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SUMMARY

We discuss the problem of detecting local signals that occur at the same location in multiple
one dimensional noisy sequences, with particular attention to relatively weak signals that may
occur in only a fraction of the sequences. We propose simple scan and segmentation algorithms
based on the sum of the chi-square statistics for each individual sample, which is equivalent to
the generalized likelihood ratio for a model where the errors in each sample are independent.
The simple geometry of the statistic allows us to derived accurate analytic approximations to
the significance level of such scans. The formulation of the model is motivated by the biological
problem of detecting recurrent DNA copy number variants in multiple samples. We show using
replicates and parent-child comparisons that pooling data across samples results in more accurate
detection of copy number variants. We also apply the multisample segmentation algorithm to the
analysis of a cohort of tumor samples containing complex nested and overlapping copy number
aberrations, for which our method gives a sparse and intuitive cross-sample summary.

Some key words: Change-point detection, DNA copy number, Meta-analysis, Scan statistics, Segmentation, Boundary
crossing

1. INTRODUCTION

We study in this paper the statistical problem of detecting local signals that occur at the same
location in multiple noisy sequences. This inquiry is motivated by current problems in biology,
where high-throughput genomic profiles are collected for cohorts of biological samples, and
it may be of interest to pool data across samples to boost power for detecting simultaneously
occurring signals.

We start by describing a few motivating applications. The primary focus of this paper is the
detection of DNA copy number variants. DNA copy number variants are gains and losses of seg-
ments of chromosomes, and comprise an important class of genetic variation. Various laboratory
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techniques have been developed to measure the DNA copy number. These measurements are
taken at a set of probes, each mapping to a specific location in the genome. The recorded data for
each probe is usually a log transform of the ratio of the copy number measurement at that probe
in the given sample versus its expected value, often computed from a set of population controls.
The data thus produced are a set of linear profiles, one for each biological sample in the study.
The goal in analyzing such data is often to find shared copy number variants across samples. We
focus on this application in detail later in this paper, and provide an indepth literature review in
Section 3.

Such simultaneous scans also arise in the analysis of other types of genomic profiling data, for
example, data from genomic tiling microarrays. High-density genomic tiling microarrays cover
a complete genome with densely tiled probes. These arrays can be used to assay in an unbiased
manner multiple types of activity on the genome, including transcription, DNA-protein-binding,
and chromatin modification. The earliest of the vast literature on this subject include Selinger
et al. (2000) and Kapranov et al. (2002). As for copy number data, tiling array data are often
collected for multiple samples in one study. It is also frequently of interest to detect common
regions of activity, and to pool data across samples to locate weak signals (Piccolboni, 2008;
Huber et al., 2006).

A third example is the meta-analysis of genetic linkage studies. Whole genome linkage scans
seek to identify genetic regions that may contain susceptibility genes for diseases or other traits
of interest. Often, several linkage studies with modest sample sizes are reported, with differing
results for the same genomic region. This is not surprising, since the power of detection by
individual studies is often modest. Wise et al. (1999) and Badner & Gershon (2002) proposed
statistical criteria for the simultaneous analysis of multiple genome scans.

All of these motivating applications involve situations where a simultaneous scan for a shared
signal across multiple linear profiles can potentially improve robustness and power by pooling
information across profiles. Within individual profiles, the signal of interest, as well as the noise
structure, may vary across applications. In this paper, we examine the specific problem of detect-
ing a shared abrupt shift in mean when the noise within each profile is assumed to be independent
and identically distributed Gaussian. The mean shift model can be directly applied to the detec-
tion of copy number variants. With modifications for correlated errors and probe-level effects,
the methods can potentially also apply to transcription profiling using tiling arrays. The meta-
analysis of multiple linkage studies can be viewed in similar light, but would need to account for
the diversity of study designs. All of these applications have their own set of idiosyncracies that
must be factored into the models, but we hope to convey themes common to simultaneous scan
statistics that extend across applications.

We propose a simple scan procedure based on summing the chi-square statistics across sam-
ples. This is equivalent to the generalized likelihood ratio statistic for a model where the errors
in each sample are independent. We provide accurate approximations to the false positive rate of
such scans, which adjust for simultaneous testing.

