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Abstract

We have analyzed the DNA copy numbers for over 100,000
single-nucleotide polymorphism loci across the human
genome in genomic DNA from 313 lymph node–negative
primary breast tumors for which genome-wide gene expres-
sion data were also available. Combining these two data sets
allowed us to identify the genomic loci and their mapped
genes, having high correlation with distant metastasis. An
estimation of the likely response based on published predic-
tive signatures was performed in the identified prognostic
subgroups defined by gene expression and DNA copy number
data. In the training set of 200 patients, we constructed an
81-gene prognostic copy number signature (CNS) that identi-
fied a subgroup of patients with increased probability
of distant metastasis in the independent validation set of
113 patients [hazard ratio (HR), 2.8; 95% confidence interval
(95% CI), 1.4–5.6] and in an external data set of 116 patients
(HR, 3.7; 95% CI, 1.3–10.6). These high-risk patients consti-
tuted a subset of the high-risk patients predicted by our
previously established 76-gene gene expression signature
(GES). This very poor prognostic group identified by CNS
and GES was putatively more resistant to preoperative
paclitaxel and 5-fluorouracil-doxorubicin-cyclophosphamide
combination chemotherapy (P = 0.0048), particularly against
the doxorubicin compound, while potentially benefiting
from etoposide. Our study shows the feasibility of using
copy number alterations to predict patient prognostic
outcome. When combined with gene expression–based sig-
natures for prognosis, the CNS refines risk classification
and can help identify those breast cancer patients who have
a significantly worse outlook in prognosis and a potential
differential response to chemotherapeutic drugs. [Cancer Res
2009;69(9):3795–801]

Introduction

Specific DNA copy number alterations (CNA), such as deletions
and amplifications, are major genomic alterations that contribute
to carcinogenesis and tumor progression through reduced
apoptosis, unchecked proliferation, increased motility, and angio-
genesis (1–3). Because a significant proportion of genomic
aberrations are unrelated to cancer biology and merely due to

random neutral events (4), it is a challenge to identify those
causative gene CNAs that are responsible for gene expression
regulation, which ultimately leads to malignant transformation and
progression. Both fluorescence in situ hybridization and compar-
ative genomic hybridizations have revealed chromosomal regions
that showed CNAs in breast tumors. In a recent study, including 51
breast tumors, a high-resolution single-nucleotide polymorphism
(SNP) array was used together with gene expression profiling to
refine breast cancer amplicon boundaries and narrow the list of
potential driver genes (5). However, only a limited number of
studies (1, 6–13) investigated the CNAs in relation to their
prognostic significance, whereas the sample sizes of these studies
were too small to draw firm conclusions. In addition, fewer studies
(1, 6, 12–14) investigated breast cancer prognosis using combined
analysis of CNAs and gene expression profiling with sufficient
sample size and a technology that had appropriate coverage and
mapping resolution of the human genome.
In the present study, we used a high-throughput and high-

resolution oligonucleotide-based SNP array technology to analyze the
CNAs for >100,000 SNP loci in the breast cancer genome. In a large
cohort of 200 lymph node–negative breast cancer patients, we
identified copy number alterations that were correlated with the time
in developing distant metastasis. The prognostic power of the CNAs
was validated in two independent patient cohorts. In addition, using
published predictive gene signatures, the identified patient subgroups
with different prognosis were tested for putative drug efficacy. The
results from our study suggest that combining DNA copy number
analysis and gene expression analysis provides an additional and
better means for risk assessment for breast cancer patients.

Materials and Methods

Patient and tumor material. Frozen tumor specimens of 313 lymph
node–negative breast cancer patients selected from the tumor bank at the
Erasmus Medical Center were used in this study. These patients were
treated during the period 1980 to 1995, but none of these patients did
receive any systemic (neo)adjuvant therapy. Patients who first developed a
local recurrence before distant metastasis were not included to avoid the
possibility that the distant metastasis later on could have originated from
the local recurrence. The guidelines for local primary treatment were the
same. Among these specimens, 273 were used to develop a 76-gene
signature for the prediction of distant metastasis using Affymetrix U133A
chips (15). The remaining 40 patients were used to study prognostic
biological pathways (16). The study was approved by the medical ethics
committee of Erasmus MC (MEC 02.953) and conducted in accordance to
the code of conduct of Federation of Medical Scientific Societies in the
Netherlands3, and whenever possible, we adhered to the Reporting
Recommendations for Tumor Marker Prognostic Studies REMARK (17).

