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ABSTRACT
Motivation:Numerousmethods for predicting β-turns in proteins have
been developed based on various computational schemes. Here, we
introduce a new method of β-turn prediction that uses the support
vector machine (SVM) algorithm together with predicted secondary
structure information. Various parameters from the SVM have been
adjusted to achieve optimal prediction performance.
Results: The SVM method achieved excellent performance as meas-
ured by the Matthews correlation coefficient (MCC = 0.45) using a
7-fold cross validation on a database of 426 non-homologous protein
chains. To our best knowledge, this MCC value is the highest achieved
so far for predicting β-turn. The overall prediction accuracy Qtotal was
77.3%, which is the best among the existing prediction methods.
Among its unique attractive features, the present SVM method avoids
overtraining and compresses information and provides a predicted
reliability index.
Availability: The algorithm is available via a web server on:
http://serine.umdnj.edu/∼zhangq3/betaturn/
Contact: welshwj@umdnj.edu
Supplementary information: http://serine.umdnj.edu/∼zhangq3/
betaturn

INTRODUCTION
Protein architecture consists of α-helices, β-sheets, tight turns,
bulges and random coil structures, where the first two are repetitive
motif elements and the remaining three are non-repetitive motif ele-
ments (Richardson, 1981). β-turn is a particular type of tight turn that
consists of four consecutive residues which are not within an α-helix.
The distance between the first and fourth (the last) Cα is <7Å. On
average, about 25% of all protein residues comprise β-turns (Kabsch
and Sander, 1983).
As one of the most common types of non-repetitive motifs in

proteins, β-turns bear great significance in protein structure and
function. First, β-turns are four-residue reversals in proteins so that
they help in the formation of higher-order structure (Takano et al.,
2000). Second, most β-turns are located on the surface of proteins
which suggests their involvement inmolecular recognition processes
and interactions between receptors and substrates (Chou, 2000; Rose
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et al., 1985). Consequently, development of an accurate prediction
method of β-turns would be helpful for fold recognition studies and
for predicting the overall 3D structure of proteins.
A number of β-turn prediction methods currently exist, most

of which are empirical based on position preference. The present
method is compared with some other β-turn prediction methods
that were recently evaluated by Kaur and Raghava (2002): the
Chou–Fasman method (Chou and Fasman, 1974), the 1–4 and 2–3
correlation model (Zhang and Chou, 1997), the sequence coupled
model (Chou, 1997), GORBTURN (v3.0) (Gibrat et al., 1987;
Wilmot and Thornton, 1990) and BTPRED (Shepherd et al., 1999).
In the Chou–Fasman method (Chou and Fasman, 1974), a set of
probabilities is assigned to each residue and the conformational para-
meters and positional frequencies are determined by calculating the
relative frequency of each secondary structure. In the 1–4 and 2–
3 correlation model (Zhang and Chou, 1997), the coupling effects
between the first and fourth residues and between the second and
third residues are taken into account. In the sequence coupled model
developed by Chou (Chou, 1997) within the first-orderMarkov chain
framework, the sequence correlation effect for an entire oligopeptide
is considered.
GORBTURN uses the positional frequencies and equivalent para-

meters (Gibrat et al., 1987) to remove the potential helix and strand
forming residues from the β-turn prediction (Wilmot and Thornton,
1990). A neural network method, BTPRED, was developed by
Shepherd et al. (1999) to predict the location and type of β-turns in
proteins. BTPREDwas found to bemost accurate among theseβ-turn
prediction methods according to side-by-side evaluation conducted
by Kaur and Raghava (2002). Recently, an improved neural network
method, BetaTPred2, was developed by Kaur and Raghava (2003).
In this method, a great improvement in prediction performance has
been achieved (Matthews correlation coefficient MCC = 0.43) by
using multiple sequence alignment as input instead of the single
amino acid sequence.
The present method employs a support vector machine (SVM)