In treating the specific problem of DNA copy number analysis, we show using a data set
containing technical replicates and parent-child trios that conducting a simultaneous scan across
samples allows higher detection accuracy. For the detection of multiple, possibly nested variant
intervals, we propose a recursive algorithm that extends the conceptual foundations of the cir-
cular binary segmentation algorithm (Olshen et al., 2004), which was shown in the comparative
evaluations of Lai et al. (2005) and Willenbrock & Fridlyand (2005) to perform well in single
sample scans. We illustrate the segmentation algorithm on a set of tumor samples containing a
complex region of nested aberrations, and make comparisons to existing hidden Markov model
approaches to this problem.
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Detecting Simultaneous Change-points in Multiple Sequences 3

2. METHODS

2·1. Model Formulation
The observed data is a two dimensional array {yit : i = 1, . . . , N, t = 1, . . . , T}, where

yit is the data point for the i-th profile at location t, N is the total number of profiles, and T is
the total number of locations. We assume that for each i, the random variables yi = {yit : t =
1, . . . , T} are mutually independent and Gaussian with mean values µit and variances σ2

i . Under
the null hypothesis, the means for each profile are identical across locations. Under the alternative
hypothesis of a single changed interval, there exist integer values 1 ≤ τ1 < τ2 ≤ T and a set of
profiles J ⊂ {1, . . . , N}, such that for i ∈ J ,

µit = µi + δiI{τ1<t≤τ2}, (1)

where the δi are non-zero constants and µi is the baseline mean level for profile i. Under the al-
ternative hypothesis we refer to (τ1, τ2] as a variant interval and J as the set of carriers associated
with the interval. If the alternative hypothesis is true, we are interested primarily in detecting this
situation and in estimating the endpoints of the variant interval, and secondarily in determining
the carriers. Figure 1 shows a hypothetical data set containing N = 4 profiles and T = 100 data
points per profile. In the applications we consider, N is usually in the tens to thousands, and T
is usually in the hundreds of thousands.

This model is motivated by the analysis of DNA copy number data, for which we provide
more background in Section 3. In that application, each profile is usually a different biological
sample, with the locations referring to positions along chromosomes. The change-points τ1, τ2

demarcate changes in copy number. Empirical evidence suggest that the baseline means and
sample variances differ substantially across samples, and that for a given copy number variant
the shifts in mean differ across carriers. The two histograms in Figure 2a,b show the sample
means ȳi,τ1:τ2 = (yi,τ1+1 + · · · + yi,τ2)/(τ2 − τ1) within a given variant interval for a set of 62
samples described in Section 3·2, among which only a subset are carriers. The values of the
sample means for carriers are marked by triangles. The locations of the triangles vary over a
wide range, which motivates the allocation of a separate δi for each carrier at any given copy
number variant.

In many applications, there are usually multiple variant intervals defined by different τ1 and
τ2, and J . In DNA copy number data, the magnitude of change differs widely across differ-
ent changed intervals for any given sample. Figure 2c,d presents empirical evidence. For each
of the samples i = 1, 2, a histogram of {yit : t = 1, . . . , T} is plotted. The triangles mark the
magnitudes of change for the detected change-points in that sample that were validated by the
procedure described in Section 3·2. The locations of the triangles vary substantially, which mo-
tivates the estimation of a separate mean shift for each interval (τ1, τ2]. We describe our test
statistics first for the simple case where there is at most one variant interval. Then, we build on
these test statistics to obtain segmentation algorithms for cases where multiple variant intervals
can occur.

2·2. The Sum-of-Chisquares Statistic
We begin by reviewing a method for the analysis of a single profile, where temporarily we

suppress the dependence of our notation on the profile indicator i. For {yt : t = 1, . . . , T}, let
St = y1 + . . . + yt, ȳt = St/t, and σ̂2 = T−1 �T

1 (yt − ȳT )2. Change-point detection in a single
sequence has been reviewed by Zacks (1983) and Bhattacharya (1994). Recently, Olshen et al.
(2004) used likelihood ratio based statistics for analysis of DNA copy number data, and Zhang
& Siegmund (2007) proposed a related model selection criterion for estimating the number of
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change-points. The statistic used by Olshen et al. (2004) is

max
s,t

U2(s, t), (2)

where

U(s, t) = σ̂−1{St − Ss − (t− s)ȳT }/[(t− s){1− (t− s)/T}]1/2, (3)

and the max is taken over 1 ≤ s < t ≤ T, t− s ≤ T0. Here T0 < T is an assumed upper bound
on the length of the variant interval, which in some contexts may be much smaller than T .

If the error standard deviation σ were known and used in place of σ̂ in (3), (2) would be
the likelihood ratio statistic. In practice σ must be estimated. Since T is usually large in typical
applications, we shall for theoretical developments treat σ as known. Then we can without loss
of generality set σ = 1. Numerical studies suggest that this is a reasonable simplification.