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Requests for reprints: John Foekens, Erasmus MC, Josephine Nefkens Institute,
Room BE-426, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands. Phone: 31-
10-7044369; Fax: 31-10-7044377; E-mail: j.foekens@erasmusmc.nl.
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One hundred ninety-nine tumors were classified as estrogen receptor
(ER) positive and 114 as ER negative, using previously described ER
(and progesterone receptor) cutoffs (15). Median age of patients at the
time of surgery (breast conserving surgery, 230 patients; modified radical
mastectomy, 83 patients) was 54 y (range, 26–83 y). The median follow-up
time for surviving patients (n = 220) was 99 mo (range, 20–169 mo). A total
of 114 patients (36%) developed distant metastasis and were counted as
failures in the analysis of distant metastasis-free survival (MFS). Of the
93 patients who died, seven died without evidence of disease and were
censored at last follow-up in the analysis of distant MFS; 86 patients died
after a previous relapse. The clinicopathologic characteristics of the patients
are given in Table 1. The data set containing the clinical and SNP data has
been submitted to Gene Expression Omnibus database with accession
number 10099.4

The external array comparative genomic hybridization data set of 116
lymph node–negative patients used in this study (6) as an independent
validation was downloaded.5 The clinical data (Table 1) related to this data
set were kindly provided by Dr. Teschendorff of University of Cambridge.

DNA isolation, hybridization, and DNA copy number analysis. The
methods used to isolate DNA from breast tumor samples and for hybridization
of DNA to the Affymetrix GeneChip HumanMapping 100KArray are described
in detail in Supplementary Materials and Methods (online only).

Identification of prognostic chromosome regions, construction, and
validation of copy number signature. We designed an integrated analytic
method to identify the chromosome regions and the mapped candidate
genes whose CNAs were correlated with distant metastasis by taking
advantage of the availability of the genomic data on both RNA gene
expression, which were generated from our previous studies (15, 16), and
DNA copy number from the same cohort of patients that became available
in this study (Fig. 1). Our method is very similar in principle to the approach
that Adler and colleagues (14) took and described as stepwise linkage
analysis of microarray signatures to identify genetic regulators of expression
signatures by intersecting genome-wide DNA copy number and gene
expression data. We analyzed ER-positive and ER-negative patients
separately and randomly split the patients in an approximate of 2:1 ratio
into a training set of 200 patients and a validation set of 113 patients (Fig. 1)
while balancing on the clinical and pathologic parameters, including T
stage, grade, menopausal status, and recurrences. The training set was used
to identify prognostic chromosome regions and mapped genes and
construct a copy number signature (CNS) to predict distant metastasis;

Table 1. Clinical and pathologic characteristics of patients and their tumors

Characteristics All patients (n = 313) Training set (n = 200) Validation set (n = 113) External validation set (n = 116)

Age at surgery, y
Mean (SD) 54 (12) 54 (12) 54 (12) 57 (10)
V40 45 (14%) 30 (15%) 15 (13%) 6 (5%)
41–55 134 (43%) 84 (42%) 50 (44%) 41 (35%)
56–70 98 (31%) 62 (31%) 36 (32%) 68 (59%)
>70 36 (12%) 24 (12%) 12 (11%) 1 (1%)

Menopausal status
Premenopausal 152 (49%) 96 (48%) 56 (50%) 38 (33%)
Postmenopausal 161 (51%) 104 (52%) 57 (50%) 78 (67%)

T stage
T1 153 (49%) 97 (49%) 56 (49%) 90 (78%)
T2 148 (47%) 95 (47%) 53 (47%) 26 (22%)
T3/4 11 (4%) 8 (4%) 3 (3%) 0
Unknown 1 (0%) 0 1 (1%) 0

Grade
Poor 165 (53%) 111 (56%) 54 (48%) 48 (42%)
Moderate 45 (14%) 29 (14%) 16 (14%) 34 (29%)
Good 6 (2%) 3 (2%) 3 (3%) 34 (29%)
Unknown 97 (31%) 57 (28%) 40 (35%) 0

