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ABSTRACT
Motivation: With an overwhelming amount of textual informa-
tion in molecular biology and biomedicine, there is a need
for effective and efficient literature mining and knowledge dis-
covery that can help biologists to gather and make use of
the knowledge encoded in text documents. In order to make
organized and structured information available, automatically
recognizing biomedical entity names becomes critical and is
important for information retrieval, information extraction and
automated knowledge acquisition.
Results: In this paper, we present a named entity recognition
system in the biomedical domain, called PowerBioNE. In order
to deal with the special phenomena of naming conventions
in the biomedical domain, we propose various evidential fea-
tures: (1) word formation pattern; (2) morphological pattern,
such as prefix and suffix; (3) part-of-speech; (4) head noun
trigger; (5) special verb trigger and (6) name alias feature. All
the features are integrated effectively and efficiently through a
hidden Markov model (HMM) and a HMM-based named entity
recognizer. In addition, a k -Nearest Neighbor (k -NN) algorithm
is proposed to resolve the data sparseness problem in our
system. Finally, we present a pattern-based post-processing
to automatically extract rules from the training data to deal
with the cascaded entity name phenomenon. From our best
knowledge, PowerBioNE is the first system which deals with
the cascaded entity name phenomenon. Evaluation shows that
our system achieves the F -measure of 66.6 and 62.2 on the 23
classes of GENIAV3.0 andV1.1, respectively. In particular, our
system achieves the F -measure of 75.8 on the ‘protein’class of
GENIAV3.0. For comparison, our system outperforms the best
published result by 7.8 on GENIA V1.1, without help of any dic-
tionaries. It also shows that our HMM and the k -NN algorithm
outperform other models, such as back-off HMM, linear inter-
polated HMM, support vector machines, C4.5, C4.5 rules and
RIPPER, by effectively capturing the local context dependency
and resolving the data sparseness problem. Moreover, evalu-
ation on GENIA V3.0 shows that the post-processing for the

∗To whom correspondence should be addressed.

cascaded entity name phenomenon improves the F -measure
by 3.9. Finally, error analysis shows that about half of the errors
are caused by the strict annotation scheme and the annota-
tion inconsistency in the GENIA corpus. This suggests that
our system achieves an acceptable F -measure of 83.6 on the
23 classes of GENIA V3.0 and in particular 86.2 on the ‘pro-
tein’ class, without help of any dictionaries. We think that a
F -measure of 90 on the 23 classes of GENIA V3.0 and in
particular 92 on the ‘protein’ class, can be achieved through
refining of the annotation scheme in the GENIA corpus, such
as flexible annotation scheme and annotation consistency, and
inclusion of a reasonable biomedical dictionary.
Availability: A demo system is available at http://textmining.i2r.
a-star.edu.sg/NLS/demo.htm. Technology license is available
upon the bilateral agreement.
Contact: zhougd@i2r.a-star.edu.sg

INTRODUCTION
With an overwhelming amount of textual information in
molecular biology and biomedicine, there is a need for
effective and efficient literature mining and knowledge dis-
covery that can help biologists to gather and make use of
the knowledge encoded in text documents. In order to make
organized and structured information available, automatic-
ally recognizing biomedical entity names becomes critical and
is important for information retrieval, information extraction
and automated knowledge acquisition.

Such technique, called named entity recognition, has
been well developed in the Information Extraction literature
(MUC-6, 1995; MUC-7, 1998). In MUC, the task of named
entity recognition is to recognize the names of persons, loc-
ations, organizations, etc. in the newswire domain. In the
biomedical domain, we care about entities like gene, protein,
virus, etc. In recent years, many explorations have been per-
formed to port existing named entity recognition systems into
the biomedical domain (Proux et al., 1998; Nobata et al., 1999,
2000; Collier et al., 2000; Gaizauskas et al., 2000; Fukuda
et al., 1998; Kazama et al., 2002; Takeuchi and Collier, 2002;
Lee et al., 2003). However, few of them achieve satisfactory
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performance. Named entity recognition in the biomedical
domain remains a challenging task. This may be due to the
special naming conventions of entity names in the biomed-
ical domain, compared with those in the newswire domain, as
follows.

Descriptive naming convention: Many biomedical entity
names are descriptive, e.g. ‘normal thymic epithelial cells’.
Such phenomenon highlights the difficulty for identifying the
left boundaries of biomedical entity names. Moreover, some
biomedical entity names are very long, e.g. ‘47 kDa sterol reg-
ulatory element binding factor’. In GENIA V3.0 (Ohta et al.,
2002), we find that 18.6% of biomedical entity names consist
of at least four words, as shown in Figure 1.

Conjunction and disjunction: Two or more biomedical entity
names may share one head noun by using conjunction or dis-
junction construction. For example, ‘91 and 84 kDa proteins’
consists of two entity names: ‘91 kDa proteins’ and ‘84 kDa
proteins’. In GENIA V3.0, we find that 2.06% of biomedical
entity names have such construction.

Non-standardized naming convention: One biomedical entity
name may be found with various spelling forms, e.g. ‘N-
acetylcysteine’, ‘N-acetyl-cysteine’, ‘NAcetylCysteine’, etc.
We find that the use of capitalization or hyphen is more cas-
ual in the biomedical domain and most of biomedical entity
names are not proper names. In GENIA V3.0, we find that
62.89% of words in biomedical entity names are in lowercase.
Moreover, more and more biomedical entity names are cre-
ated by authors and have not been standardized yet. This also
results in the low coverage of existing biomedical dictionaries
(Fukuda et al., 1998; Nobata et al., 1999). Therefore, tradi-
tional named entity recognition techniques relying on existing
dictionaries may not perform well in the biomedical domain.