learning system to predict β-turns in proteins. The SVM, first pro-
posed by Vapnik and his co-workers (Cortes and Vapnik, 1995;
Vapnik, 1998), is based on statistical learning theory. Among the
many attractive features of the SVM algorithm is the absence of local
minima, its speed and scalability, and its ability to condense inform-
ation contained in the training set. Basically, the SVM maps the
input samples into feature space typical of higher dimension. Within
this feature space, the SVM seeks a hyperplane [called the optimal
separating hyperplane, (OSH)] that can differentiate the two classes
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with maximal margin and least error. The SVM is an extremely
successful learning theory that usually outperforms other machine
learning technologies such as artificial neural networks (ANNs) and
nearest neighbor methods. In recent years, SVMs have performed
well in diverse applications of bioinformatics including prediction
of secondary structure (Hua and Sun, 2001; Ward et al., 2003; Guo
et al., 2004), classification of protein quaternary structure (Zhang
et al., 2003), classification and validation of cancer tissue samples
(Furey et al., 2000) and prediction of T-cell epitopes (Zhao et al.,
2003). Cai et al. (2002) used the SVM approach for the prediction
and classification of β-turn types with good results. Here, we intro-
duce a novel use of the SVMapproach to predictβ-turns. The present
SVM system together with predicted secondary structure informa-
tion exhibited improved performance compared with the six other
β-turn prediction methods surveyed by Kaur and Raghava (2002) in
terms of various statistical figures of merit.

MATERIALS AND METHODS
Dataset
The dataset of 426 non-homologous protein chains first described by
Guruprasad and Rajkumar (2000) was chosen to train and test our method.
This same dataset was selected by Kaur and Raghava (2002) to evaluate the
performance of six β-turn prediction methods. The structure of each protein
chain in this dataset has been determined by X-ray crystallography at better
than 2.0 Å resolution, and no two protein chains have >25% identity. The
program PROMOTIF (Hutchinson and Thornton, 1996) was implemented to
identify the observed β-turns in these crystal structures.

Design
TheSVMlight programwas used to train theSVMclassifier (Joachims, 1999).
First, using the classical local coding scheme of the protein sequences with a
sliding window, the amino acid type of each residue is encoded into a length-
20 vector by the unary encoding scheme. Following this scheme, alanine
is represented as (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). The ‘null’ residue,
represented by an all-zero length-20 vector, was used to fill in the empty
position. Therefore, a protein fragment of window sizem is represented by a
20× m matrix of zeros and ones. Second, with multiple alignments, we use
the position-specific scoring matrix generated by PSI-BLAST as input to our
SVM classifier. These profiles were scaled to 0–1 range using the standard
logistic function:

f (x) = 1
1+ exp(−x)

, (1)

where x is the raw profile matrix value which represents the likelihood of that
particular residue substitution at that position. The structure of the multiple
alignment SVM system is illustrated in Figure 1. The predicted second-
ary structure from PSIPRED (Jones, 1999) is encoded as follows: helix →
(1,0,0), strand → (0,1,0), coil → (0,0,1). The window size was set to 7-
residues in accordance with Shepherd et al. (1999) who found that BTPRED
achieved optimal β-turn prediction with a window size of 7 or 9. Further-
more, a 7-residue sequence context is the minimum size sufficient to account
for the coupling effect between the first and fourth residues within β-turn
sequences.

Training and testing
We employed 7-fold cross validation to evaluate the performance of the
present method. The 426 protein chains were divided into 7 subsets of equal
size (i.e. 6 subsets contained 61 chains; 1 subset contained 60 protein chains).
At each step of the validation process, six subsets were used for training
while the remaining one subset was used for testing. This procedure was
repeated seven times, once for each subset. Several parameters were adjusted
for optimal performance. Our SVM employed the radial basis function kernel
[Equation (2)] with a soft margin, thus the first parameters to be determined
are γ and the regularization parameter C. The percentage of β-turn residues

Fig. 1. The architecture of the present SVM system using multiple align-
ment. The protein sequence is represented by the PSI-BLAST profile and
transformed into a number of 20 × 7 dimension vectors using the sliding-
window method. After normalization, these vectors are transformed into a
number of 143D vectors with predicted secondary structures and serve as
inputs to the SVM.

in our dataset is roughly the same as that found (25%) in naturally occurring
proteins; thus the cost factor j is used to minimize false negatives. In the
present case, we set γ = 0.0186, C = 16 and j = 2. Additional information
about parameter selection can be found in the Supplementary material.