ER status
Positive 199 (64%) 133 (67%) 66 (58%) 79 (68%)
Negative 114 (36%) 67 (33%) 47 (42%) 37 (32%)

Progesterone receptor status
Positive 156 (50%) 100 (50%) 56 (50%) NA
Negative 148 (47%) 92 (46%) 56 (50%) NA
Unknown 9 (3%) 8 (4%) 1 (1%) NA

Metastasis within 5 y
Yes 99 (32%) 64 (32%) 35 (31%) 8 (7%)
No 204 (65%) 127 (64%) 77 (68%) 104 (90%)
Censored 10 (3%) 9 (4%) 1 (1%) 4 (3%)

Adjuvant systemic therapy
Yes 0 0 0 43 (37%)
No 313 (100%) 200 (100%) 113 (100%) 71 (61%)
Unknown 0 0 0 2 (2%)

NOTE: Grade was assessed by regional pathologists and reflects the current practice during the years the tumors were collected. ER positive and
progesterone receptor positive indicate >10 fmol/mg protein or >10% positive tumor cells.
Abbreviation: NA, not available.

4 http://www.ncbi.nlm.nih.gov/geo, username: jyu8; password: jackxyu.
5 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8757
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the validation set was set aside solely for validation purpose. The analytic
details for the identification of chromosome regions with prognostic CNAs
and construction and validation of CNS are described in Supplementary
Materials and Methods (online only).

Putative response to chemotherapy. To estimate the putative responses
of the validation set of patients to chemotherapeutic compounds, gene
expression signatures (GES) in two published studies were used
(18, 19). The original gene expression data set and the R function for the
prediction algorithm of diagonal linear discriminant analysis for the 30-gene
preoperative paclitaxel and 5-fluorouracil-doxorubicin-cyclophosphamide
(T/FAC) response signature was downloaded6 (19). Because the original
authors did not provide the necessary model parameters to use the algorithm
directly, the model was trained from the original data set using the provided R
function and then validated in our gene expression data set. For each of the
seven GES that predict sensitivity to individual chemotherapeutic drugs, the
predicted probability of sensitivity to each compound using the Bayesian
fitting of binary probit regression models was calculated with the help of
Drs. Anil Potti and Joseph Nevins ( for details, see ref. 18).

Statistical analysis. Unsupervised analysis using principal component
analysis was performed on the copy number data set with all SNPs to
examine the potential subclasses of the tumors. Kaplan-Meier survival plots
(20) and log-rank tests were used to assess the differences in MFS of the
predicted high-risk and low-risk groups. Cox proportional hazard regression
was performed to compute the hazard ratio (HR) and its 95% confidence
interval (95% CI). Due to missing data on grade, multivariate Cox regression
analysis was done by multiple imputations using the Markov Chain Monte
Carlo method under the general location model (21). Dunnett’s tests in the
context of ANOVA were performed to assess the significance of differential
therapeutic responses between the very poor prognostic group and each of
the good/poor prognostic groups while controlling the type I error. All tests
of statistical significance were two sided. All statistical analyses were
performed using R version 2.6.2.

Results

Identification of prognostic chromosomal regions. The
median copy number estimate of the copy number data set,
calculated as the median of the means of each SNP copy number
estimate across all SNPs, which was computed as the average of the
SNP interquartile (middle, 50%) copy number estimates, was 2.1,
consistent with the general assumption that the majority of the
genome is diploid. Unsupervised analysis using principle compo-
nent analysis on all 313 tumors showed that chromosomal copy
number variations were clearly different for ER-positive and
ER-negative tumors (Supplementary Fig. S1). Therefore, these two
types of breast tumors not only differ on global gene expression
profiles, as indicated in many studies before (15, 22–24), but also
have distinct chromosomal variations on the DNA level. Therefore,
it is necessary that subsequent analysis be performed separately for
ER-positive and ER-negative tumors. Furthermore, we randomly
divided the patients into a training set of 200 patients (133 for
ER-positive and 67 for ER-negative tumors) and a validation set of
113 patients (66 for ER-positive and 47 for ER-negative tumors;
Table 1; Fig. 1) in an approximate of 2:1 ratio. The training set was
used to identify prognostic chromosome regions and the mapped
genes and construct a CNS to predict distant metastasis; the
validation set was set aside solely for validation purposes.
First, we identified chromosome regions whose CNAs were