Abbreviation: Abbreviations are frequently used in the bio-
medical domain. Chang et al. (2002) shows that, in MEDLINE
abstracts until the end of 2001, 42.8% of abstracts have at least
one abbreviation and 23.7% of abstracts have two or more. It
also shows that there is one new abbreviation in every 5–10
abstracts on average and the growth rate of new abbreviations
is increasing. Moreover, many abbreviations in the biomedical
domain are formed quite irregularly. For example, abbrevi-
ations can be from a subset of syllable boundaries, e.g. ‘IL2’
for ‘Interleukin 2’ or from contiguous characters, e.g. ‘PAL’
for ‘palate’. Finally, abbreviations in the biomedical domain
are highly ambiguous. For example, ‘TCF’ may refer to ‘T
cell Factor’ or ‘Tissue Culture Fluid’ in different articles. Liu
et al. (2002) shows that 81.2% of abbreviations are ambiguous
and have an average of 16.6 senses in MEDLINE abstracts.
Therefore, the classes of abbreviations are much dependent
on the context, but not just decided by existing dictionaries.

Cascaded construction: One biomedical entity name
may be embedded in another biomedical entity name,
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Fig. 1. Distribution of the number of words in biomedical entity
names (GENIA V3.0).

e.g. ‘<PROTEIN><DNA> kappa 3</DNA> binding factor
</PROTEIN>’. We find that 16.57% of biomedical entity
names have such cascaded construction in GENIA V3.0.

On all accounts, we can say that the entity names in the
biomedical domain are much more complex than those in
the newswire domain. Therefore, it is necessary to explore
more evidential features to cope with the special phenomena
of naming conventions in the biomedical domain.

In this paper, we present a named entity recognition system
in the biomedical domain, called PowerBioNE. In order to
deal with the special phenomena of naming conventions in the
biomedical domain, we propose various evidential features:
(1) word formation pattern; (2) morphological pattern, such
as prefix and suffix; (3) part-of-speech (POS); (4) head noun
trigger; (5) special verb trigger and (6) name alias feature. All
the features are integrated effectively and efficiently through
a hidden Markov model (HMM) and a HMM-based named
entity recognizer. In addition, a k-Nearest Neighbor (k-NN)
algorithm is proposed to resolve the data sparseness problem
in our system. Finally, we present a pattern-based post-
processing to automatically extract rules from the training data
to deal with the cascaded entity name phenomenon. From
our best knowledge, PowerBioNE is the first system which
deals with the cascaded entity name phenomenon. Evaluation
on the GENIA corpus shows that our HMM and the k-NN
algorithm outperform other models, such as back-off HMM,
linear interpolated HMM, SVM, C4.5, C4.5 rules and RIP-
PER, by effectively capturing the local context dependency
and resolving the data sparseness problem. It also shows that
the post-processing for the cascaded entity name phenomenon
can much improve the performance. Finally, it suggests that
much better performance can be achieved through refining of
the annotation scheme in the GENIA corpus, such as flexible
annotation scheme and annotation consistency, and inclusion
of a reasonable biomedical dictionary.

GENIA CORPUS
All of our experiments are done on GENIA corpus, which is
the largest annotated corpus in the molecular biology domain
available to public (Ohta et al., 2002). In our experiments,
three versions are used.

GENIA V1.1: This version contains 670 MEDLINE abstracts
of 123K words. Since a few previous researches have
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been done on this version, we use it mainly for compar-
ison of our work with others.

GENIA V2.1: This version incorporates POS to GENIA V1.1.
It is mainly used to train our POS tagger and evalu-
ate the usefulness of POS in biomedical named entity
recognition.

GENIA V3.0: This version is a superset of GENIA V1.1 and
contains 2000 MEDLINE abstracts of 360K words. We
use this version to do the great scope of experiments and
deep analysis.

The annotation of biomedical entities is based on the
GENIA ontology (Ohta et al., 2002), which includes 23 dis-
tinct classes: multi-cell, mono-cell, virus, body part, tissue,
cell type, cell component, organism, cell line, other artificial
source, protein, peptide, amino acid monomer, DNA, RNA,
poly nucleotide, nucleotide, lipid, carbohydrate, other organic
compound, inorganic, atom and other.

FEATURES
In order to deal with the special phenomena of naming con-
ventions in the biomedical domain, various evidential features
are explored.

Word formation pattern (FWFP)

The purpose of this feature is to capture capitalization, digital-
ization and other word formation information. This feature has
been widely used in both the newswire domain (Bikel et al.,
1999; Chieu and Ng, 2002; Zhou and Su, 2002) and the bio-
medical domain (Nobata et al., 1999; Gaizauskas et al., 2000;
Collier et al., 2000; Takeuchi and Collier, 2002; Kazama et al.,
2002). In the newswire domain, this feature is very useful to
detect the boundaries of entity names. For example, initial cap-
italization of a word often indicates an entity name. Although
this feature is not so evidential in the biomedical domain as
that in the newswire domain, it is still useful to distinguish
between biomedical entity names and others. For example,
‘H2A’ may indicate a biomedical entity name. Table 1 shows
a complete list of word formation patterns with the descending
order of priority.

Morphological pattern (FMP)

Morphological information, such as prefix and suffix, is
considered as an important cue for terminology identifica-
tion and has been widely applied in the biomedical domain
(Proux et al., 1998; Gaizauskas et al., 2000; Kazama et al.,
2002; Lee et al., 2003). Gaizauskas et al. (2000) collects
100 common biochemical suffixes using their general English
morphological analyzer, while Kazama et al. (2002) con-
structs prefix/suffix lists by sorting the 10 000 prefixes/suffixes
from the training data.

Similar to Kazama et al. (2002), we use a statistical method
to get the most frequent prefixes/suffixes from the training
data as candidates. Then, each of these candidates is evaluated

Table 1. FWFP:word formation patterns

FWFP e.g. FWFP e.g.

