthew’s Correla-
tion Coefficient (MCC) (Fasman, 1976) for assessment of the
classification system are respectively defined as:

Q = (TP + TN)/N

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

Here, N is the total number of sequences, TP and TN are
the numbers of correctly classified sequences of positive and
negative samples, respectively, FP and FN are the numbers
of incorrectly classified sequences of negative and positive
samples, respectively.

RESULTS
The results of the SVM and the covariant discriminant
algorithms in the jackknife test for Database R are shown in
Table 2. The overall accuracy of SVM for COMP, FASG,
NISK, WOLS and KYTJ data sets are 78.5, 87.5, 83.2,
81.7 and 81.9%, respectively, which are 19.6, 7.8, 15.5,
13.1 and 15.8% higher than that of covariant discriminant
algorithm. Using the same covariant discriminant algorithm,
the overall accuracy for FASG, NISK, WOLS and KYTJ
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Table 2. The results of the SVM and the covariant discriminant algorithms in the jackknife test

SVM (C = 1000) Covariant Discriminant

COMP FASG NISK WOLS KYTJ COMP FASG NISK WOLS KYTJ
γ = 0.044 m = 14 m = 26 m = 24 m = 21 m = 14 m = 26 m = 24 m = 21

γ = 0.026 γ = 0.024 γ = 0.022 γ = 0.032

Sensitivity 0.845 0.899 0.888 0.860 0.884 0.357 0.686 0.542 0.554 0.498
Specificity 0.709 0.844 0.760 0.763 0.737 0.882 0.938 0.848 0.854 0.866
Positive predictive rate 0.785 0.879 0.824 0.820 0.809 0.793 0.933 0.818 0.827 0.824
Negative predictive rate 0.784 0.869 0.844 0.812 0.834 0.521 0.703 0.595 0.603 0.578
TPR 0.845 0.899 0.888 0.860 0.884 0.357 0.686 0.542 0.554 0.498
FPR 0.291 0.156 0.240 0.237 0.263 0.117 0.062 0.152 0.146 0.134
Overall accuracy 0.785 0.875 0.832 0.817 0.819 0.589 0.797 0.677 0.686 0.661
MCC 0.561 0.746 0.658 0.628 0.632 0.274 0.630 0.401 0.418 0.383

Table 3. Performance comparisons of SVM and decision tree methods in 10CV test

Decision tree
SDDV

SVM (C = 1000)

SDDV COMP FASG NISK WOLS KYTJ
γ = 0.2 γ = 0.044 m = 14 m = 26 m = 24 m = 21

γ = 0.026 γ = 0.024 γ = 0.022 γ = 0.032

FPR 0.402 0.407 0.302 0.160 0.250 0.247 0.273
TPR 0.781 0.788 0.847 0.893 0.888 0.858 0.879
Overall accuracy 0.699 0.702 0.781 0.870 0.827 0.812 0.812
MCC 0.386 0.390 0.554 0.735 0.648 0.617 0.618

data sets are 20.8, 8.8, 9.7 and 7.2%, respectively, higher
than that of COMP data set. These results indicate that
the classification accuracy can be significantly improved
using the same classification information (such as amino
acid composition) with a more powerful algorithm and the
auto-correlation functions of amino acid index profile of the
primary sequence appear to capture the information of protein
sequence orders.

Using the same Database R, we have compared the perform-
ance of SVM and the decision tree models, and also compared
our methods of extracting feature vector from the protein
primary sequences with Robert’s method that the feature vec-
tors are extracted by a binning function from the sequence
profiles created with an amino acid index (the feature attrib-
ute data set is denoted by the symbol SDDV). Table 3 shows
that the performance of SVM is almost equal to the Decision
tree models, and the methods of extracting feature vector
based on the amino acid composition and the auto-correlation
function of the amino acid residue index from the primary
sequences are superior to the binning function. The standard
deviations of the accuracy measures for SDDV, COMP, FASG,
NISK, WOLS and KYTJ in 10CV test are also shown in
Table 4.

Table 4. The standard deviation of the accuracy measures using SVM in
10CV test

SDDV COMP FASG NISK WOLS KYTJ

Standard 0.0019 0.0024 0.0041 0.0035 0.0033 0.0046
deviation

The process of randomly partitioning each of the data sets
was repeated five times.

These results show that both the methods of extracting
protein sequence attributes are feasible and effective, and
the SVM may be applied to the classification of the protein
homodimers and non-homodimers.