correlated with the MFS of patients. For ER-positive tumors, 45
chromosomal regions distributed over 17 chromosomes were
identified as having CNAs that correlated with MFS; for ER-negative

tumors, there were 56 regions distributed over 19 chromosomes
(Fig. 2). The total of these region sizes for ER-positive and ER-
negative tumors were 521 (Supplementary Table S1) and 496 Mb
(Supplementary Table S2), respectively. The prognostic chromosom-
al regions identified from the ER-positive tumors share limited
similarities with those from the ER-negative tumors (Fig. 2).
Search for prognostic candidate genes to construct CNS. The

gene expression profiling data from our previous studies of the
same tumors were used (15, 16) to screen for genes that had
consistent change patterns between gene expression profiles and
copy number variations. We reasoned that the change in copy
numbers has to be reflected in the corresponding change in gene
expression levels to have a phenotypic effect. Within these
prognostic regions, a total of 2,833 and 3,656 genes were mapped
for ER-positive tumors (Supplementary Table S1) and ER-negative
tumors (Supplementary Table S2), respectively. For the ER-positive
tumors, 122 genes had significant Cox regressions (P < 0.05) in both
gene expression data and copy number data and showed the same
direction for the changes in DNA copy number and gene
expression. For the ER-negative tumors, 78 genes had significant
P values in both data sets and showed the same direction of
alterations (Supplementary Fig. S2). Of these, 53 genes (43%) for
ER-positive and 28 genes (36%) for ER-negative tumors, respec-
tively, had correlation coefficients between gene expression and
copy number of >0.5. Thus, in total, 81 prognostic candidate genes
were identified, which were then used as a CNS for prognosis
(Table 2 and Supplementary Table S3).
Validation of CNS. Validation was done in the independent

validation set of 66 ER-positive and 47 ER-negative tumors
separately using 53 and 28 genes from CNS, respectively. The HR
and 95% CI for time to distant metastasis of patients with a poor
CNS compared with a good CNS were 2.8 (1.3–6.3; P = 0.0088) for
ER-positive and 8.7 (1.1–74.4; P = 0.0166) for ER-negative tumors,
respectively. The Kaplan-Meier analyses of the combined two
patient groups stratified by the 81-gene CNS showed a statistically
significant difference in time to distant metastasis (Fig. 3A) with a
HR of 2.8 (P = 0.0036). The estimated rate of distant metastasis at
5 years for the two groups was 27% (95% CI, 17–35%) and 67% (95%
CI, 32–84%), respectively. We chose not to further stratify the
patients by other clinical variables because the subgroups would
become too small to allow statistically justifiable conclusions.
When used in conjunction with our previously identified (15) and
independently validated 76-gene GES (25–27), the patient group
with worse prognosis outcome defined by the 81-gene CNS re-
mained the same with 67% of estimated distant metastasis at
5 years. The 76-gene GES stratified the other patient group with
better prognosis further to good and poor prognosis groups with
the 5-year estimated rate of recurrence at 11% and 37%,
respectively (Fig. 3B). This result led to three prognostic groups,
which we defined as good, poor, and very poor groups for GES
good/CNS good, GES poor/CNS good, and GES poor/CNS poor
groups, respectively. Multivariate Cox regression analysis of both
signatures, together with traditional clinical and pathologic factors,
showed that the combination of the two signatures was the only
significant (likelihood ratio test, P = 0.0003) prognostic factor for
MFS, with HR of 8.86 comparing the very poor versus good
prognostic groups, and 3.59 for comparison of the poor versus the
good prognostic groups (Table 3). The patients in the very poor
prognosis group are not significantly different from the good and
poor prognosis groups with respect to the traditional clinical
variables: age, T stage, grade, menopause status, and progesterone6 http://bioinformatics.mdanderson.org/pubdata.html
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receptor status, except ER status. ER status, however, could not be
used alone to identify the patients in the very poor prognostic
group. For example, 14 of the 66 ER-positive patients were in the
very poor prognostic group whereas 52 ER-positive patients were in
good or poor prognostic groups. In the analysis for the 10-year
overall survival, 84% (95% CI, 70–99%) of the patients in the good
prognosis group were alive after 10 years compared with 55% (95%
CI, 41–74%) and 27% (95% CI, 10–78%) in the poor and very poor
prognosis groups, respectively (P = 0.0005).
Next, we validated the CNS in a completely independent external