K(%xi , %xj ) = exp(−γ
∣∣%xi − %xj

∣∣2). (2)

Reliability index
It is important to know the prediction reliability of machine learning tech-
niques applied in computational biology. Here, the reliability index (RI) was
used to determine the effectiveness of β-turn prediction. In addition, key
regions with high prediction accuracy can be easily identified by means of
RI. An intuitive RI can be derived using the output of the SVM classifier (Hua
and Sun, 2001) which is a real number usually between−2 and+2. A sample
with large positive output value is indicative of a large positive distance to
the OSH and, accordingly, will have high probability of being β-turn. The RI
can be defined as:

RI = int
abs(D)

0.2
, (3)
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Fig. 2. Expected prediction accuracy for residues with different reliability
indices. The accuracy and the fraction of residues with particular RI are
given. The expected accuracy of residues with higher RI is much better than
those with lower RI.

where abs(D) is the absolute value of distanceD between the sample and the
OSH. RI is an integer between [0, 9] where the maximal RI = 9 indicates a
very reliable prediction. Figure 2 shows that the prediction is more reliable
as RI increases, confirming that the RI as defined here reflects the prediction
reliability.

Filtering
The prediction for each residue is made without reference to the prediction
status of neighboring residues; thus the predictions are not correlated. To
ensure that β-turns are at least four residues long, we added a simple filtering
stepknownas the ‘state-flipping’ rulefirst describedbyShepherd et al. (1999).

Performance measures
A variety of statistical measures are available to evaluate the performance of
predictivemethods in biology. Fourmeasureswidely used inβ-turn prediction
methods are based on the following scalar quantities:
(1) p, the number of correctly classified β-turn residues
(2) n, the number of correctly classified non-β-turn residues
(3) o, the number of incorrectly classified β-turn residues
(4) u, the number of incorrectly classified non-β-turn residues and
(5) t , the total number of residues.
The first measure isQtotal which calculates the percentage of residues that

are correctly classified:

Qtotal = p + n

t
× 100. (4)

It is the most common measure of a method’s overall performance; how-
ever,Qtotal can be misleading as β-turn residues occur much less frequently
than non-β-turn residues in proteins (∼25 versus ∼75%). Therefore, one
could easily achieve Qtotal = 75% merely by predicting all residues to
be non-β-turn. For this reason, we calculated Qpredicted, the percentage of
correctly predicted β-turns:

Qpredicted = p

p + o
× 100 (5)

andQobserved, the percentage of observed β-turns that are correctly predicted:

Qobserved = p

p + u
× 100 (6)

Qpredicted and Qobserved represent measures of the method’s sensitivity and
selectivity, respectively.

We also computed theMCCas ameasure of both sensitivity and selectivity:

MCC = (p × n) − (o × u)√
(p + o)(p + u)(n + o)(n + u)

. (7)

Another important consideration is whether the present method performs
better than random prediction. We first calculated R, the anticipated number
of residues that are correctly classified by random prediction (Shepherd et al.,
1999):

R = (p + o)(p + u) + (n + u)(n + o)

t
. (8)

We then calculated S, the normalized percentage of correctly predicted
samples better than random:

S = (p + n) − R

t − R
× 100. (9)

Accordingly, S = 100% for perfect prediction and S = 0% for worse than
random prediction.

RESULTS AND DISCUSSION
Results from the present SVM method using single amino acid
sequence as input are compared in Table 1 with BTPRED (Shepherd
et al., 1999) and other popular β-turn prediction methods. BTPRED,
based on neural networks, is generally considered among the most
reliable and accurate β-turn prediction methods. It is seen that the
MCC is appreciably higher for the present method (0.41) than for
BTPRED (0.35). This is noteworthy in that the MCC is a robust and
reliable performance measure that accounts for both overpredictions
and underpredictions. Prediction coverage Qobserved by the present
method (67.9%) exceeds BTPRED (48%) by almost 20%.Moreover,
the value of S [Equation (9)] for our method is 40% which denotes
much better than random prediction.
A further improvement has been achieved by using PSI-BLAST

generated scoring matrices as input (Table 2). Use of multiple align-
ment information reaches MCC of 0.45 and overall accuracy of
77.3%, which are best among current β-turn prediction methods
(Table 3). The final SVM classifier yields Qpredicted of 53.1% and
S of 44%, which is slightly better than that of the single sequence.
In conclusion, the prediction performance of our method has been
further improved by using the multiple alignment information in the
form of the PSI-BLAST position-specific matrices as input.
Some of the protein chains in our dataset may be used to train