The optimal number of amino acid
auto-correlation functions
The classification results can be affected by m, the number
of the auto-correlation functions used in the FASG, NISK,
WOLS and KYTJ parameter sets. We take FASG set as an
example to investigate this problem. The results are clearly
shown in Figures 1 and 2.
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Fig. 1. The relationship between the number of the auto-correlation
functions used in the classification (x-axis) and the overall accuracy
and the TPR (y-axis) in the 10CV test.
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Fig. 2. The relationship between the number of the auto-correlation
functions used in the classification (x-axis) and the FPR (y-axis) in
the 10CV test.

From Figures 1 and 2, it is seen that when m is changed
in the scope of 8–40, the classification results are almost
unchanged. Here we select m = 14. The best overall accur-
acy, TPR and FPR will be 87.0, 89.3 and 16.0%, respectively,
using the SVM method in 10CV test.

DISCUSSION AND CONCLUSION
The performance of the classification system
influenced by the size and the homology of
the database
To investigate the influence of the size and the homology of
the database, we established two subsets (Database A and
Database B). The Database A is randomly selected from the

Table 5. Influence by the homology and size of the database based on the
amino acid composition attribute data set using SVM (C = 1000, γ = 0.044)
in the jackknife test

Database R Database A Database B

FPR 0.291 0.403 0.517
TPR 0.845 0.841 0.782
Overall accuracy 0.785 0.740 0.658
MCC 0.561 0.455 0.278

Database R, which consists of 711 homo-oligomeric protein
sequences, 417 of which are homodimers and 294 non-
homodimers. The Database B is derived from the Database R
based on the sequence alignment program BLAST (Altschul
et al., 1997) with pairwise sequence identity less than 50%,
417 of which are homodimers and 294 non-homodimers. The
sequence identity of the Database R and Database A is higher
than that of the Database B and the size of the Database A
and Database B is equal. The results of the two subsets are
shown in Table 5. The results of the Database A are the mean
of five random selections. It is seen that when the size and the
homology of the database decreases, the performance of the
classification system also lowers. This may result in a memor-
ization in the classification. If the training data and the testing
data are highly identical or homologous, then the classifica-
tion accuracy could be misleadingly high. The best solution
to such memorization problem appears to increase the size of
database and decrease the sequence identity.

SVM parameters selection
SVM still has a few adjustable parameters to be determ-
ined. SVM training includes the selection of the proper kernel
function parameters and the regularization parameter C. Both
of polynomial kernel and RBF kernel are to be investigated.
Simulations show that when C ≥ 10, it has almost no effect
on the classification performance of two types of kernel func-
tions, so we select the default C = 1000 of SVMlight program.
For polynomial kernel, the algorithm may be divergent or
the training speed is very slow, therefore we did not select
it for investigation. The parameter γ of RBF kernel has a
different effect on classification performance for a different
data set.

The selection of the amino acid index and
the m values
We have analyzed 472 sets of indices in Aaindex ver.5.0. The
database may be accessed through the DBGET/LinkDB sys-
tem at GenomeNet (http://www.genome.ad.jp/dbget). These
indices were found to cluster into a small number of groups:
α and turn propensity, β propensity, composition, hydro-
phobicity, physicochemical properties, and other properties
(Tomi and Kanehisa, 1996). Each of the 472 sets of indices is
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tested separately. The overall accuracy, TPR and FPR in 10CV
test are used to evaluate the classifying ability of sequence
descriptors based on each amino acid index. Among 472 sets
of data, about 40% may differently improve the classifica-
tion results, and the indices listed here are four examples
of 472 indices, whose results are the best. Although the
feature vectors composed of amino acid composition and
auto-correlation functions of amino acid residue index can
reflect the quaternary structure information at a certain extent,
this method of representing protein sequence has a certain
limitation. With the different amino acid indices and m val-
ues of auto-correlation functions, there are many integrating
forms of amino acid composition and auto-correlation func-
tions. Thus, the best classification result can be obtained for
a given data set by carefully selecting amino acid index and
m value.

These simulation results show that both the methods of
extracting attributes based on the amino acid composition and
the auto-correlation functions are feasible and effective; the
SVM can be applied to protein quaternary classification, and
its performance is better than that of the covariant discrimin-
ant algorithm and almost equal to the decision tree method.
The primary sequences of homo-oligomeric proteins contain
quaternary structure information. The feature vectors com-
posed of amino acid composition and the auto-correlation
functions of amino acid residue index appear to capture essen-
tial information about the composition and hydrophobicity of
residues in the surface patches that buried in the interfaces of
associated subunits. It is anticipated that the current classifica-
tion method would be a useful tool for the large-scale analysis
of genome data, and may provide some useful information
for biologists who are at the investigation of the biomacro-
molecules. We will try to find other feature extracting methods
for classifying homodimers and non-homodimers, and apply
them to predict homo-multimers and hetero-multimers in the
future work.
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