data set of 116 lymph node–negative patients (79 ER-positive and
37 ER-negative tumors) derived from a lower resolution array
comparative genomic hybridization technology (6). The 81-gene
CNS significantly stratified this patient cohort (Fig. 3C) into two
prognostic groups with an HR of 3.7 (P = 0.0102) and remained to
be the only significant prognosticator in a multivariate Cox
regression analysis, including age, tumor size, grade, and ER
status (P = 0.0150). The lower rate of distant metastasis at 5 years
(19%) for the poor prognostic group compared with that of our
own data set was likely due to the smaller tumor sizes (78% smaller
than 2 cm) and the fact that over one third of the patients had
received adjuvant hormone and/or chemotherapy in this cohort
(Table 1).
Response to chemotherapy. We subsequently investigated the

chemotherapy response profiles of the three prognostic groups
determined by the GES and CNS prognostic assays using well-
validated gene signatures derived from two studies (18, 19) for
which follow-up validation studies in human clinical samples were
also available (28, 29). Firstly, using a previously published 30-gene
signature that predicted a pathologic complete response to

preoperative T/FAC chemotherapy (19), we assigned each patient
in the different prognostic subgroups into two response groups,
either as having pathologic complete response or still with residual
disease. Only 2 of the 15 patients (13%) in the very poor prognostic
group were predicted as having pathologic complete response,
whereas 34 of the 60 patients (57%) and 14 of the 38 patients (37%)
in the poor and good prognostic groups, respectively, were
predicted as having pathologic complete response. The chemo-
response score for the very poor prognostic group was significantly
lower than those of the poor prognostic group (P = 0.0048),
indicating that these patients would be much more resistant to
preoperative T/FAC chemotherapy in case these patients would
have received this preoperative combination chemotherapy
(Supplementary Fig. S3). Secondly, we determined the response
profiles of the three prognostic groups against seven individual
chemotherapeutic compounds using expression signatures estab-
lished on cell lines (18). For each compound, we calculated the
predicted probability of sensitivity to the compound (Supplemen-
tary Fig. S3) using the Bayesian fitting of binary probit regression
models (18). Compared with the poor prognostic group, the
patients in the very poor prognostic group had significantly lower
mean sensitivity score, i.e., they were more resistant to doxorubicin
(P = 0.0037). On the other hand, the very poor prognosis group
seemed to be more sensitive to etoposide (P = 0.0359) and,
although not statistically significant, to topotecan (P = 0.0542).
Thus, when combined with gene expression–based signatures for
prognosis and therapy prediction, CNAs measured by SNP arrays
improve risk classification and can identify those breast cancer
patients who have a significantly worse outlook in prognosis and a
potential differential response to chemotherapeutic drugs.

Figure 1. The analysis workflow to identify the genes
(SNPs) with prognostic copy number alterations and the
establishment of CNS.
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Discussion

In this study, we have performed a combined analysis of DNA
copy number and gene expression on a large cohort of 313 lymph
node–negative breast cancer patients who received no adjuvant
systemic therapy. To our knowledge, this is the largest study to
analyze CNAs for breast cancer prognosis using the high-density
SNP array technology that has much higher resolution than array
comparative genomic hybridization. We identified, from a training
set of 200 lymph node–negative patients, a signature of 81 genes
that showed CNAs and concordant gene expression regulation and
validated this CNS in the independent 113 lymph node–negative
patients, as well as in an external array comparative genomic
hybridization data set of 116 lymph node–negative patients. We
also showed that applying CNS, in addition to GES, in risk
classification for the prognosis of breast cancer patients is clearly