Now consider the model (1) for the original problem involving N sequences. To test the
null hypothesis H0 that µit = µi for all t and all i = 1, . . . , N versus the alternative HA that
there exist values of τ1 < τ2 for which some δi are not zero, a direct generalization of (2) is
maxs<t Z(s, t), where

Z(s, t) =
N�

i=1

U2
i (s, t) (4)

and Ui(s, t) is the sequence specific statistic defined as in (3) for the ith sequence. As in the
single profile case, if the variances were known, (4) would be the generalized log likelihood
ratio statistic for testing H0 versus HA. For each fixed s < t, the null distribution of Z(s, t)
is approximately χ2 with N degrees of freedom. Large values of maxs<t Z(s, t) are evidence
against the null hypothesis. If the null hypothesis is rejected, the maximum likelihood estimate
of the location of the variant interval is (s∗, t∗) = argmaxs,tZ(s, t).

2·3. Approximations for the Significance Level
We now describe an analytic approximation to the significance level for scan statistics of the

form (4), which accounts for the simultaneous testing of multiple hypotheses that are dependent
through the overlap of adjacent scanning windows. The approximation gives a fast and compu-
tationally simple way of controlling the false positive rates.

To describe the approximation, let fN be the chi-square density with N degrees of freedom.
Let ν(x) be the overshoot function defined in Siegmund (1985, p. 85), a simple approximation
of which is ν(x) ≈ [(2/x){Φ(x/2)− 1/2}]/{(x/2)Φ(x/2) + ϕ(x/2)}, where ϕ and Φ are re-
spectively the standard Gaussian density and distribution function.

Then the significance level of the scan (4) using threshold b2 is

pr



 max
0<s<t<T

c1T<t−s<c2T

Zs,t > b2



 ≈ .5b4(1− N − 1
b2

)3fN (b2) (5)

� c2

c1

1
u2(1− u)

ν2

�
b{1− (N − 1)/b2}
{Tu(1− u)}1/2

�
du.

For N = 1, (5) is the approximation given for a single sequence in Siegmund (1992). The
derivation method given there can be generalized to the case N > 1, but the simple direct gener-
alization does not include the factor 1− (N − 1)/b2, which adjusts for the discrepancy between
a sphere in N dimensions and its tangent hyperplane at a point. This discrepancy can be quite
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Detecting Simultaneous Change-points in Multiple Sequences 5

important when N is of the order of b2, which is frequently the case for our applications. Some
details are given in the appendix.

We used Monte Carlo simulations to test the accuracy of (5). The approximation is very accu-
rate at moderate to small p-values, at all values of N . Detailed figures are given in the supplement.

2·4. Search Algorithm for Multiple Variant Intervals
In general the data may contain several, possibly nested, variant intervals. We now describe

algorithms for detecting multiple change-points that are shared across samples. In motivating
the algorithms, it is useful to distinguish between two scenarios: In the first, the variant intervals
are short and reasonably well separated. For example, in the analysis of DNA copy number data
collected from normal tissue samples, the copy number variants usually involve changes of small
magnitude over short segments that are well separated along the genome. In this case detection
of all variant intervals can be achieved in a single step as implemented in the multi-sample scan
algorithm below. The carriers of the variant intervals are not identified, although they are often
obvious from visual inspection of the data.

In the second scenario, the variant intervals cover a substantial portion of the sequences being
analyzed, and changes may be overlapping or nested. An example is DNA copy number data col-
lected from cancer samples, where somatic aberrations often span entire chromosomes and do
not align as neatly across samples. In these cases the more complex multi-sample circular binary
segmentation algorithm, which involves a recursion, works better. The multi-sample circular bi-
nary segmentation algorithm is conceptually similar to the iterative circular binary segmentation
procedure proposed by Olshen et al. (2004) for segmentation of a single sequence. For multiple
sequences in the course of the recursion we implicitly identify putative carriers of the variant
intervals. We discuss below possible solutions of this auxiliary problem.

Algorithm (Multi-sample Scan). Fix a global significance level α, a maximum window size
T0 < T , and an overlap fraction 0 < f < 1.

1. For each {(s, t) : 1 ≤ s < t ≤ T, t− s < T0}, compute zs,t,obs, the observed value of
Z(s, t), and let ps,t = pr(Zmax > zs,t,obs) denote the global p-value associated with zs,t,obs.

2. Let S = {(s, t) : ps,t < α}. Rank the pairs in S from smallest p-value to largest.
3. Starting from the first element in S, if it overlaps by more than f with any of the segments

ranked before it in S, eliminate it from S.

The set of variant intervals reported would be the final set S. �

Algorithm (Multi-sample Circular Binary Segmentation). Fix the global significance level α,
parameter p, and a maximum window T0 < T . We denote by Yh:k the matrix {yi,t : i =
1, . . . , N, t = h, . . . , k}.

