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Wavelet Support Vector Machine

Li Zhang, Weida Zhou, and Licheng Jiao, Senior Member, IEEE

Abstract—An admissible support vector (SV) kernel (the
wavelet kernel), by which we can construct a wavelet support
vector machine (SVM), is presented. The wavelet kernel is a
kind of multidimensional wavelet function that can approximate
arbitrary nonlinear functions. The existence of wavelet kernels
is proven by results of theoretic analysis. Computer simulations
show the feasibility and validity of wavelet support vector ma-
chines (WSVMs) in regression and pattern recognition.

Index Terms—Support vector kernel, support vector machine,
wavelet kernel, wavelet support vector machine.

I. INTRODUCTION

HE SUPPORT vector machine (SVM) is a new universal
learning machine proposed by Vapnik et al. [6], [8], which
is applied to both regression [1], [2] and pattern recognition [2],
[5]. An SVM uses a device called kernel mapping to map the
data in input space to a high-dimensional feature space in which
the problem becomes linearly separable [10]. The decision func-
tion of an SVM is related not only to the number of SVs and their
weights but also to the a priori chosen kernel that is called the
support vector kernel [1], [9], [10]. There are many kinds of ker-
nels can be used, such as the Gaussian and polynomial kernels.
Since the wavelet technique shows promise for both non-
stationary signal approximation and classification [3], [4], it is
valuable for us to study the problem of whether a better per-
formance could be obtained if we combine the wavelet tech-
nique with SVMs. An admissible SV kernel, which is a wavelet
kernel constructed in this paper, implements the combination of
the wavelet technique with SVMs. In theory, wavelet decompo-
sition emerges as a powerful tool for approximation [11]-[16];
that is to say the wavelet function is a set of bases that can ap-
proximate arbitrary functions. Here, the wavelet kernel has the
same expression as a multidimensional wavelet function; there-
fore, the goal of the WSVMs is to find the optimal approxima-
tion or classification in the space spanned by multidimensional
wavelets or wavelet kernels. Experiments show the feasibility
and validity of WSVMs in approximation and classification.

II. SUPPORT VECTOR MACHINES (SVMS)

SVMs use SV kernel to map the data in input space to a high-
dimensional feature space in which we can process a problem
in linear form.

A. SVM for Regression [1], [2]

Letx € RN and y € R, where R" represents input space.
By some nonlinear mapping ®, x is mapped into a feature space
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in which a linear estimate function is defined

y=flx, w) =wld(x) +b. (1
We seek to estimate (1) based on independent uniformly dis-
tributed data (x1, y1), - .., (%7, ¥;) by finding a function f with
a small risk. Vapnik et al. suggested using the following regu-
larized risk functional to obtain a small risk [6], [8]:

wll* + Zk% (xi, W)= )

where C' > 0 is a constant, and € > 0 is a small positive number.
The second term can be defined as

07 if|y—f(X,W)|<€
ly — f(x, w)| — ¢,

[y (x, W)l = {

otherwise.

3)
By using Lagrange multiplier techniques, the minimization of
(2) leads to the following dual optimization problem. Maximize

W( *))——ai:oz + ;) —|—Z

l l

—5). ) (of

=1 j=1

_al

— Oé])K(Xi, X]'). (4)

_al

Subject to

l

D (e —ai)=0

i=1

al™ e o, ). 5)

The resulting regression estimates are linear. Then, the regres-
sion takes the form

l

f(x) =) (af = @) K(x, xi) +b. ©6)

=1

Akernel K (x;, x;) is called an SV kernel if it satisfies a certain
conditions, which will discussed in detail in Section II-C.

B. SVM for Pattern Recognition [2], [5]

It is similar to SVM for regression. The training procedure
of SVM for pattern recognition is to solve a constrained
quadratic optimization problem as well. The only difference
between them is the expression of the optimization problem.
Given an i.i.d. training example set {(x1, y1), -.., (X1, v1)},
where x € R™,y € {-1, 1}. Kernel mapping can map
the training examples in input space into a feature space in
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which the mapped training examples are linearly separable. For
pattern recognition problem, SVM becomes the following dual
optimization problem:

l

l
Maximize W («a) = Z Q; —% Z Z aiyioy K (xi-X;)

i=1 i=1 j=1
@)
l
subject to Z a;y; =0
i=1
a; €0, C], i=1,..., 1

The decision function becomes

l
f(x) =sgn (Z oy K(x;, x) + b) . (8)
=1

C. Conditions for Support Vector Kernel

The formation of an SV kernel is a kernel of dot-product type
in some feature space K (x, x') = K({x - x’)). The Mercer
theorem (see [7]) gives the conditions that a dot product kernel
must satisfy.

