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Abstract—Hidden space support vector machines (HSSVMs)
are presented in this paper. The input patterns are mapped into a
high-dimensional hidden space by a set of hidden nonlinear func-
tions and then the structural risk is introduced into the hidden
space to construct HSSVMs. Moreover, the conditions for the
nonlinear kernel function in HSSVMs are more relaxed, and even
differentiability is not required. Compared with support vector
machines (SVMs), HSSVMs can adopt more kinds of kernel func-
tions because the positive definite property of the kernel function
is not a necessary condition. The performance of HSSVMs for
pattern recognition and regression estimation is also analyzed.
Experiments on artificial and real-world domains confirm the
feasibility and the validity of our algorithms.

Index Terms—Artificial neural networks (ANNs), pattern recog-
nition, regression estimation, structural risk, support vector ma-
chines.

I. INTRODUCTION

SUPPORT VECTOR MACHINES (SVMs) based on the
statistical learning theory (STL) are general and efficient

learning machines [1]–[5]. In STL, the problem of consis-
tency of learning procedure in machine learning is the one
where the empirical risk converges uniformly to the actual
risk. To obtain a small actual risk, i.e., a good generalization
performance, the SLT shows that it is necessary to have a
right balance between the empirical risk and the capacity of
a learning machine. SVMs can do this, so they can obtain a
good generalization performance. SVMs have other attractive
properties, for example, SVMs have a unique global optimal
solution and avoid the curse of dimensionality. The introduction
of kernel methods has made SVMs have a nonlinear process
ability. Presently, there are many Mercer kernels available such
as Gaussian radial basis function kernel, sigmoidal kernel,
polynomial kernel, spline kernels, and others. These kernels
must satisfy Mercer’s condition or they must be symmetric
and positive semidefinite. Here we will extend the range of
usable kernels that are not required to satisfy the condition of
the positive definite property. As we know, the introduction of
kernel functions is based on the view of nonlinear mapping.
Before SVMs, the view of nonlinear mapping was embodied
in many other fields. The hidden function mapping in forward
neural networks (FNNs) and radial basis function networks
(RBFNs) is a typical example.

Artificial neural networks (ANNs) were developed rapidly in
the second half of the last century [9]–[11]. At present, ANNs
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have been successfully applied to signal processing, pattern
recognition, regression estimation, predication, function inter-
polation, intelligent controlling, and other fields for their good
nonlinear process ability [12], [13]. FNNs and RBFNs involved
in this paper were presented in the middle and late 1980s [14],
[15]. It has been shown that FNNs and RBFNs have a good
nonlinear mapping ability and approximation performance.
They can approximate arbitrary continuous function with any
accuracy [16], [17]. However, they also have some shortages:
1) the resulting network training consists of solving a hard
nonlinear optimization problem, with a possibility of getting
trapped in local minima; 2) there is often a risk of getting
overfitting; 3) ANNs are hard to interpret.

In 1999, Suykens et al. [18], [19] first introduced the struc-
tural risk into FNNs to obtain a good generalization. In [18],
Suykens et al. presented a method for training a multilayer per-
ceptron based on a modified SVMs (MLP-SVM), which in-
troduced the capacity control in SLT into the object function
of MLP directly. Thus, it can solve the overfitting problem in
MLP to a certain extent and obtain a better generalization per-
formance. This method directly uses the SVMs method to opti-
mize multilayer perceptron including the output weight vector,
the interconnection matrix for the hidden layer and the bias
vector, so the algorithm is very complex. It includes two cor-
relative quadratic programming with each programming sim-
ilar to that of the support vector machines and constrained by a
nonlinear equation simultaneously. Therefore, the computation
complexity of the MLP-SVM method is at least two times that
of the traditional SVMs. Moreover the optimization problem of
the method is not convex, so there exist local minima in this
method.