1. Initialize T1 = 1 and T2 = T .
2. Compute

Zmax = max
T1≤s<t≤T2
1≤t−s≤T0

{Z(s, t)}.

Let (s∗, t∗) be the maximizing interval.
3. If the p-value of Zmax, as computed using the approximations in Section 2·3, is less than α,

then for each (u, v) ∈ {(T1, s∗ − 1), (s∗, t∗), (t∗ + 1, T2)}, do:
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a. Determine which samples carry the variation, as described below. For all t = u, . . . , v, if
a sample carries the variation, let ŷi,t = ȳi,u:v, and for the other samples let ŷi,t = ȳi,T1:T2 .
Let Y �

u:v = Yu:v − Ŷu:v, where Ŷu:v is the matrix {ŷi,t : i = 1, . . . , N, t = u, . . . , v}.
b. Repeat steps 2-3 for T1 = u, T2 = v and the newly normalized Y �

u:v. �

This second algorithm is understandably slower than the multi-sample scan, because every time
a changed segment is found within (u, v), the entire interval must be re-scanned in the next step
of the recursion. The second algorithm is, however, as fast as separately applying circular binary
segmentation to each of the individual sequences. If T0 = T , then both algorithms, as stated, are
O(NT 2) in running time. The computation time of both can be improved to O(NT log T ) using
a recursive algorithm similar to binary search.

When a variant interval (s, t] is identified across samples, it is often of interest to determine
its carriers. This is in fact a necessary part of Step 3(a) of the multi-sample segmentation algo-
rithm. In many cases the identification of carriers is obvious by visual inspection, but in other
cases this poses a difficult auxiliary problem. It is natural to identify as carriers those samples
whose interval specific statistic U2

i,s,t falls above a suitable threshold, so there is some statistical
evidence indicating that this particular sample and interval have a variant mean value, although
the evidence might not by itself be statistically significant after accounting for multiple testing.

In copy number data, there are sometimes long, small shifts in mean due to experimental
artifacts. These can pass the test of the preceding paragraph, but the shifts are so small that
they are of no scientific interest. These artifacts motivate an addition of a second part to our
thresholding rule based on the standardized absolute difference in mean (or median) between
points inside (s, t] and the entire sample. These considerations have also been used by others,
e.g., Willenbrock & Fridlyand (2005); Lai et al. (2005).

For the reasons given above, in applications to copy number data we found that a combination
of both types of thresholding gives the best empirical results. Thus, if a multi-sample scan iden-
tifies a variant interval at (s, t], we declare that the ith sample is a carrier if both of the following
two conditions hold: The absolute difference in mean (or median) between values inside the in-
terval and for the entire sample is greater than δµσ̂i, and the nominal p-value of the sequence and
interval specific chi-square statistic, U2

i (s, t), is less than δχ2 .
In Section 3, we choose the thresholds δµ and δχ2 based on performance on a set of validation

data described in Section 3·2. To choose these thresholds when validation data are not available,
the classification rules are functions of two quantities: the effect size defined as the shift in mean
divided by the standard deviation, and length of the interval. Figure 3 shows the region in the
effect size by interval length plane where a sample would be classified as a carrier. For copy
number variants longer than L = δµ/c, where c2 is the 1− δχ2 quantile of χ2

1 distribution, the
absolute mean threshold rule is in effect, and for those variants shorter than L, the chi-square
threshold is in effect. Thus, δχ2 can be chosen first. Then, δµ can be chosen based on a minimum
shift in mean that would be scientifically interesting.

The curves in Figure 3 are computed using values of δµ and δχ2 that work well on the vali-
dation data set. The figure also shows the detection curve for a single sample scan of the entire
genome containing 500,000 Illumina probes at a maximum window size of 200 and global p-
value of 0.01. The area between the two detection boundaries are those effect size by interval
length combinations that are missed in a single sample scan, but that might be detectable in a
multi-sample scan through the pooling of information across samples. See the following section
for examples.
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Detecting Simultaneous Change-points in Multiple Sequences 7

These classification rules are designed specifically for analysis of DNA copy number data.
For other types of data, different rules for identifying the carriers, perhaps incorporating problem
specific knowledge and objectives, may be appropriate.