Comma , OneCap T
Dot . AllCaps CSF
Parentheses ( ) [ ] CapLowAlpha All
RomanDigit II CapMixAlpha IgM
GreekLetter Beta LowMixAlpha kDa
StopWord in, at AlphaDigitAlpha H2A
ATCGsequence ACAG AlphaDigit T4
OneDigit 5 DigitAlphaDigit 6C2
AllDigits 60 DigitAlpha 19D
DigitCommaDigit 1,25 Others other
DigitDotDigit 0.5

Table 2. FMP: examples of morphological patterns

FMP Prefix/suffix Example

MPLIPID ∼lipid Phospholipids
∼rogen Estrogen
∼vitamin Dihydroxyvitamin

MPVIRUS ∼virus Cytomegalovirus

using

Weight(Candidatet ) = #INi − #OUTi

#INi + #OUTi

, (1)

where #INi is the number of the i-th candidate occurring
within entity names and #OUTi is the number of the i-th
candidate occurring outside entity names.

The rationale behind is that a particular prefix/suffix, which
occurs most likely within entity names, may be thought
as an evidence for distinguishing entity names. The can-
didates whose weights are above a certain threshold are
chosen. Then, we count the frequency of each prefix/suffix
in each entity class and group prefixes/suffixes with the
similar distribution among the entity classes into one cat-
egory. This can help resolve the data sparseness problem
because prefixes/suffixes with the similar distribution have the
similar contribution. Table 2 shows some of morphological
patterns.

It shows that suffixes ∼lipid, ∼rogen and ∼vitamin have
been grouped into the category MPLIPID because they occurs
frequently in the class ‘Lipid’ and much less frequently in
other classes. Here, 0.7 is chosen as the threshold based on
our experimentation. As a result, average 37 prefixes/suffixes
are selected from the training data and further grouped into
23 categories.

Part-of-speech (FPOS)

In the newswire domain, POS has been proven to be not
useful, as POS may affect the use of more reliable capit-
alization information in determining the entity boundaries
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Table 3. Comparison of POS tagger using different training data

Training set Testing set Precision

2500 WSJ articles 80 GENIA 85.1
590 GENIA abstracts V2.1 abstracts 97.4

(Bikel et al., 1999; Zhou and Su, 2002). However, since most
of the words in biomedical entity names are in lowercase,
capitalization information in the biomedical domain is not as
evidential as that in the newswire domain. Moreover, many
biomedical entity names are descriptive and very long. There-
fore, POS may provide useful evidence about the boundaries
of biomedical entity names.

Lee et al. (2003) makes use of POS to identify the boundar-
ies and find a reasonable performance improvement. However,
they apply the existing POS information in the corpus and fail
to discuss its contribution on the overall performance. Kazama
et al. (2002) makes use of an existing POS tagger trained on
PENN TreeBank (Marcus et al., 1993) and shows that POS
can only slightly improve performance while Collier et al.
(2000), Nobata et al. (2000) and Takeuchi and Collier (2002)
do not incorporate POS in their systems. From the previous
researches, it seems that POS does not help much in biomed-
ical named entity recognition. There may have two reasons.
One reason may be the lack of adaptation when porting an
existing POS tagger from the newswire domain to the bio-
medical domain. To demonstrate the effect of adaptation on
POS tagging, we adapt an HMM-based POS tagger to the
biomedical domain using GENIA V2.1 (670 abstracts, 123K
words). Table 3 shows the performance of the POS tagger
on a test set of 80 GENIA V2.1 abstracts when trained on
the remaining 590 GENIA V2.1 abstracts. For comparison,
Table 3 also shows the performance of the POS tagger on
the same test set when trained on PENN TreeBank (2500
Wall Street Journal articles, 1M words). It shows that the
performance of POS tagging in the biomedical domain can be
significantly improved via adaptation. In our following exper-
imentations, we will make use of POS after adaptation except
special indication. Another reason may be improper model-
ing of POS. One may ask: does POS really help biomedical
named entity recognition? How much does the increase of
POS accuracy affect the performance of biomedical named
entity recognition? Which is more important, POS accur-
acy or proper modeling of POS? We will discuss these issues
later.

Semantic triggers
Currently, two kinds of semantic triggers are explored in our
system: head noun triggers (FHEAD) and special verb trigger
(FVERB).

Table 4. Examples of auto-generated head nouns

Entity class Unigram head nouns Bigram head nouns

PROTEIN Interleukin Activator protein
Interferon Binding protein
Kinase Cell receptor
Ligand Gene product

DNA DNA X chromosome
Breakpoint Alpha promoter
cDNA Binding motif
Chromosome Promoter element

Table 5. Examples of special verb triggers

Activate Express
Bind Induce
Inhibit Interact
Regulate Stimulate

Head noun trigger (FHEAD): The head noun, which is the
major noun of a noun phrase, often describes the function
or the property of the noun phrase, e.g. ‘B cells’ is the head
noun for the biomedical entity name ‘activated human B cells’.
Nobata et al. (1999) argues that head nouns in biomedical
entity names can provide significant clues about the classes
of the biomedical entity names.

In order to evaluate the effect of head noun triggers in
the biomedical entity names, we automatically extract uni-
gram and bigram head nouns from the training data, and rank
them by frequency. For each entity class, we select 60% of
top ranked head nouns as head noun triggers. Table 4 shows
some of the examples. In future work, head nouns may also
be extracted from public resources to further enhance their
usability.

Special verb trigger (FVERB): Besides collecting head noun
triggers from biomedical entity names themselves, we also
extract other semantic triggers from their local context.
Recently, some frequently occurring verbs in MEDLINE have
been proven useful for extracting the interaction between
biomedical entity names (Thomas et al., 2000; Sekimizu
et al., 1998). For example, the verb ‘bind’ is often used
to indicate the protein–protein interaction. For named entity
recognition in the biomedical domain, it is straightforward
to think that particular verbs may also provide the evidence
on the boundaries and the classes of biomedical entity names.
Table 5 shows eight of them, which are explored in our initial
experiments.