We use the idea of the nonlinear mapping in ANNs instead of
introducing the structural risk into ANNs directly. We first map
the data in the input space into a hidden space by a set of hidden
functions and then introduce the structural risk in the hidden
space to implement hidden space support vector machines
(HSSVMs) for pattern recognition and regression estimation.
Therefore, HSSVMs inherit not only the strong nonlinear
processing ability of ANNs but also the good generalization
performance of SVMs. On one hand, HSSVMs implement
structural risk minimization in a hidden space, which makes
HSSVMs have as good a generalization performance as SVMs
and avoid the overfitting problem. On the other hand, the BP al-
gorithm requires the derivativeness for the node functions, and
SVMs require that kernel functions satisfy the rigorous Mercers
condition. Here, we relax the constraints for nonlinear nodes or
kernel functions in HSSVMs. It does not require that the kernel
functions satisfy the rigorous Mercer’s condition or derivative-
ness but it requires symmetry. Namely, in HSSVMs for the
real-valued kernel the only condition is .
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The training procedure of HSSVMs amounts to solving a
constrained quadratic programming whose scale is the same
as that of SVMs. So HSSVMs have the same computation
complexity as SVMs. And the solution of HSSVMs is global
one. Moreover, for the large scale problem, HSSVMs can adopt
the decomposition methods used in the SVMs. The algorithm
analysis and the experimental results confirm the feasibility
and the validity of our algorithm.

II. HIDDEN SPACE SUPPORT VECTOR MACHINES (HSSVMS)

A. Hidden Space

Let denote the set of in-
dependently and identical distributed (i.i.d.) patterns. De-
fine a vector made up of a set of real-valued functions

, as shown by

(2.1)

where . The vector maps the points in the
-dimensional input space into a new space of dimension .

Namely

(2.2)

Since the set of functions plays a role similar to that
of a hidden unit in FNNs, we refer to
as hidden functions. Accordingly, the space

is called the hidden
space or feature space.

Now consider a special kind of hidden function: the
real symmetric kernel function . Let

and the kernel mapping be

(2.3)

The corresponding hidden space based on can be expressed
as
whose dimension is .

It is only the symmetry for kernel functions that is required,
which will extend the set of usable kernel functions in HSSVMs
while the rigorous Mercer’s condition is required in SVMs.
Some usual hidden functions are given as follows.

• Sigmoidal kernel

(2.4)

It is noticeable that usually the sigmoidal kernel is not
positive definite, which limits its application in SVMs. But
it is not a problem here. If parameter in the
sigmoidal kernel, we will obtain a sign function

Although the differential of the sign function does not
exist at some points, it also can be used in our algorithm.

• Gaussian radial basis kernel

(2.5)

which is a kernel in wide use and has been successfully ap-
plied to function approximation, density estimation, time-
frequency analysis, neural networks and support vector
machines.

• Polynomial kernel

(2.6)

which is a positive definite kernel used in SVMs fre-
quently.

• Generalized multiquadrics kernel

(2.7)

where denotes 2-norm. If , (2.7) is a Mercer
admissible kernel.

• Thin plate spline kernel

(2.8)

which is the solution of regularization functional if the
smoothness factors or stabilizers take the -order differ-
ential operator in regularization functional.

Other kernels [7], [20], [21] used in SVMs can be applied to
our algorithm. We will not discuss them here.

B. HSSVMs for Pattern Recognition

Let a pattern set be
and a kernel function

be . The mapped patterns in the hidden space
can be expressed as

. By analogy with the
linear SVMs for pattern recognition, we introduce a structural
risk for a set of linear functions
in the hidden space and adopt the Vapnik’s -insensitive loss
function [1], [3], [4]. Thus, we have

(2.9)

where is a penalty factor that adjusts the balance be-
tween the empirical risk and the capacity control of the learning
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machine. As it stands, the programming (2.9) is a convex pro-
gramming in a convex area. So its optimum solution is unique.
Its Wolfe dual problem becomes