Theorem 1: Suppose K € L. (RY x RY) (RY denotes the
input space) such that the integral operator Tx: Lo(RY) —
Lo(RY)

Tief ()= [ G016 dp(x) ©)
is positive. Let ¢; € Lo(R™N) be the eigenfunction of T as-
sociated with the eigenvalue A; # 0 and normalized such that
lg;llz, = 1.Let ¢; denote its complex conjugate. Then, we
have the following.

D (Ai(Tk))j €l

2) ¢j € Loo(RY) and sup; ||¢;||.. < oo.

3) K(x,x') = > Ajdj(x)¢p;(x') holds for almost all
(x, x'), where the series converges absolutely and
uniformly for almost all (x, x').

In (9), pu(x) denotes a measure defined on some measurable set.
This theorem means that if (Mercer’s condition, [6], [9])

//L o K(x, x')g(x)g(x') dxdx" > 0
Vg(x) € LQ(RN) K(x,x') € Lz(RN % RN)

(10)

holds we can write K(x, x’) as a dot product K(x, x') =
(®(x) - ¢(x')) in some feature space.

Translation invariant kernels, i.e., K(x, x') = K(x — x/)
derived in [9] are admissive SV kernels if they satisfy Mercer’s
condition. However, it is difficult to decompose the translation
invariant kernels into the product of two functions and then to
prove them as SV kernels. Now, we state a necessary and suffi-
cient condition for translation invariant kernels [1], [9].

Theorem 2: A translation invariant kernel K(x, x') =
K (x—x') is an admissible SV kernels if and only if the Fourier
transform

FIK](w) = (2m) 7

RN

exp(—j(w-x))K(x)dx (11)

is non-negative.
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The theorems stated above can be useful for both checking
whether a kernel is an admissible SV kernel and actually con-
structing new kernels.

III. WAVELET SUPPORT VECTOR MACHINES

In this section, we will propose WSVMs and construct
wavelet kernels, which are admissible SV kernels. It is the
wavelet kernel that combines the wavelet technique with SVMs.

A. Wavelet Analysis

The idea behind the wavelet analysis is to express or approx-
imate a signal or function by a family of functions generated by
dilations and translations of a function h(x) called the mother

wavelet:
ha,c(z) = |a| /%A (36 . C)
a

12)

where z, a, ¢ € R, a is a dilation factor, and c is a translation
factor (In wavelet analysis, the translation factor is denoted by
b, but here, b is used for expressing the threshold in SVMs.)
Therefore, the wavelet transform of a function f(z) € Lo(R)
can be written as

Wa,o(f) = (f(2), ha,c(@)). (13)
In the right-hand side of of (13), (-, -) denotes the dot product
in L2(R). Equation (13) means the decomposition of a function
f(z) on a wavelet basis h,, (). For a mother wavelet h(x), it
is necessary to satisfy the condition [3], [12]

o0 H 2
Wi, = / |H(w)] dw < 00
Jo |w]

(14)

where H (w) is the Fourier transform of h(x). We can recon-
struct f(z) as follows:

f(.’l?) = ! /_OO /OOO W(I,,(‘(f)ha,,(',(x) da/az de. (15)

Wh .
If we take the finite terms to approximate (15) [3], then

l
f@)=> " Wiha, o (). (16)
i=1
Here, f(z) is approximated by f(z).
For a common multidimensional wavelet function, we can
write it as the product of one-dimensional (1-D) wavelet func-
tions [3]:

N

h(x) = H h(z;)

i=1

7)

where {x = (1, ..., xnx) € RY}. Here, every 1-D mother
wavelet h(z) must satisfy (14).
For wavelet analysis and theory, see [17]-[19].

B. Wavelet Kernels and WSVMS

Theorem 3: Let h(x) be a mother wavelet, and let a and ¢
denote the dilation and translation, respectively. x, a, ¢ € R. If
x,x € RYN, then dot-product wavelet kernels are

N o
K(x,x)=]]* (m - c) h (‘”i - Cl) (18)
i=1
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TABLE 1
RESULTS OF APPROXIMATIONS
Kernel Parameter Iteration times Approximation error
Wavelet kernel a=1 2000 0.0555
Gaussian kernel ﬂ =1 2000 0.0666
10 - : .