Name alias feature (FALIAS)

The intuition behind this feature is the name alias phe-
nomenon that relevant entities will be referred to in many
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ways throughout a given text and thus success of named entity
recognition is conditional on success at determining when one
noun phrase refers to the very same entity as another noun
phrase.

During decoding, the entity names already recognized from
the previous sentences of the document are stored in a list.
When the system encounters an entity name candidate (e.g.
a word with a special word formation pattern), a name alias
algorithm is invoked to first dynamically determine whether
the entity name candidate might be alias for a previously
recognized name in the recognized list. The name alias feature
FALIAS is represented as ENTITYnLm (L indicates the local-
ity of the name alias phenomenon). Here, ENTITY indicates
the class of the recognized entity name and n indicates the
number of the words in the recognized entity name, while m

indicates the number of the words in the recognized entity
name from which the name alias candidate is formed. For
example, when the decoding process encounters the word
‘TCF’, the word ‘TCF’ is proposed as an entity name can-
didate and the name alias algorithm is invoked to check if
the word ‘TCF’ is an alias of a recognized named entity. If
‘T cell Factor’ is a ‘Protein’ name recognized earlier in the
document, the word ‘TCF’ is determined as an alias of ‘T cell
Factor’ with the name alias feature Protein3L3 by taking the
three initial letters of the three-word ‘protein’ name ‘T cell
Factor’.

While the above method is useful to detect the inter-
sentential name alias phenomenon, it is unable to identify
the inner-sentential name alias phenomenon: the inner-
sentential abbreviation. Such abbreviations widely occur in
the biomedical domain.

In our system, we present an effective and efficient
algorithm to recognize the inner-sentential abbreviations more
accurately by mapping them to their full expanded forms. In
GENIA corpus, we observe that the expanded form and its
abbreviation often occur together via parentheses. Generally,
there are two patterns: ‘expanded form (abbreviation)’ and
‘abbreviation (expanded form)’. We also observe that the first
pattern dominates except the case that the expression inside the
parentheses includes at least two words, since an abbreviation
normally includes only one word.

Our algorithm is based on the fact that it is much harder
to classify an abbreviation than its expanded form. Generally,
the expanded form is more evidential than its abbreviation
to determine its class. The algorithm works as follows:
when an abbreviation with parentheses is detected in a sen-
tence, we remove the abbreviation and the parentheses from
the sentence. After applying the HMM-based named entity
recognizer to the sentence, we restore the abbreviation with
parentheses to its original position in the sentence. Then, the
abbreviation is classified as the same class of the expanded
form, if the expanded form is recognized as an entity name.
Finally, the expanded form and its abbreviation are stored
in the recognized list of biomedical entity names from the

document to help the resolution of forthcoming occurrences
of the same abbreviation in the document.

METHODS
HMM-based biomedical named entity recognition
Given above various features, the key problem is how to
effectively and efficiently integrate them together and find the
optimal resolution to biomedical named entity recognition.
Here, we use the HMM and the HMM-based named entity
recognizer as described in Zhou and Su (2002). A HMM is a
model where a sequence of outputs is generated in addition
to the Markov state sequence. It is a latent variable model in
the sense that only the output sequence is observed while the
state sequence remains ‘hidden’.

Given an output sequence On
1 = o1o2 · · · on, the pur-

pose of a HMM is to find the most likely tag (state)
sequence Sn

1 = s1s2 · · · sn that maximizes P(Sn
1 |On

1 ). Here,
oi = 〈fi , wi〉, wherewi is the word andfi = 〈F i

WFP, F i
MP, F i

POS,
F i

HEAD, F i
VERB, F i

ALIAS〉 is the feature set of the word wi ,
and si = BOUNDARYi_ENTITYi_FEATUREi , where
BOUNDARYi denotes the position of the current word in
the entity; ENTITYi indicates the class of the entity; and
FEATUREi is the feature set.

By rewriting log P(Sn
1 |On

1 ), we have:

log P(Sn
1 |On

1 ) = log P(Sn
1 ) + log

P(Sn
1 , On

1 )

P (Sn
1 ) · P(On

1 )
. (2)

The second term in Equation (2) is the mutual information
between Sn

1 and On
1 . In order to simplify the computation of

this term, we assume mutual information independence:

MI(Sn
1 , On

1 ) =
n∑

i=1

MI(si , O
n
1 ) or

log
P(Sn

1 , On
1 )

P (Sn
1 ) · P(On

1 )
=

n∑

i−1

log
P(si , On

1 )

P (si) · P(On
1 )

. (3)

That is, an individual tag is only dependent on the output
sequenceOn

1 and independent on other tags in the tag sequence
Sn

1 . This assumption is reasonable because the dependence
among the tags in the tag sequence Sn

1 has already been
captured by the first term in Equation (2). Applying the
assumption (3) to Equation (2), we have:

log P(Sn
1 |On

1 ) = log P(Sn
1 ) −

n∑

i=1

log P(si)

+
n∑

i=1

log P(si |On
1 ). (4)

From Equation (4), we can see that:

• The first term can be computed by applying chain
rules. In ngram modeling (Chen and Goodman, 1996;
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Jelinek, 1989; Katz, 1987), each tag is assumed to be
probabilistically dependent on the N − 1 previous tags.

• The second term is the summation of log probabilities of
all the individual tags.

• The third term corresponds to the ‘lexical’ component
(dictionary) of the tagger.

The idea behind our model is that we try to assign each
output an appropriate tag, which contains boundary and class
information. For example, ‘TCF 1 binds stronger than NF kB
to TCEd DNA’. The tag assigned to token ‘TCF’ should indic-
ate that it is at the beginning of an entity name and it belongs
to the ‘Protein’ class; and the tag assigned to token ‘binds’
should indicate that it does not belong to an entity name. Here,
the Viterbi algorithm (Viterbi, 1967) is implemented to find
the most likely tag sequence.