3. ANALYSIS OF DNA COPY NUMBER DATA

3·1. Literature Review and Data Pre-processing
DNA copy number variants are an important class of genetic variation, recently reviewed in

Scherer et al. (2007), that may underlie a broad spectrum of human traits and diseases (Perry
et al., 2007; Hollox et al., 2007). While there are many published methods for segmentation of
copy number data, most deal with samples one at a time and emphasize data from tumor samples
(Fridlyand et al., 2004; Olshen et al., 2004; Daruwala et al., 2004; Xing et al., 2007; Wang
et al., 2005; Picard et al., 2005; Hsu et al., 2005; Engler et al., 2006; Wen et al., 2006; Broët
& Richardson, 2006; Hupé et al., 2004; Lai et al., 2007; Tibshirani & Wang, 2008). However,
since copy number variants can be inherited and are often shared across individuals, we would
like to scan all samples simultaneously to detect shared copy number variants and to obtain a
sparse multi-sample summary that can serve as the overall molecular signature for the cohort of
samples.

In this paper, we focus on the de novo detection of inherited copy number variants. Since these
variants are often population level polymorphisms due to a single mutation event in the history
of the cohort, the break points should be exactly shared between samples that contain the same
variant. They are usually relatively short and often involve only single copy changes. Thus, the
signal within each sample is weak, and a joint analysis across samples has the potential to boost
power.

Existing approaches for cross-sample analysis of DNA copy number fall into three categories:
(I) Post-segmentation methods (Diskin et al., 2006; Newton et al., 1998; Newton & Lee, 2000;
Rouveirol et al., 2006) segment each sample separately, reducing them to categorical vectors
indicating regions of amplification, deletion, or normal copy number. Then, the samples are
aligned, and a statistical model (Newton et al. (1998); Newton & Lee (2000)) or permutation
based approach (Diskin et al. (2006)) is used to identify regions of shared variation. A hidden
Markov model based approach is proposed in Wang et al. (2008), where the change-points are
not assumed to be shared across samples. The output of Wang et al. (2008) is a plot by loca-
tion in each of the samples of the posterior probability of variation. While Wang et al. (2008)
focused on the analysis of cancer data, the authors mention that a shared change-point model
would be desirable for the detection of inherited copy number variants, and they note the sub-
stantial computational task inherent in a satisfactory hidden Markov model approach for this
problem. (II) Shah et al. (2007) used a multi-layer hierarchical hidden Markov model to segment
all samples simultaneously. This method involves restrictive assumptions on the way that copy
number changes are shared across samples. For example, it assumes that all carriers of a given
copy number variant must have a change in the same direction. This is often not the case in copy
number data from normal samples, as seen in the example in Section 3·3. It also assumes that all
deletions or gains for a given sample have the same underlying mean, which is shown in Figure
2(c,d) to be inappropriate for our data. (III) The interval scores method of Lipson et al. (2006)
uses a statistic similar to Z(s, t) but without the squares. Like Shah et al. (2007), this method
focuses only on common deletions and common amplifications, and is not suitable for detection
of inherited copy number variants which often have both types of carriers at a given locus. The
paper is mainly algorithmic and proposes useful approximate methods for fast search for high
scoring intervals, which are quite different from the two algorithms we propose.
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We will show evidence below that it can be beneficial to pool data across samples during
the initial segmentation step. In contrast to existing cross-sample methods, our approach can
computationally handle thousands of samples simultaneously, relies on less restrictive model
assumptions, and involves easily comprehended tuning parameters.

Data measuring copy number contain well documented artifacts, which should be removed by
pre-processing. One artifact is local trends, which were first noted in the statistics literature by
Olshen et al. (2004). These local trends correlate with GC content (Bengtsson et al., 2008) and
manifest themselves as local low magnitude shifts in mean that are reproducible across samples.
In our experience, the local trends from Affymetrix and Illumina platforms processed on normal
samples can be well estimated by the first or first and second principal components of the matrix
of y values. Hence we normalize the data by reducing it to the residuals of its projection on the
first 2 principal components.

Still another artifact is badly behaving individual probe sets, which give observations that are
consistently quite different from background. Hence, to ameliorate the effect of probe sets that
are consistently poorly performing, we also standardize each probe set to have median 0 and
inter-quartile range 1. (This does not eliminate the effect of outliers, which are also present. See
below.)

3·2. Detection Accuracy of Inherited Copy Number Variants
We assess the accuracy of our detection method on a set of 62 Illumina 550K Beadchips. The

experiments were performed on DNA samples extracted from lymphoblastoid cell lines derived
from healthy individuals, and were used as part of the Quality Assessment panel in a genomewide
association study recently carried out at the Stanford Human Genome Center. The 62 samples
represent 10 sets of trios consisting of a child and his/her two parents, and 16 pairs of technical
replicates for 16 independent DNA samples.