-10 s " "
-10 -5 0 5 10

Fig. 1. Original function (solid line) and resulting approximation by Gaussian
kernel (dotted line).

and translation-invariant wavelet kernels that satisfy the trans-
lation invariant kernel theorem are

al x; —
K(x, x') = | | h<¥>
a
=1

The proof of Theorem 3 is given in Appendix A. Without loss of
generality, in the following, we construct a translation-invariant
wavelet kernel by a wavelet function adopted in [4].

h(z) = cos(1.75z) exp (-%2) .

Theorem 4: Given the mother wavelet (20) and the dilation
a,a,z € R.Ifx, x' € RYN, the wavelet kernel of this mother
wavelet is

N o
K(x, X/) = Hh (M)
a
i=1

5 ; — 2 L2
= H Cos 1.75XM exp —M
' a 2a2

Z ey

19)

(20)

which is an admissible SV kernel.

The proof of Theorem 4 is shown in Appendix B. From the
expression of wavelet kernels, we can take them as a kind of
multidimensional wavelet function. The goal of our WSVM is
to find the optimal wavelet coefficients in the space spanned by
the multidimensional wavelet basis. Thereby, we can obtain the
optimal estimate function or decision function.

Now, we give the estimate function of WSVMs for the ap-
proximation

f(x) = Z(az O‘i)jl]; L

+b (2

/

TN Y
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Fig. 2. Original function (solid line) and resulting approximation by wavelet
kernel (dotted line).

Fig. 3. Original function.
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Fig. 5. Resulting approximation by wavelet kernel.
and the decision function for classification is
Fo0) = sen [ Yo [0 (225
‘ ; s
1=1 1=1

where the xf denotes the jth component of the :th training ex-
ample.

+b (23)

IV. SIMULATION EXPERIMENT

Now, we validate the performance of wavelet kernel by three
simulation experiments, the approximation of a single-variable
function and two-variable function, and the recognition of the
1-D images of radar target.

For comparison, we showed the results obtained by wavelet
kernel and Gaussian kernel, respectively. The Gaussian kernel
is one of the first SV kernels investigated for most of learning
problems. Its expression is K (x, x') = exp(—/f||x — x'||?),
where 3 > 0 is a parameter chosen by user. Since SVMs cannot
optimize the parameters of kernels, it is difficult to determine
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TABLE II
APPROXIMATION RESULTS OF TWO-VARIABLE FUNCTION
Kernel Parameter Iteration times Approximation error
Gaussian kernel £ =0.03 10000 0.0512
Wavelet kernel a=4 10000 0.0457
l parameters a;, = = 1, ..., [. For the sake of simplicity, let 012
a; = a such that the number of parameters becomes 1. The ol
parameters a for wavelet kernel and 3 for the Gaussian kernel
are selected by using cross validation that is in wide use [20], 0.08
[21]. 8 0.06
A. Approximation of a Single-Variable Function 004
In this e?(periment, we approximate the following single-vari- 002
able function [3]
0 . . 4
—2.186x — 12.864, -10<zr < -2 0 10 2 fgnge 40 0 60
4.246z, -2<z<0
f(z) = (24) Fig. 6. One-dimensional image of B-52 plane model under 0°.

loe—0.0Sz—O.Z)!
-sin((0.03z + 0.7)x), 0 <z < 10.
We have a uniformly sampled examples of 148 points, 74 of

which are taken as training examples and others testing exam-
ples. We adopted the approximation error defined in [3] as

1
1
where j = - > v (25)

where y denotes the desired output for x and f the approxima-
tion output. Table I lists the approximation errors using the two
kernels. The approximation results are plotted in Figs. 1 and 2,
respectively. The solid lines represent the function f and the
dashed lines show the approximations.

B. Approximation of Two-Variable Function

This experiment is to approximate a two-variable function [3]
f(x) = (2% — 23) sin(0.521)

over the domain [—10, 10] x [—10, 10]. We take 81 points as
the training examples, and 1600 points as the testing examples.
Fig. 3 shows the original function f, and Figs. 4 and 5 show the
approximation results obtained by Gaussian and wavelet kernel,
respectively. Table II gives the approximation errors.