The problem with the above HMM lies in the data sparseness
problem raised by P(si |On

1 ) in the third term of Equation (4).
Ideally, we would have sufficient training data for every event
whose conditional probability we wish to calculate. Unfortu-
nately, there is rarely enough training data to compute accurate
probabilities when decoding on new data. Generally, two
smoothing approaches (Chen and Goodman, 1996) are applied
to resolve this problem: linear interpolation (Jelinek, 1989;
Collier et al., 2000) and back-off (Katz, 1987; Bikel et al.,
1999). However, these two approaches only work well when
the number of different information sources is limited. When
a few features and/or a long context are considered, the num-
ber of different information sources is exponential. In order to
resolve the data sparseness problem in our system, we propose
a k-NN algorithm using a constraint relaxation principle.

k-NN algorithm for computing P(si |On
1 )

As stated above, the main challenge for the above HMM is
how to reliably estimate P(si |On

1 ). For efficiency, we can
always assume P(si |On

1 ) ≈ P(si |Ei), where the pattern entry
Ei = oi−N · · · oi · · · oi+N . That is, we only consider the out-
put context dependence in a window of 2N + 1 outputs (e.g.
we only consider the current output, the previous output and
the next output when N = 1). For convenience, we denote
P(•|Ei) as the conditional state probability distribution of the
‘hidden’ states given Ei and P(si |Ei) as the conditional state
probability of Si given Ei .

The k-NN algorithm estimates P(•|Ei) by first finding the
K-nearest neighbors of frequently occurring pattern entries
E1

i , E2
i · · · EK

i to the initial pattern entry Ei and then aggreg-
ating them to make a proper estimation of P(•|Ei). Here, the
conditional state probability distribution is estimated instead
of the classification in a traditional k-NN classifier. To do
so, all the frequently occurring pattern entries are extracted
from the training corpus and stored in a dictionary Frequent-
EntryDictionary. In order to limit the dictionary size and keep
efficiency, we can also constrain a valid set of pattern entry

forms ValidEntryForm to consider only the most informative
information sources.

Here, a constraint relaxation principle is used in the k-NN
algorithm to find the K-nearest neighbors E1

i , E2
i , . . . , EK

i to
the initial pattern entry Ei . Considering the possible large
number of features in a pattern entry as the constraints, there
may have a large number of ways in which the constraints
could be relaxed. Therefore, three restrictions are applied to
keep the relaxation process tractable and manageable:

• Relaxation is done through iteratively dropping a con-
straint from the pattern entry.

• The pattern entry after relaxation should also have a valid
form as defined in ValidEntryForm.

• Only top N (e.g. 5) pattern entries are kept dur-
ing relaxation according to their likelihoods. Here,
likelihood(E, Ei) for the pattern entry E is determined
by its similarity with the initial pattern entry Ei .

The k-NN algorithm finds the K-nearest neighbors by iterat-
ively relaxing a constraint in the initial pattern entry Ei until
a set kNN(Ei) of at least K-nearest neighbors is found. At
every iteration, we have a set of entries InputEntrySet as the
input and return a set of entries OutputEntrySet as the output.
The entries in InputEntrySet and OutputEntrySet are ranked
according to their likelihoods. Initially, InputEntrySet is set
as {〈Ei , likelihood(Ei , Ei)〉}. Then, OutputEntrySet can be
generated by relaxing any constraint (validated by ValidEntry-
Form) in every pattern entry of InputEntrySet (the pattern
entry is deleted from InputEntrySet after relaxation). The
frequently occurring pattern entries (validated by Frequent-
EntryDictionary) in OutputEntrySet are added to kNN(Ei)

while the remaining are fed back to InputEntrySet for the next
iteration. The relaxation process continues until kNN(Ei) con-
tains at least K frequently occurring pattern entries. In order
to remain efficient, only the top N (e.g. 5) pattern entries are
kept in InputEntrySet and OutputEntrySet according to their
likelihoods. Finally, the K-nearest neighbors E1

i , E2
i , . . . , EK

i

are extracted from kNN(Ei) according to their likelihoods.
After the K-nearest neighbors have been found, they are

linearly interpolated according to their likelihoods:

P(•|Ei) =
∑K

k=1 likelihood(Ek
i , Ei) · P(•|Ek

i )∑K
k=1 likelihood(Ek

i , Ei)
.

In summary, the k-NN algorithm works as follows:

k-NN algorithm for computing P(•|Ei)

Assume an initial pattern entry Ei = oi−2oi−1oioi+1oi+2.
Assume a valid set of pattern entry forms ValidEntryForm.
Assume FrequentEntryDictionary is the dictionary which

stores all the frequently occurring pattern entries.
Assume likelihood(E, Ei) the likelihood of a pattern entry E

as one of the K nearest neighbors to the initial pattern
entry Ei .
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Assume kNN(Ei) stores the nearest neighbors to the initial
pattern entry Ei .

BEGIN-of-algorithm
Compute likelihood(Ei , Ei) = 1
Initialize InputEntrySet = {<Ei , likelihood(Ei ,Ei)>},

OutputEntrySet = {} and kNN(Ei) = {}
LOOP

DO for every entry <Ej , likelihood(Ej ,Ei)>

∈ InputEntrySet
DO for every constraint in Ej

Assume E′
j the pattern entry after relaxation

of the constraint in Ej

IF E′
j conforms to ValidEntryForm THEN

BEGIN
Compute likelihood(E′

j , Ei)

Add OutputEntrySet = OutputEntrySet
∪ {<E′

j ,likelihood(E′
j ,Ei)>}

END IF-THEN
END DO

END DO
Add kNN(Ei) = kNN(Ei) ∪ {<E, likelihood(E,Ei)>

|<E, likelihood(E, Ei)> ∈ OutputEntrySet &
E ∈ FrequentEntryDictionary}
Adjust OutputEntrySet = OutputEntrySet
−{<E, likelihood(E, Ei)>|<E, likelihood(E, Ei)>

∈ OutputEntrySet & E ∈ FrequentEntryDictionary}
IF kNN(Ei) contains at least K frequently occurring

pattern entries
THEN Extract the top K nearest neighbors from

kNN(Ei) according to their likelihoods and exit loop
ELSE Set InputEntrySet = OutputEntrySet and

OutputEntrySet = {}
END LOOP
Compute P(•|Ei) by aggregating the K nearest neighbors
RETURN P(•|Ei)

END-of-algorithm

Post-processing: cascaded entity name resolution
As shown in Table 1, 16.57% of entities in GENIA V3.0 have
cascaded constructions, e.g.