(2.10)

where is a positive Lagrange multiplier. The training proce-
dure of HSSVMs for pattern recognition is to solve the Wolfe
dual programming (2.10). In the process of transforming the
primal programming to the dual one, we have

(2.11)
The threshold can be obtained by the KKT conditions [4],
which is similar to the situation for SVMs. The decision function
of HSSVMs takes the following form

(2.12)

C. HSSVMs for Regression Estimation

Let a set of i.i.d. patterns be

and a symmetric kernel function be . The
mapped patterns in the hidden space can be ex-
pressed as

. By analogy with the
linear SVMs for regression estimation, we introduce a structural
risk for a set of linear functions
in the hidden space.

(2.13)

where is a penalty factor and is a loss function which
can be chosen according to the distribution of patterns under the
mean of maximum likelihood estimation [5]. The Wolfe dual

programming of the primal programming (2.13) can be written
as

(2.14)

where is a shorthand implying both the variables with and
without asterisks, , , and are Lagrange multipliers
and denotes the one-order differential of with re-
spect to . The training procedure of HSSVMs for regression
estimation is to solve the Wolfe dual programming (2.14). In
the process of transforming the primal programming to the dual
one, we can have

(2.15)

The Lagrange multipliers and obtained by solving (2.14)
and the threshold computed by the KKT conditions can ex-
press the regression estimation function of HSSVMs as

(2.16)

If the loss function is the Vapnik’s -insensitive loss function
[1], [5], HSSVMs for regression estimation can be written as

(2.17)
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III. PERFORMANCE ANALYSIS OF HSSVMS

Let us review the decision function (2.12) of HSSVMs for
pattern recognition that can be rewritten as

(3.1)

where is a linear parameter. In
the same way, the regression estimation function (2.16) can be
rewritten as

(3.2)

where . Namely, the output
function of HSSVMs can be expressed as the summation of
the linear combination of parametrical hidden functions and a
threshold, which is completely identical to the output functions
of single-layer FNNs and RBFNs whose output nodes use linear
functions. In other words, the hypothesis space of HSSVMs
is completely identical to that of the single-layer FNNs and
RBFNs. The only difference is that the parameters in ANNs can
be optimized but the parameters in HSSVMs are prior chosen.
Because of the equivalence property of the hypothesis space be-
tween FNNs and HSSVMs, we will use available conclusions in
FNNs and RBFNs to analyze the performance of HSSVMs.

A. Analysis of HSSVMs for Pattern Recognition

Let us consider the separability of patterns in FNNs and
RBFNs to analyze the performance of HSSVMs for pattern
recognition. When an FNN or an RBFN is used to perform a
complex pattern recognition problem, the problem is basically
solved by transforming it into a high-dimensional feature space
in a nonlinear manner. In this space, the problem will become
linear. Cover’s theorem on the separability of patterns indicates
that higher the dimension of the feature space is, the more
linearly separable this problem is. For the detail description on
this theorem the reader is referred to [22].

Intuitively, it is possible to shatter two points by any linear
manner in the one-dimensional (1-D) space or real axis [1] and
three points in the two-dimensional (2-D) space. By analogy, it
is possible to shatter points in the -dimensional space
with probability 1. In what follows, we will discuss the general
case simply.

Consider a family of surfaces where each naturally divides an
input space into two regions. Let denote a set of i.i.d. pat-
terns or . Each of the patterns
is assigned to one of two classes or . This dichotomy (bi-
nary partition) of the points is said to be separable with respect
to the family of surfaces if a surface exists in the family that sep-
arates the points in the class from those in the class . As
mentioned above, the input patterns can be mapped into a hidden
space by hidden functions [see (2.2)]. The hidden space

has a dimension of . If there exits a -dimensional vector
such that the following inequalities

(3.3)

hold true, a dichotomy of is said to be -separable.
The hyperplane defined by the equation

which describes the separating hyper-plane in the hidden space.
The equation

(3.4)

defines the separating surface in the input space. In fact, be-
cause of the linear dependence among the mapped patterns in
the hidden space and the intercept errors of computation, the
rank of the matrix should be less than .