To assess detection accuracy, we compare copy number variants identified for the two technical
replicates of the same individual and those identified for the child with those identified for the
parents. It is not possible to estimate type 1 and type 2 error rates from the data, but it is possible
to define other measures of accuracy. Specifically, we define inconsistency of detections of copy
number variants in individual samples as follows: In replicates, if a detected variant in one of
the replicate pairs is not detected in the second sample of the pair, the variant is considered
inconsistent. In this case, either the detection is a false positive or there is a false negative in
the other sample. In trios, if a detected variant in the child is not detected in at least one of the
parents, it is considered inconsistent. In this case, neglecting the rare event that the detection
represents a de novo mutation, either the detection made in the child is a false positive or there is
a false negative in one or both of the parents. In this way, detections made in the child samples
and in the replicate sample pairs can be classified as consistent or inconsistent. The detections
made in the parent samples are used only to validate the detections made in the child samples,
and are not counted towards the total number of detections. Detection accuracy is thus assessed
by plotting the number of consistent versus inconsistent detections, and different methods can
be compared in such a plot. As described in the previous Section, after a copy number variant
is found at a location (s, t], one still needs to identify the carriers, and this affects the level of
consistency. For example, if all of the samples are classified as “changed” at all variant locations,
then there would be no inconsistencies. The preceding section describes practical thresholding
solutions for carrier identification.

Figure 4 shows the results for different settings of the carrier detection thresholds. The hori-
zontal axis is the number of total detections and the vertical axis is the number of inconsistent
detections. For example, if a variant interval is found, and 5 child or replicate samples are de-



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

Detecting Simultaneous Change-points in Multiple Sequences 9

termined to be carriers, it contributes 5 detections to the total. If 2 of those detections are not
validated, then that adds 2 to the number on the vertical axis. In the parent child trios, a parent
can validate a child but not vice versa. Figure 4 also plots the results obtained by segmenting
each sample individually using circular binary segmentation, the curve shows the results for dif-
ferent p-value thresholds. We can see by comparing the multi-sample segmentation and circular
binary segmentation that pooling information across samples does indeed improve accuracy. For
example, out of 3000 copy number variant calls made by single sample segmentation, 1500 are
inconsistent, whereas multi-sample scanning makes about 5000 total calls for 1500 inconsistent
calls.

A substantial fraction of the detections are inconsistent. From visual inspection, we believe
that most of the inconsistencies involve variant intervals of length one caused by low quality
probe sets, which produce outliers that were not removed by the pre-processing described above.
To reduce the influence of a individual probe sets, previous studies have placed a lower bound
on the length of a variant interval (e.g. 10 in Jakobsson et al. (2008)). Although allowing copy
number variants covering only one single nucleotide polymorphism creates many inconsistent
calls, insertions and deletions that cover only one single nucleotide polymorphism in fact also
make up the majority of the consistent calls. Consequently we find it preferable to flag these pu-
tative variant intervals and try to eliminate the false positives by closer examination of the data.
For example a putative copy number variant that involves only one single nucleotide polymor-
phism in a single sequence may well be an outlier, and in any case our scientific interest is in
polymorphims having some minimal frequency in the population.

3·3. Example Analysis of a Complex Region
As is documented in the Database of Genomic Variants (Iafrate et al., 2004), chromosome 22

contains a complex region of nested deletions at cytoband 22q11, which has several different
variants in the human population. Many of the 62 samples we described in Section 3·2 carry
this variant region, as is clearly noticeable in the heatmap in Figure 5. Since this variant inter-
val contains nested changes, the circular binary segmentation algorithm is preferred to the scan
algorithm for its analysis.

We consider only the first 2000 single nucleotide polymorphisms (SNPs) mapping to chro-
mosome 22, which are shown completely in the top panel of Figure 5. We applied the multi-
sample circular binary segmentation algorithm to this region with parameters T0 = T = 2000,
α = 0.001, δµ = 1.5, and δχ2 = 0.001. The segmentation is shown in the lower panel of Figure
5. There are 3 visually noticeable variant regions. The first region is from SNP 416 to SNP 442,
which corresponds to positions 17,017-17,368 kilobases (Kb). Compared to the cohort mean,
there are both gains and losses in this region. The second region spans SNPs 996 to 1329 (20706
to 21549 Kb), and contains several layers of nested deletions with change-points at SNPs 1167,
1217, 1309, 1321 corresponding to chromosome positions 20996, 21110, 21379, and 21436 Kb.
These nested variants have been previously identified using Affymetrix SNP-arrays (McCarroll
et al., 2006), paired-end mapping (Kidd et al., 2008), and were found in other data taken from
normal populations (Iafrate et al., 2004). Comparing the top and bottom panels of Figure 5, we
see that the recursive algorithm reconstructs this complex region quite well. The third visible
copy number variant is SNPs 1830-1880 (at 23986-24234 Kb), where there are at least 3 copy
number levels. All of the copy number estimates in the child and replicate samples for these three
variant regions are validated.