improved, particularly in the poor prognostic patients predicted by
the 76-gene GES alone. Although the very poor prognosis group,
defined as patients in the poor prognosis group according to GES
and CNS, constitutes only 13% of all patients, we consider this
group of patients clinically relevant because of very poor overall
survival. Furthermore, in the concept of personalized medicine,
other patient groups similar in size (basal, triple negative, and
HER2 breast cancer subtypes) have been and are attracting major
attention. Our view is that the clinical utility of the combination of
GES and CNS may be better assessed with positive predictive value
(PPV) and negative predictive value (NPV) using 5-year distant
metastasis as the defining end point. Because PPV and NPV can
only be calculated for binary classifications, we calculated two
separate PPVs for the patients predicted as having either very
poor or very poor plus poor prognosis by either CNS or GES,

Figure 2. The chromosomal regions with
prognostic copy number alterations.
A, the smoothed Cox regression P-value
(log10 scale) curves along the 23
chromosomes for ER-positive (top ) and
ER-negative (bottom ) tumors. The log10
smoothed P values were signed by the
corresponding signs of the log scores S .
The red color curve indicates that the copy
number was higher in the relapsed tumors
than in the relapse-free tumors; the blue
color curve indicates the opposite. The
horizontal dotted line indicates nominal
significance at P value cutoffs (P = 0.05).
B, the ideogram of the human genome
labeled by the chromosomal regions for
ER-positive (top edge of each
chromosome ) and ER-negative (bottom
edge ) tumors of which copy number
alterations were prognostic. Red and blue,
regions of gains and losses, respectively, in
patients who developed distant metastasis.
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respectively, because these patients should be treated with
adjuvant systemic therapies; on the other hand, we only calculated
one NPV for the good prognostic group by the combination of GES
and CNS because we believe that the patients in this group had
such a good prognosis that adjuvant systemic therapies might be
withheld. The PPV for the very poor prognostic group stratified by
CNS alone (i.e., the very poor prognostic group predicted by the
combination of GES and CNS) is 67% compared with 42% PPV for
the poor prognostic group stratified by GES alone and 30% PPV
when no signature was used at all as the standard practice today.
Therefore, this could lead to a potential 37% (70–33%) reduction of
unnecessary treatment upon further validation. The NPV for the
good prognostic group predicted that the GES and CNS
combination is 90%, indicating that f10% of the patients in this
good prognostic group may have their treatment erroneously
withheld if this is the only information used for decision making.
Further improvements on NPV are desired.
Furthermore, by using previously reported gene signature

profiles for sensitivity to chemotherapeutic compounds, it was
shown that this very poor prognostic group might be much more
resistant to preoperative T/FAC combination chemotherapy,
particularly against the doxorubicin compound while benefiting
from etoposide. If confirmed in independent studies, this may
suggest that patients belonging to this category might benefit from
different chemotherapy regimens compared with other patient
groups and that the 81 genes of the CNS might be used to
determine chemosensitivity.
Previous studies investigating the association between gene

amplification and breast cancer prognosis considered different
breast cancer subtypes, such as ER positive and ER negative, as a
single homogenous cohort. However, it is well known that these
tumors are pathologically and biologically very different, evidenced
by tremendous distinct global gene expression profiles (15, 22–24).
In this study, we showed that this dichotomy also extended to
the global pattern of the DNA copy numbers. Therefore, the
analysis needed to be performed separately for ER-positive and

ER-negative tumors. Indeed, the prognostic chromosomal regions
identified from the ER-positive tumors share limited similarities
with those from the ER-negative tumors. For example, chromo-
some region 8q is a widely known site of DNA amplification
associated with poor prognosis in breast cancer (7, 9–11). Our
results showed that 8q was indeed a hotspot for amplification in
ER-positive tumors but contained no significant amplified areas for
ER-negative tumors. Because ER-negative tumors constitute only a
small percentage (f25%) of the lymph node–negative breast
cancers, it is reasonable to speculate that those studies that did not
separate the two types of breast tumors in their analysis may have
had their conclusions overwhelmed by the results from the