<RNA><DNA>CIITA</DNA>mRNA</RNA>.

Therefore, it is important to resolve such phenomenon. Here,
a pattern-based post-processing is proposed to resolve the cas-
caded entity names while the above HMM-based named entity
recognition is applied to recognize embedded entity names
and non-cascaded entity names.

In GENIA corpus, we find that there are six useful patterns
of cascaded entity name constructions:

• <ENTITY> := <ENTITY> + head noun, e.g.
<PROTEIN> binding motif→<DNA>

• <ENTITY> := <ENTITY> + <ENTITY>, e.g.
<LIPID> <PROTEIN>→<PROTEIN>

• <ENTITY> := modifier + <ENTITY>, e.g. anti
<Protein>→<Protein>

• <ENTITY> := <ENTITY> + word + <ENTITY>,
e.g. <VIRUS> infected <MULTICELL>→
<MULTICELL>

• <ENTITY> := modifier + <ENTITY> + head noun

• <ENTITY> := <ENTITY> + <ENTITY> +
head noun

In our experiments, all the rules of above six patterns are
extracted from the cascaded entity names in the training data
to deal with the cascaded entity name phenomenon.

EXPERIMENTS AND EVALUATION
We evaluate our PowerBioNE system on GENIA V3.0
and GENIA V1.1 using precision/recall/F -measure (van
Rijsbergen, 1979). For GENIA V1.1, we select 80 abstracts
as the held-out test data and the remaining 590 abstracts as
the training data (same as Kazama et al., 2002). For GENIA
V3.0, we select 200 abstracts as the held-out test data and the
remaining 1800 abstract as the training data. All the experi-
mentations are done 10 times and the evaluations are averaged
over the held-out test data. As a result, average 63 rules are
extracted from the cascaded entity names in the training data of
GENIA V1.1 for cascaded entity name resolution while aver-
age 102 rules are extracted from the cascaded entity names in
the training data of GENIA V3.0.

Table 6 shows the best performance of our system on
GENIA V3.0 and GENIA V1.1, and the comparison with that
of the best reported system on GENIA V1.1 (Kazama et al.,
2002). It shows that our system achieves the F -measure of
62.2 on GENIA V1.1 and the F -measure of 66.6 on GENIA
V3.0, respectively, without help of any dictionaries. It also
shows that our system outperforms Kazama et al. (2002) by
7.8 in F -measure on GENIA V1.1. This may be due to the
various evidential features, the effective HMM and k-NN
algorithm and the post-processing for the cascaded entity
name phenomenon in our system.

One important question is about the performance of differ-
ent entity classes. Table 7 shows the number of entity name
instances and the detailed performance for each biomedical
entity class on GENIA V3.0. Of particular interest, our sys-
tem achieves the F -measure of 75.8 on the class ‘Protein’.
For comparison, our system achieves 5.6 higher F -measure
without help of any dictionaries than Tsuruoka and Tsujii
(2003) with help of a large dictionary. It shows that the per-
formance varies a lot among different entity classes. One
reason may be due to different difficulties in recognizing dif-
ferent entity classes. For example, the ‘Body Part’ class is
among the easiest to recognize and has best performance due
to the fact that the number of body parts is quite limited,
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Table 6. Performance of our PowerBioNE system and comparison with that
of Kazama et al. (2002)

Performance P R F

Our system on GENIA V3.0 66.5 66.6 66.6
Our system on GENIA V1.1 63.1 61.2 62.2
Kazama et al. (2002) on GENIA V1.1 56.2 52.8 54.4

Table 7. Performance of different entity classes on GENIA V3.0

Entity class Number of
instances

F -measure

Body part 418 80.5
Cell type 6751 79.1
Lipid 1814 75.5
Multi-cell 1757 77.8
Protein 26 482 75.8
Cell component 690 69.7
Polynucleotide 271 69.5
Other organic compound 3754 67.5
Amino acid monomer 423 65.9
DNA 9576 63.3
Cell line 3992 61.4
RNA 871 61.2
Virus 1048 61.2
Other 20 879 60.5
Mono-cell 181 50.5
Tissue 663 48.8
Inorganic 214 40.5
Nucleotide 141 22.7
Peptide 420 17.2
Atom 171 15.3
Other artificial source 202 7.8
Carbohydrate 70 4.9
Organic 2 00.0
Overall 81 190 66.6

compared with the much worse performance of the ‘Peptide’
class due to the much large number of peptides and their vari-
ations. Another reason may be due to the different numbers
of instances in different entity classes. Though GENIA V3.0
provides a good basis for named entity recognition in the bio-
medical domain and probably the best available, it has clear
bias. It shows that GENIA V3.0 is much unbalanced for dif-
ferent entity classes. For example, the ‘Protein’ class occupies
about 30% while the class ‘Organic’ only has two instances.
Those entity classes with a much larger number of instances,
such as ‘Protein’ and ‘Cell Type’, normally have much higher
performance than those with much less instances, such as
‘Peptide’ and ‘Polynucleotide’. Table 7 also shows that, while
GENIA V3.0 is of enough size for recognizing the major
classes, such as ‘Protein’, ‘Cell Type’, ‘Cell Line’, ‘Lipid’,
etc. it is of limited size and fails in recognizing the minor
classes, such as ‘Organic’, ‘Carbohydrate’, ‘Atom’, ‘Peptide’,

Table 8. Effects of different features and post-processing for cascaded entity
name resolution on GENIA V3.0

FWFP FMP FPOS FHEAD FVERB FALIAS Cascaded
entity name
resolution

P R F

√
42.0 22.0 28.9√ √
44.5 24.5 31.6√ √ √
58.2 51.0 54.4√ √ √ √
62.2 62.1 62.1√ √ √ √ √
62.1 61.6 61.8√ √ √ √ √
62.5 62.9 62.7√ √ √ √ √
66.2 65.8 66.0√ √ √ √ √ √
66.5 66.6 66.6

‘Nucleotide’, ‘Inorganic’, etc. Finally, GENIA V3.0 does not
differentiate the ‘Drug’ class, which is found very important
in many real applications.