The hidden Markov model based method of Shah et al. (2007), when applied to this region, did
not identify any of the three copy number variant regions. This presumably is a consequence of
the modeling assumptions, which do not allow simultaneous deletions and insertions, and which
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require all deletions to be of the same magnitude. However, one should also acknowledge that
the method of Shah et al. (2007) is designed for a different purpose. While our method aims
to detect shared variant intervals and provide sparse summaries of a set of samples, Shah et al.
(2007) is designed to find regions where a large fraction of samples experience changes in the
same direction.

4. DISCUSSION

The proposed scan statistic is based on summing a chi-square change-point statistic across se-
quences. The simple geometry of the statistic allowed us to derive accurate analytic approxima-
tions to the significance level of such scans. The algorithms we proposed for detecting multiple
change-points and identifying the carriers rely on 4 parameters. These are the global significance
level α and T0 for identifying the variant intervals, and δµ and δχ2 for identifying the carriers.
The procedure is very robust to variation in T0, so it can be specified conservatively. All of these
parameters are easy to interpret and affect the results in a simple transparent way, so they can be
easily modified to suit different scientific conditions.

The formulation we have chosen was motivated by the success of Olshen et al. (2004) in their
analysis of copy number data in single samples. It is doubtful that any one approach can be
optimal in problems of this complexity, and it would be useful to extend other single sample
methods to deal with multiple samples. A useful version of hidden Markov models would be
particularly welcome. There is one multi-sample method (Shah et al., 2007) for which there is
readily available software. However, the model makes quite different assumptions from ours, and
is aimed at different goals. Its running time is also forbiddingly long for even moderately large
amounts of data. It would be interesting to make a more systematic comparison of these methods
along the lines of Lai et al. (2007) for single samples.

We are studying two alternative methods. One is a multi-sequence version of the Bayes Infor-
mation Criterion for model selection that we used for single sequence analysis (Zhang and Sieg-
mund, 2006). This has the potential to identify variant intervals and carriers in a unified analysis.
For a wide range of parameter settings it seems to identify carriers by using what amounts to
the δχ2 part of our criterion. A second method, motivated by the expectation that only a small
subset of the samples will exhibit variants at any particular location, is to use a weighted sum
of chi-squares statistic that favors strong evidence from a subset of samples over weak evidence
from all samples. Preliminary results indicate that both of these methods are promising.

We have also tried our methods on cancer data, and have found that they perform satisfactorily,
although the main advantage of cross sample analyses seems to be found in studying inherited
copy number variants, since their foot print is typically much shorter and weaker. The main po-
tential advantage for cancer data is to provide a relatively clean overall signature for downstream
analysis of related samples.
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APPENDIX

Proof of (2.5)
We indicate briefly here modifications of the proof of (2.5) in the one dimensional case required for the

proof when N is of comparable order of magnitude as b2.
In the one dimensional case the proof involves considering a union of events of the form that Zs0,t0 > b,

but Zs0+s,t0+t < b for certain values of (s, t) that are small compared to (s0, t0). For these small values it
is shown by taking one term of a Taylor series expansion that b(Zs0+s,t0+t − Zs0,t0) behaves like the sum
of two independent random walks, one indexed by s, the other by t. After determining the (conditional on
Zs0,t0 ∼ b) mean and variance of these random walks the multiple testing correction in the form of the
integral in (2.5) follows from renewal theory, as demonstrated by Siegmund (1992, Lemma 4).

The marginal distribution of Zs,t is χ with N degrees of freedom. Let fN (x) denote the χ2 density
with N degrees of freedom. From a straightforward approximation for large b of pr{Zs,t ∈ b + dx/b}, in
which we do not neglect N/b2 even though b is assumed large, we find that the factor e−x that multiplies
2fN (b2) in the one dimensional case now becomes exp[−x{1− (N − 1)/b2}].