Table 2. Description of the 81 genes used as CNS

Prognostic genes with
copy number alteration

Gain in ER+ tumors SMC4, PDCD10, PREP, CBX3, NUP205, TCEB1,
TERF1, TPD52, GGH, TRAM1, ZBTB10,
YTHDF3, EIF3E, POLR2K, RPL30, CCNE2,
RAD54B, MTERFD1, ENY2, DPY19L4,
ZNF623, SCRIB, SLC39A4, ATP6V1G1,
PSMA6, STRN3, CLTC, TRIM37, NME1,
NME2, RPS6KB1, PPM1D, MED13,
SLC35B1, APPBP2, MKS1, C17orf71,
HEATR6, TMEM49, USP32, ANKRD40,
NME1-NME2, ZNF264, ZNF304,
ATP5E, CSTF1, PPP1R3D, AURKA,
RAE1, STX16, C20orf43, RAB22A

Loss in ER+ tumors TCTN3
Gain in ER! tumors C1orf9, COX5B, EIF5B, DDX18, TSN, p20,

METTL5, MGAT1, TUBB2A, RWDD1,
PGM3, FOXO3, CDC40, REV3L, HDAC2,
TSPYL4, C6orf60, ASF1A, MED23,
TSPYL1, ACTR10, KIAA0247, RARA,
KRT10, RIOK3, IMPACT

Loss in ER! tumors HDAC1, BSDC1

Figure 3. Distant MFS as a function of CNS. A, lymph node–negative validation
set patients stratified by the 81-gene CNS. B, lymph node–negative validation
set patients stratified by the 76-gene GES and CNS. Gray line, poor prognostic
group defined by GES alone. C, lymph node–negative patients of the external
validation set (6) stratified by CNS.
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majority of the samples of ER-positive tumors. Another apparent
difference between the two types of tumors observed from our
analysis was at chromosome region 20q13.2-13.3. A gain in copy
number of this region in ER-positive tumors, but by contrast a loss
in copy number of this region in ER-negative tumors, was related to
an early recurrence. Taken together, these results reemphasize that
ER-positive and ER-negative tumors follow different biological
pathways for cancer development and progression.
In summary, our study identified a panel of 81 genes based on

two-dimensional evidence and showed that the copy number of
these genes drives their transcriptional regulation, yielding a

cascade of downstream genetic changes that ultimately result in
breast tumor progression. Because of the high correlation between
the copy number and gene expression level of the 81 genes of the
CNS, our data provided initial evidence that the 81 genes might
function as candidate oncogenes or tumor suppressor genes, which
deserves further in-depth experimental investigation. Our study
also shows the feasibility of using DNA alterations as a prognostic
assay to predict patient outcome. When combined with gene
expression–based signatures for prognosis and therapy prediction,
CNAs measured by SNP arrays improve risk classification and can
identify those patients who have a worse outlook in prognosis and
a potential differential response to chemotherapeutic drugs.
Regarding the latter, the limitation of our study lies in the fact
that we were only able to assess the putative prediction to
treatment as based on published signatures and not the actual
efficacy of chemotherapy because the patients in the study did not
receive adjuvant chemotherapy.

Disclosure of Potential Conflicts of Interest

J.A. Foekens: Research grants, Veridex LLC. The other authors disclosed no
potential conflicts of interest.

Acknowledgments

Received 12/3/08; revised 2/19/09; accepted 2/23/09; published OnlineFirst 3/31/09.
Grant support: The Netherlands Genomics Initiative/The Netherlands Organiza-

tion for Scientific Research.
The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked advertisement in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Anil Potti and Joseph R. Nevins for helping us with the calculation of
the probability of the sensitivity to the seven chemotherapeutic compounds.

Table 3. Multivariate Cox regression analysis of GES and
CNS combination

Multivariate analysis

HR 95% CI P

Age (per 10-y increment) 0.77 0.48–1.22 0.2573
Post versus premenopausal 1.34 0.45–3.97 0.5920
Grade 1 and grade

2 versus grade 3
0.45 0.17–1.19 0.1060

Tumor size of >20 mm
versus V20 mm

1.02 0.54–1.92 0.9583

ER negative versus ER positive 1.07 0.52–2.19 0.8590
Gene expression signature and

CNS combination
Poor versus good 3.59 1.35–9.49 0.0102
Very poor versus good 8.86 2.76–28.4 0.0002
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