PSIPRED. In order to cross-validate the results, we have excluded
those proteins from the non-redundant database of PSIPRED. As
shown in Table 3, the difference in prediction performance is
negligible.
Three factors may account for the exceptional performance of the

present method. First, a new statistical learning algorithm, SVM, is
employed. Among its many unique features, SVM can handle large
datasets and exhibits remarkable resistance to overfitting. SVMs con-
dense information in the training set by using a very small number
of samples with support vectors (SVs) to provide sparse representa-
tion. It is believed that these SVs contain all the information needed
for classification. In most cases the number of SVs is much smal-
ler than the total number of training samples, such that the SVM
can efficiently classify new samples by safely ignoring the training
samples judged as unnecessary. In our method, the ratio of SVs to
training samples is 55.6%, which means nearly 44.4% of the training
samples could be safely removed. That SVMs can effectively remove
the uninformative patterns in the dataset and focus on the informat-
ive patterns is a major asset. Second, predicted secondary structure
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Table 1. Performance comparison between the present method (single sequence) and other popular methods

Methods Qtotal Qpredicted Qobserved MCC S

Present method (single sequence) 74.8 49.1 67.9 0.41 40%
BTPREDa 74.9 55.3 48.0 0.35 35%
Chou–Fasmanb 65.2 37.6 63.5 0.26 —
1–4 and 2–3 correlation modelb 59.1 32.4 61.9 0.17 —
Sequence coupled modelb 53.3 32.4 72.8 0.17 —
GORBTURNb 70.5 39.3 37.3 0.19 —

The results of the present method using single amino acid sequence as input were obtained by a 7-fold cross validation.
— Result cannot be determined from the paper.
aResults obtained on another non-homologous dataset which contains 300 protein chains (Shepherd et al., 1999).
bResults obtained on the same 426 non-homologous dataset (Kaur and Raghava, 2002).

Table 2. Prediction results using single sequence and multiple alignment

Single sequence Multiple alignment

Qtotal 74.8 77.3
Qpredicted 49.1 53.1
Qobserved 67.9 67.0
MCC 0.41 0.45
S 40% 44%

Table 3. Performance comparison between the present method (multiple
alignment) and the current best method, BetaTPred2

Method Qtotal Qpredicted Qobserved MCC

Present method
(multiple
alignment)

77.3 (77.3) 53.1 (53.1) 67.0 (67.3) 0.45 (0.45)

BetaTPred2 75.5 49.8 72.3 0.43

Values shown in parentheses correspond to the results obtained by cross-validation of
PSIPRED.

information by PSIPRED is used. It is widely believed that β-turn
prediction accuracy can be greatly improved by inclusion of sec-
ondary structure information (Kaur and Raghava, 2002). PSIPRED,
based onneural network evaluation of PSI-BLASTgenerated profiles
(Jones, 1999), is one of the most accurate secondary structure pre-
diction methods. Third, multiple alignment information in the form
of PSI-BLAST profiles has been used as input to the SVM classifier.
These profiles are generated by searching remote homologs against a
huge nonredundant database and contain evolutionary information.
With multiple alignment, the MCC value is raised from 0.41 to 0.45,
which is the best value for β-turn prediction achieved so far.
Our method of β-turn prediction can be further improved in future

work. By analyzing sequence–structure relationships in terms of ter-
tiary contact (TC),Yoon andWelsh (2004) have successfully detected
nonnative sequence propensity for amyloid fibril formation. TCs,
formed during the protein folding process, are interactions between
non-adjacent residues which are far apart along the first-order amino
acid sequence. TC counting is an easy and fast way to quantify the

influence of tertiary environment and has shown its ability to meas-
ure tertiary interactions and solvent accessibility. It is our hope that
incorporation of tertiary contacts in our SVMmethod will yield ever
higher prediction accuracy. As a passive learning machine method,
SVMmight be improved by combination with active learning meth-
ods such as boosting. An active learningmethod could directly select
a subset of samples for training and testing, thereby improving the
accuracy of any given passive learning algorithm. Such practical
strategies that fuse different techniques to improve β-turn prediction
performance are currently under development in our laboratory.
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