(26)

C. Recognition of Radar Target

This task is to recognize the 1-D images of three-class
planes B-52, J-6, and J-7. Our data is acquired in a microwave
anechonic chamber with imaging angle from 0 to 160°. Here,
the dimension of the input space of the 1-D image recognition
problem is 64. The 1-D images of B-52, J-6, and J-7 under 0°
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Fig. 7. One-dimensional image of J-6 plane model under 0°.
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Fig. 8. One-dimensional image of J-7 plane model under 0°.

are shown in Figs. 6-8, respectively. We divided these examples
into two groups shown in Table III. The imaging angle of the
first group is from O to 100° and the second from 80 to 160°.
The recognition rates obtained by Gaussian and wavelet kernel
are shown in Table IV, which imply that wavelet kernel gives a
comparable recognition performance with Gaussian kernel.
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TABLE III
NUMBER OF TRAINING AND TESTING EXAMPLES
No. of training examples No. of testing examples
Group B-52 J-6 J-7 B-52 J-6 J-7
1 51 41 56 200 160 224
2 30 31 47 118 120 186
TABLE IV
RESULTS OF RADAR TARGET RECOGNITION
Recognition rates for testing Average recognition rates
Average
optimization
Kemel Parameter | Group B-52 J-6 J-7 . B-52 J-6 J-7
time over 30
runs (s)
(%) (%) (%) (%) (%) (%)
Gaussian 1 98.00 96.25 96.88 40.2
kernel | B =0.04 2 98.31 95.00 | 97.31 16.6 98.16 | 95.63 | 96.02
Wavelet 1 100 96.25 98.21 33.8
kernel a=25 2 100 95.00 98.31 12.0 100 95.63 | 98.26
We have compared the approximation and recognition results APPENDIX A

obtained by Gaussian and wavelet kernel, respectively. In the
three experiments, our wavelet kernel has better results than the
Gaussian kernel.

V. CONCLUSION AND DISCUSSION

In this paper, wavelet kernels by which we can combine the
wavelet technique with SVMs to construct WSVMs are pre-
sented. The existence of wavelet kernels is proven by results
of theoretic analysis. Our wavelet kernel is a kind of multidi-
mensional wavelet function that can approximate arbitrary func-
tions. It is not surprising that wavelet kernel gives better approx-
imation than Gaussian kernel, which is shown by Computer sim-
ulations. From (22) and (23), the decision function and regres-
sion estimation function can be expressed as the linear combi-
nation of wavelet kernel as well as the Gaussian kernel. Notice
that the wavelet kernel is orthonormal (or orthonormal approx-
imately), whereas the Gaussian kernel is not. In other words,
the Gaussian kernel is correlative or even redundancy, which is
the possible reason why the training speed of the wavelet kernel
SVM is slightly faster than the Gaussian kernel SVM.

PROOF OF THEOREM 3

Proof: We prove first that dot-product wavelet kernels (18)
are admissible SV kernels. For V g(x) € La(RY), we have

/L2®L2 K(x, x")g(x)g(x') dx dx’
ﬂh< >g(X)dx/L2£[1h<

Lo =1
2
Cj

/ ﬂh ’)g(x)dx > 0.

2 =1

Ti—Cy

a
Hence, dot-product kernels (18) satisfy Mercer’s condition.
Therefore, this part of Theorem 3 is proved.

Now, we prove that translation-invariant wavelet kernels (19)
are admissible kernels. Kernels (19) satisfy Theorem 2 [or con-
dition (11)], which is a necessary and sufficient condition for

translation invariant kernels; therefore, they are admissible ones.
This completes the proof of Theorem 3.

/ /
LIZ,L-—C,L-
a

)g(X’) dx’

T —

a
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APPENDIX B
PROOF OF THEOREM 4

Proof: According to Theorem 2, it is sufficient to prove the
inequality
exp(—j(w - x))K(x) dx

FIK(w) = (2n)" /2 / @7)

RN

for all x, Where2K(2x) = va hxzi/a) = Hf\;1 cos
(1.752; /a)e=zl7/2%) " First, we calculate the integral
term

| /R exp(— ) K (x) dx

:/ exp(—jwx) ﬁcos(l 75ﬁ)exp —M dx
RN " a 242

=1

N oo
T/ espt-sns
=177

' <exp(j1.75$i/a) + exp(—j1.75mi/a)>
2

12
- exp <——”;;g ) dz;

T

— I]:l, = exp __HxiH2_+
12 ) 202

<1.75j _ ) )
— — Jw;a | T;
=1 @

ol (1755 |
+ exp ~our T T—]—]wia z; | | dx;

(1.75 — w;a)*
2

4 exp <_ (1.75 + wia)2)> .

. ﬁ la|v2m
- i=1 2

5 (28)

Substituting (28) into (27), we can obtain the Fourier transform

N 2
F[K]@):H@) exp - LT~ i)

|4 )2
oy (~TEY)

If a # 0, then we have

F[K](w) >0 (30)

and the proof is completed.
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