In view of a probabilistic experiment, the separability of a
set of patterns becomes a random event that depends on the
dichotomy chosen and the distribution of the patterns in the
input space. Assume that the activation patterns
are chosen independently in the input space. Suppose also that
all the possible dichotomies of are
equiprobable. Let be the probability that a particular
dichotomy picked at random is -separable, where the class of
separating surfaces chosen has a degree of freedom. Fol-
lowing [20], we have

(3.5)

where are the binomial coefficients. Equation (3.5) em-
bodies the essence of Cover’s separability theorem for random
patterns, and it is a statement of the fact that the cumulative bi-
nomial distribution corresponds to the probability that
flips of a fair coin will result in or fewer heads.

Although the hidden-unit surfaces envisioned in the deriva-
tion of (3.5) are of a polynomial form and therefore different
from those commonly used in FNNs and RBFNs, the essential
content of (3.5) has general applicability. Specially, the higher
the dimension of the hidden space, the closer will
be to unity. In other words, the complex pattern recognition
problem in a high-dimensional space is more likely to be lin-
early separable than in a lower dimensional space. However, in
some cases the use of nonlinear mapping may be sufficient to
produce linear separability without having to increase the di-
mensionality of the hidden space.

Equation (3.5) makes it possible to compute the expected
number of patterns that are linearly separable in a high-dimen-
sional space. To explore this issue, let be a se-
quence of random patterns as previously described. Let be a
random variable defined as the largest integer such that this
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Fig. 1. The graph of the rank of the mapped pattern matrix versus the parameter (a) p in k ;y = tanh(p � x y+ p ) where p = 0 and (b) p in k(x;y) =
exp(�kx� yk =2p ). 100 i.i.d. 2-D patterns are normal distributions with zero mean and unity variance. The curves are the average over 50 runs.

Fig. 2. The overfitting case for the two noised spirals classification problem. (a) was obtained by single-layer FNNs and (b) was obtained by RBFNs, where the
real lines are the decision surfaces. Let X = f(x; y)j and X = f(x; y)j Each class has 63
patterns. The number of hidden nodes in both networks is 126.

sequence is -separable, where has a degree of freedom.
Then from (3.5), the probability that is given by

(3.6)

The expectation and the median of the random variable can
be expressed as

(3.7)
and

(3.8)

respectively, which means that the expected maximum number
of randomly assigned patterns that are linearly separable in a

-dimensional space is equal to .
Now consider two nonlinear mappings generated by corre-

sponding kernel functions. Let . From
(2.3), we know that the dimension of the hidden space is . But
the rank of a pattern matrix may be less than

because of the linear dependence among the mapped pat-
terns and the intercept errors of computation. Fig. 1 shows the
order of a pattern matrix obtained by sigmoidal and Gaussian
kernel mappings versus the parameters in the sigmoidal kernel
and the Gaussian radial basis kernel, respectively. Note that the
sigmoidal kernel is not positive definite in most cases, so it is
rarely used in SVMs.

In conclusion, the dimension of a hidden space is equal to the
number of patterns. Although there may exist the loss of rank,
it is sufficient or even more than sufficient for the dimension
of a hidden space to perform the linear classification on the pat-
terns. It is the redundancy or too large a hidden space that makes
ANNs result in overfitting and hence a bad generalization per-
formance if the hidden space in ANNs is generated by the kernel
function mapping. The overfitting case for the two noised spi-
rals classification problem is shown in Fig. 2, where (a) was ob-
tained by FNNs in which kernel mapping (2.4) was used, and (b)
by RBFNs in which kernel mapping (2.5) was used. Obviously,
the overfitting both in Fig. 2(a) and in Fig. 2(b) occurs, and that
in Fig. 2(b) is worse. To avoid the overfitting problem, we intro-
duce not only the hidden space generated by kernel mapping, but
also the structural risk to control the set of hypothesis functions
or the hidden space. In other words, a better generalization per-
formance will be achieved if the right balance is struck between
the empirical risk and the capacity control of a set of hypothesis
functions, which HSSVMs can implement.