In addition, to take account of the large number of dimensions in which b{Z(s0 + s, t0 + t)−
Z(s0, t0)} can vary, we consider not a one term, but a two term Taylor series expansion of the incre-
ments b(Zs0+s,t0+t − Zs,t). We can by spherical symmetry assume without loss of generality that all
the coordinates of the vector (U1(s0, t0), . . . , UN (s0, t0))� are zero except for the first one. The expan-
sion of b(Zs0+s,t0+t − Zs,t) contains linear terms in the first coordinate direction in the form of the
sum of two random walks indexed by s and t, with (negative) means and variances proportional to
b2/[2(t0 − s0){1− (t0 − s0)/T}]. In addition there are independent quadratic terms in the N − 1 or-
thogonal directions with means proportional to (N − 1)/[2(t0 − s0){1− (t0 − s0)/T}] and variances
proportional to (N − 1)/[(t0 − s0){1− (t0 − s0)/T}]2. Asymptotically important values of t0 − s0 are
of order b2, so stochastic fluctuations of the quadratic terms are negligible. The consequence of adding
(N − 1)/[2(t0 − s0){1− (t0 − s0)/T}] to the means of the random walks is that both the exponen-
tial under the integral and the drift of the local random walks are modified by the same correction fac-
tor: 1− (N − 1)/b2, while the variances of the local random walks remain unchanged. Calculation now
shows that Lemma 4 of Siegmund (1992) applies again to yield (2.5), which now contains the modifying
1− (N − 1)/b2.

REFERENCES

BADNER, J. & GERSHON, E. (2002). Meta-analysis of whole-genome linkage scans of bipolar disorder and
schizophrenia. Molecular Psychiatry 7, 405–411.

BENGTSSON, H., IRIZARRY, R., CARVALHO, B. & SPEED, T. (2008). Estimation and assessment of raw copy
numbers at the single locus level. Bioinformatics 24, 759–767.

BHATTACHARYA, P. (1994). Some aspects of change-point analysis. In Change-point Problems, IMS Monograph
23, E. Carlstein, H. Muller & D. Siegmund, eds. Institute of Mathematical Statistics, pp. 28–56.
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Fig. 1. Simulated data containing N = 4 profiles and T =
100 observations per profile. Horizontal axis is order of
the data points and vertical axis is the y values. The two
vertical lines delineate a changed segment, in which the
top two samples have a lower mean, the third sample has a

higher mean, and the fourth sample has no change.
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a. b.

c. d.

Fig. 2. Histograms (a,b) show the distribution across sam-
ples of the mean log ratio within two copy number variant
regions. There are 62 samples, so each histogram repre-
sents the counts for 62 numbers. Both variants are deletion
polymorphisms. The triangles show the estimated mean
log ratio within those segments for the validated carriers
among the samples. Observe that the triangles have a wide
spread in values, suggesting that the model needs a sepa-
rate mean shift for each sample within the same copy num-
ber variant. Figures (c,d) are histograms for {yit : t =
1, . . . , T} for two different samples. The triangles show
the estimated values of δi(τ1, τ2) for validated variant in-
tervals τ1, τ2 on chromosome 5 for that sample. Observe
again that the triangles have a wide spread in values, sug-
gesting that the shift in mean is different across variant in-

tervals within the same sample.
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Fig. 3. The horizontal axis is the length of the segment and
the vertical axis is the ratio of the shift in mean versus error
standard deviation. Solid line shows the rejection boundary
for a multi-sample scan with N = 100 samples. The dotted
line is the rejection boundary for a single sample scan with
T = 500, 000 data points, T0 = 200, and global p-value of
0.01. The dashed line shows the threshold δµ = 1.5. The
light gray region shows the values of segment length (τ2 −
τ1) and effect size (δi/σi) that are classified as carrier for
a detected variant interval. This region is determined by
setting δχ2 = 10−5 and δµ = 1.55. The dark gray region
between the two boundaries contain those values that are
missed in a single sample scan, but may be detectable in a

multi-sample scan.
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Fig. 4. Comparison of a single sample method (Olshen
et al. 2003) with multiple sample scan on the quality as-
sessment panel described in Section 3·2. The dotted line
shows the total number of calls versus the number of in-
consistent calls for results obtained using the single sam-
ple algorithm. The solid and dashed lines show the same
information for results obtained using the multi-sample
scanning algorithm. The global significance value is 10−3.
The sample calling thresholds for the multi-sample scan
are δµ ∈ {0.2, 0.4} and δχ2 = 10−5 (solid line) and 10−8

(dashed line).
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Fig. 5. Example 2000 marker region in cytoband 22q11
containing a complex copy number variant with nested
deletions across 62 samples described in Section 3·3. Each
row is a sample, and each column is a marker. The mark-
ers are ordered by their position along the chromosome.
The grayscale shows the log intensity ratio, as indicated by
the gradient bar on the right. Top panel shows the normal-
ized, unsegmented data. Bottom panel shows segmentation
given by the multi-sample circular binary segmentation al-

gorithm.
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