Another important question is about the effect of different
features and the pattern-based post-processing for cascaded
entity name resolution. Table 8 answers the question on
GENIA V3.0:

• The contribution of the word formation pattern feature
in the biomedical domain is very limited compared with
that in the newswire domain. It achieves the F -measure
of 28.9 on GENIA V3.0 compared with 77.6 on MUC-7
(Zhou and Su, 2002).

• The morphological pattern feature further increases the
F -measure by 2.7.

• POS after adaptation is proven to be very useful in the
biomedical domain. It increases the F -measure by 22.8.
On contrary, POS is proven to be of little use in the news-
wire domain (Bikel et al., 1999; Zhou and Su, 2002). It
is because that POS affects the use of more reliable cap-
italization information in determining the boundaries of
entity names in the newswire domain, e.g. MUC-6 and
MUC-7. However, since most of the words in biomedical
entity names are in lowercase, capitalization informa-
tion in the biomedical domain is not as evidential as that
in the newswire domain. Moreover, many biomedical
entity names are descriptive and very long. Therefore,
POS provides useful evidence about the boundaries of
biomedical entity names.

• Within our expectation, the head noun trigger feature
is very useful. It significantly increases the F -measure
by 7.7.

• Out of our expectation, the use of the special verb trig-
ger feature decreases the recall rate while keeping the
precision.

• The name alias feature only slightly improves the
F -measure by 0.6. This may be due to the complexity of
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Table 9. Effect of different number of special verb triggers on GENIA V3.0

Number of verb triggers P R F

0 66.5 66.6 66.6
2 66.5 66.5 66.5
4 66.5 66.4 66.5
8 66.4 66.3 66.4

16 66.4 66.0 66.2
32 66.4 65.4 65.9
64 66.3 65.1 65.7

128 66.1 64.6 65.4

the name alias phenomenon in the biomedical domain and
the simple strategy applied in our system. Given its spe-
cial characteristics, we find it very difficult to deal with
the name alias phenomenon in the biomedical domain.
Many of name aliases do not take any lexical, morpho-
logy or semantic evidence for a certain class. In the future
work, we will explore more useful patterns to the name
alias phenomenon.

• The pattern-based post-processing for cascaded entity
name resolution is proven to be very useful. It improves
the F -measure further by 3.9. From our best know-
ledge, our system is the first system which deals with
the cascaded entity name resolution.

Two questions arise from Table 8. One question is about
the effect of the special verb trigger feature. In the above
experimentation, only eight special verb triggers (as shown in
Table 5) are explored. One may ask whether more verb triggers
can improve the performance. Table 5 answers the question.
Here, all the verb triggers are gathered from inside the entity
names and their local context (the preceding two words and
the following two words). It shows that more verb triggers
only decrease the performance more. We find that, although
a verb trigger often strongly indicates a possible occurrence
of an entity name in its local context, it is very difficult to
determine its functionality, e.g.

• in ‘. . . the <PROTEIN>NF-kappa B</PROTEIN>

activated in . . .’, where ‘activated’ occurs after a ‘Pro-
tein’ entity name.

• in ‘. . . of <CELLTYPE>activated T-cells
</CELLTYPE>) transcriptional activity . . .’, where
‘activated’ acts as a modifier in a ‘Cell Type’ entity name.

• in ‘. . . blockade of the <PROTEIN>Ca(2+)-activated
K+ channel</PROTEIN> is not associated . . .’, where
‘activated’ occurs inside a ‘Protein’ entity name.

• in ‘<PROTEIN>Tax</PROTEIN> co-transfected with
<DNA>reporter constructs</DNA> into <CELLLINE>

Jurkat cells</CELLLINE> maximally activated
<PROTEIN>HTLV-I-LTR-CAT</PROTEIN> and

Table 10. Effect of different POS accuracies and different models on GENIA
V3.0 (without post-processing for cascaded entity name resolution)

Method Accuracy of POS tagginga

No POS 80.0 85.1 90.0 95.0 97.4

Our HMM 55.3 57.6 60.2 61.5 62.3 62.7
Back-off HMM (Bikel

et al., 1999)
54.8 55.4 57.9 59.1 59.8 60.1

Linear
interpolated HMM
(Collier et al., 2000)

54.3 54.9 57.7 58.7 59.5 59.8

SVM (Lee et al., 2003)b 53.7 54.2 55.2 56.1 56.6 56.8
C4.5 (Lee et al., 2003)b 53.5 54.0 54.9 55.6 56.0 56.2
C4.5 rules (Lee et al.,

2003)b
53.9 54.6 55.7 56.4 56.8 57.1

RIPPER (Lee et al.,
2003)b

53.8 54.2 55.4 56.3 56.8 57.0

Naïve Bayes classifier
(Tsuruoka and Tsujii,
2003)c

48.5 48.8 49.5 49.9 50.1 50.2

aThe POS tagger with accuracy of 85.1 are trained on 2500 WSJ articles; the POS tagger
with accuracy of 97.4 are adapted on GENIA V2.1; other POS taggers are trained on
the subsets of 2500 WSJ articles.
bSVM, C4.5, C4.5 rules and RIPPER use the same two-phase recognition method as
described in Lee et al. (2003) except the different models.
cThe naïve Bayes classifier is used as a baseline.