B. Analysis of HSSVMs for Regression Estimation

To analyze the performance of HSSVMs for regression esti-
mation, let us first consider the approximation ability of FNNs
and RBFNs. As early as the 1990s, researchers studied the ap-
proximation ability of ANNs especially for FNNs and RBFNs
[16], [17], [23]–[28]. They obtained a general approximation
theorem: FNNs and RBFNs whose scales are unlimited or
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TABLE I
RECOGNITION RESULTS OBTAINED BY FIVE ALGORITHMS OF THE TWO-SPIRAL CLASSIFICATION PROBLEM

whose numbers of the hidden nodes can be increased arbitrarily
can approximate any continuous function with any accuracy
[16], [17]. In the following, we cite a theorem to explain the
approximation ability of FNNs and RBFNs.

Theorem 3.1 [28]: Let , , ,
and , , , , where is the dimension of the input

patterns and is the dimension of the hidden function. Let also
be continuously differentiable an infinite number

of times in some open sphere in . Suppose that there exists
in this open sphere such that

(3.9)

where ,
, and

. Then there exist matrices
with the following property. For any -order and -dimensional
function in the Sobolev space, there exist coefficients

such that

(3.10)

where

and denotes the -norm.
In what follows, we give some typical hidden functions that

satisfies (3.9) in Theorem 3.1.

• Sigmoidal function , for ;
• Generalized multiquadrics function

, for , ;
• Thin plate spline function

• Gaussian radial basis function
, , .

Theorem 3.1 implies that if only the scale of single-layer FNNs
is sufficiently large, these ANNs whose node function satisfies
(3.9) can approximate any differentiable function in the Sobolev
space with any accuracy. Moreover the lower bound on the ap-
proximation error is less than , where is a constant, is
the order of the Sobolev space and is the dimension of input
data.

In regression estimation there exists not only the approxi-
mation error generated by the improper hypothesis space but
also the estimation error resulting from a finite number of pat-
terns, noised patterns, and others. Generally the larger the hy-
pothesis space is, the smaller the approximation error and the
larger the estimation error and vice versa. From the above the-
orem, when the number of patterns is proper, it is sufficient
or more than sufficient for the hypothesis space generated by
hidden functions whose number is equal to that of patterns to
approximate a differential function in the Sobolev space. There-
fore, if the common algorithms of ANNs are adopted an overfit-
ting problem will result. By analogy with SVMs, we introduce
the structural risk in the hidden space and can obtain a better
generalization performance by implementing the right balance
between the empirical risk and the capacity control of a set of
hypothesis functions, which can be implemented by HSSVMs
for regression estimation. It is worth noticing that the hypothesis
space of HSSVMs for regression estimation is slightly different
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Fig. 3. Decision surfaces obtained by (a) HSSVMs with the sigmoidal kernel and (b) HSSVMs with the Gaussian kernel for two-spiral classification problem.
Symbol � denotes the positive sample and + the negative one. The support vectors are circled. The real lines denote the decision surfaces and the dotted lines
f(x) = �1.

from that of FNNs. The hypothesis space of HSSVMs is iden-
tical to that of FNNs if the weight matrixes between the input
layer and the hidden layer are all the unit matrixes and the pa-
rameters in hidden functions are fixed in FNNs. It is still an open
problem to give an exact conclusion on how the constraints de-
scribed above affect the approximation error in principle. The
effect of fixing the parameter in sigmoidal hidden function on
the approximation error was studied in [24] and an asymptotical
bound of the approximation error with respect to the number of
hidden nodes and the dimension of the input pattern was given.
The asymptotical bound shows that even if the parameter of the
sigmoidal hidden function is fixed, FNNs still have a better ap-
proximation performance. The experiments in this paper also
validate this.

C. Comparison of HSSVMs and SVMs

From Section II, we know that the feature spaces of the tra-
ditional SVMs and HSSVMs are different. The traditional non-
linear SVMs are constructed in the feature space mapped by
the Mercer kernel function. If the kernel function does not sat-
isfy the Mercer condition, the feature space that SVMs lives in
does not exist. So the traditional nonlinear SVMs are impossible
without the Mercer kernel function. Here we will show that the
unique condition for the kernel function in HSSVMs is sym-
metry. No other conditions are required.

Let . Compare the output
functions of HSSVMs (2.12) and (2.16) with those of SVMs
[4], [5], we define the following symmetric kernel function de-
pending on the input patterns

(3.11)
The defined kernel function can be expressed as the product of
two kernel functions, so it is called the square kernel.

Theorem 3.2: Let a set of i.i.d. patterns be
and the square kernel depending

on patterns be

. Then the square kernel is an
admissible Mercer kernel whatever the kernel function
is.

The proof of Theorem 3.2 is shown in the Appendix.
We can simply conclude that the SVMs that use the square

kernel are completely identical to HSSVMs that use
the hidden function . Thus, HSSVMs implement the
structural risk minimization in a hidden space, which makes
that HSSVMs have as good a generalization performance as
SVMs and avoid the overfitting problem. In other aspects, the
BP algorithm requires derivativeness for the node functions,
and SVMs requires that kernel functions satisfy the rigorous
Mercer’s condition. Here we relax the constraints for nonlinear
nodes or kernel functions in HSSVMs. According to Theorem
3, we know that the square kernel is certainly positive
definite, whatever is. It only requires that the kernel
functions satisfy symmetry that is the essential condition for a
kernel function. Hence the range of nonlinear mapping (kernel)
functions used in HSSVMs becomes larger than that for the
traditional SVMs. The training procedure of HSSVMs amounts
to solving a constrained quadratic programming whose scale is
the same as that for SVMs. So HSSVMs have the same com-
putation complexity as SVMs. And the solution of HSSVMs
is a global optimum. Moreover for the large-scale problem,
HSSVMs can adopt the decomposition methods used in SVMs.

IV. SIMULATIONS

To evaluate the performance of HSSVMs for pattern recogni-
tion and regression estimation, we performed four kinds of ex-
periments: two-spiral classification problem, handwritten digit
recognition problem, UCI data sets recognition, and function
estimation problem. For the sake of comparison, different al-
gorithms used the same input sequence. These algorithms in-
clude FNNs with the sigmoidal function, RBFNs, SVMs with
the Gaussian kernel, HSSVMs with the sigmoidal kernel (2.4),
and the Gaussian radial basis kernel (2.5).

A. Two-Spiral Classification problem

The two-spiral classification problem is referred to as the
“touchstone” to test the ability of the classification learning al-
gorithm [29]. Two classes of samples are defined by

and
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TABLE II
RECOGNITION RESULTS OBTAINED BY FIVE ALGORITHMS FOR THE HANDWRITTEN DIGIT RECOGNITION PROBLEM

TABLE III
RESULTS OF SVMS AND HSSVMS FOR THREE UCI DATA SETS

Each class has 63 training samples. Table I shows the average
results obtained by these five algorithms over 30 runs. The
decision surfaces obtained by HSSVMs with the sigmoidal
kernel and the Gaussian kernel are shown in Fig. 3. For the
results obtained by ANNs the reader is referred to Fig. 2. The
introduction of structural risk is to avoid overfitting problem.
ComparedwithFig.2,thedecisionsurfacesobtainedbyHSSVMs
are a smoother or have a smaller oscillation frequency. In
terms of the regularization theory, it has a small smoothness
degree.

B. Handwritten Digit Recognition Problem

The experimental data is the MNIST database of 60 000
training and 10 000 testing handwritten digits from the AT&T
Research Labs,1 which have been taken as the experimental
data in [30]. Since the database is so large, we only have
obtained two-class examples belonging to classes “7” and

1URL: http://www.research.att.com/~yann/ocr/mnist

“9,” respectively, and normalized these examples. The results
obtained by five algorithms are shown in Table II.

C. UCI Data Sets Recognition

To evaluate the performance of HSSVMs, we make a com-
parison between the traditional classical SVMs and HSSVMs
on the three real world datasets from the UCI Machine Learning
Repository (available at the UCI Machine Learning Repository
[31]). All involve only 2-way classification. These sets are
Wisconsin Breast Cancer data set including 458 examples of
“benign” and 241 examples of “malignant,” nine attributes for
each example; Ionosphere data set including 225 examples of
“good” and 126 examples of “bad,” nine attributes for each
example; PIMA Indians Diabetes data set including 500 plus
examples and 268 minus examples, eight attributes for each
example. In our experiment, 10-block cross validation is em-
ployed for each dataset. Each original dataset is divided into
10 blocks. Each block is used for test, while the other ones are
used to train the algorithms. The 10 test blocks form the entire
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TABLE IV
ESTIMATION RESULTS OBTAINED BY FIVE ALGORITHMS FOR THE FUNCTION REGRESSION PROBLEM

original dataset. Table III shows the cross validation error and
the average number of the support vectors for each of the four
data sets. The RBF kernel is adopted and the near-optimum
parameters are selected for every training data block.

D. Function Regression Estimation Problem

Let the training samples
be defined by the nonlinear noised sinc function

, where (or has
a uniformly distribution in the interval [ 1, 1]), ,

(or noise has a normal distribution with zero
mean and unity variance) and random variable is indepen-
dent of . This regression problem was often used to test the
validity of learning algorithms [1]. The experimental results are
shown in Table IV and Fig. 4.

V. CONCLUSION

Hidden space support vector machines for pattern recogni-
tion and regression estimation are presented based on the con-
cepts of hidden function mapping and hidden space in FNNs

and RBFNs. The input patterns are mapped into a high-dimen-
sional hidden space by a nonlinear hidden function and then a
structural risk is introduced into the hidden space to construct
HSSVMs. Moreover, it is not important for the differentiability
of the nonlinear function in HSSVMs. Compared to SVMs,
HSSVMs can adopt more kinds of kernel functions because the
positive definite property of the kernel function is not a neces-
sary condition. The research on the classification and the ap-
proximation ability of FNNs and RBFNs in the 1990s has indi-
cated that they can magnificently classify complex patterns and
approximate functions in the Sobolev space. According to the
statistical learning theory, SVMs introduce a structural risk so
as to have s good generalization. An analysis of our algorithms
implies that HSSVMs inherit the merits of ANNs and SVMs.
Experiments on artificial and real-world domains confirm the
feasibility and the validity of HSSVMs.

APPENDIX

THE PROOF OF THEOREM 3.2

Proof: Given a set of i.i.d. patterns
and a symmetric kernel function
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Fig. 4. Approximation results obtained by HSSVMs with the sigmoidal kernel (a) and (c) and the Gaussian kernel (b) and (d), where (a) and (b) are obtained
under noise level � = 0 and (c) and (d) are obtained under noise level � = 0:1. In these figures, � denotes training samples, the real line denotes the original
function and the dotted line the estimated function.

depending on patterns

, it is sufficient for us to prove that this
symmetric kernel satisfies the Mercer’s condition [6]. Namely

which indicates that is positive definite and therefore it
is an admissible Mercer kernel.

This completes the proof of Theorem 3.2.
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