<PROTEIN>kappa B-fos-CAT</PROTEIN> and also
activated <DNA>LT-293</DNA> to a lesser extent’,
where both ‘activated’ occur before ‘protein’/‘DNA’
entity names and act as the predicates of the sentence.

Another question arisen from Table 8 is about the usefulness
of POS. Our experimentation shows that POS is very useful
in biomedical named entity recognition. This contradicts with
previous researches (e.g. Kazama et al., 2002). There may be
two reasons: different POS accuracies and different models.
Table 10 shows the effect of different POS accuracies and dif-
ferent models on GENIA V3.0. For comparison, all the models
use the same features described in this paper excluding the spe-
cial verb trigger feature and the pattern-based post-processing
for cascaded entity name resolution. In particular, the back-
off HMM and the linear interpolated HMM further smooth
the corresponding probabilities by orderly dropping the fea-
tures FALIAS, FMP, FHEAD, FPOS and FWFP, according to their
contributions as shown in Table 8. It shows that inclusion of
POS with different accuracies performs quite differently on
these models. Inclusion of POS with accuracy of 80% only
slightly improves the performance and there is a dramatic per-
formance improvement for POS accuracies between 80 and
90%, while increasing the POS accuracy above 90% only
slightly improves the performance. It suggests that stable and
significant performance improvement can only be achieved
for inclusion of POS with enough accuracy (e.g. 90% for
GENIA V3.0). It also shows that our HMM benefits most
from the inclusion of POS and different models have much
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Fig. 2. Effect of different training data size on different models (without post-processing for cascaded entity name resolution).

different characteristics on the usefulness of POS although all
the models benefit from inclusion of POS. For comparison
of inclusion of POS after adaptation over inclusion of POS
before adaptation, it shows that our HMM performs best with
performance improvement of 2.5; the other two HMMs per-
form second with that of 2.1–2.2, the four feature vector-based
models (SVM, C4.5, C4.5 rules and RIPPER) perform third
with that of 1.3–1.6 and the baseline naïve Bayes classifier
performs worst with that of 0.7. For comparison of inclusion
of POS after adaptation over no inclusion of POS, it shows
that our HMM perform best with performance improvement
of 7.4, the other two HMMs perform second with that of
5.3–5.5, the four feature vector-based models (SVM, C4.5,
C4.5 rules and RIPPER) perform third with that of 2.7–3.2
and the baseline naïve Bayes classifier performs worst with
that of 1.7. It also shows that for all the models, about
40% of performance improvement is achieved by adaptation
of POS.

Table 10 also shows that among these models, the perform-
ance of HMMs is higher than that of others:

• Our HMM performs best with the F -measure of 62.7.

• The back-off HMM and the linear interpolated HMM
perform second with 2.6–2.9 behind.

• SVM, C4.5, C4.5 rules and RIPPER achieve the
F -measure of 56.2–57.1 with 5.6–6.5 behind.

• The baseline naïve Bayes classifier performs worst with
12.5 behind.

The main reason may be due to modeling of local context
dependence. HMMs have the better ability of capturing the
locality of various phenomena, which indicate biomedical
entity names in a text document. The feature vector-based
classifiers, such as SVM, C4.5, C4.5 rules and RIPPER,
cannot effectively capture the local context dependence by
assuming the independence between the features while the

baseline naïve Bayes classifier fails to capture local context
dependence by assuming the conditional probability inde-
pendence among the local context. It also shows that among
the three HMMs, our HMM performs much better than the
back-off HMM and the linear interpolated HMM. This is due
to the different resolutions of the data sparseness problem
in the three HMMs: our k-NN algorithm can dynamically
smooth the probability estimation according to its local con-
text and thus resolve the data sparseness problem much better
than the linear interpolated method and the back-off method
which smooth in a predefined way.

The final question is the effect of different training data sizes
on different models. Figure 2 answers the question on GENIA
V3.0. For comparison, all models are tested without post-
processing for biomedical entity name resolution. It shows
that all the models have a turning point at about 400–600
abstracts: as the training data size increases, all the models
improves the performance much more before the turning point
than after the turning point. It also indicates that all the three
HMMs have the much potential of benefiting from further
increasing the size of GENIA V3.0 while further increasing
the size of GENIA V3.0 does not help much for the other mod-
els. This is due to that the HMMs are much more data-driven
than the other models due to their modeling of local context
dependency. Among them, our HMM is the most data-driven
due to its dynamic modeling of local context dependence while
the baseline naïve Bayes classifier is the least data-driven
due to its assumption of conditional probability independence
among the local context.

ERROR ANALYSIS
Our system achieves the F -measure of 66.6 on GENIA V3.0.
In particular, our system achieves the F -measure of 75.8 on
the ‘protein’ class. In order to further evaluate our system
and explore possible improvement, we have implemented an
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error analysis. This is done by randomly choose 100 errors
from our recognition results. During the error analysis, we
find many errors are due to the strict annotation scheme and
the annotation inconsistence in the GENIA corpus, and can
be considered acceptable. Therefore, we will also examine
the acceptable F -measure of our system, in particular, the
acceptable F -measure on the ‘protein’ class.

All the 100 errors are classified into following sources:

• Left boundary errors (15): It includes the errors with cor-
rect class identification, correct right boundary detection
and only wrong left boundary detection. We find that most
of such errors come from the descriptive naming conven-
tion. We also find that 12 out of 15 errors are acceptable
and ignorance of the descriptive words often does not
make much difference for the entity names. In fact, it is
even hard for biologists to decide whether the descript-
ive words should be a part of the entity names, such as
‘normal’, ‘activated’, etc. In particular, 3 of 15 errors
belong to the ‘protein’ class. Among them, two errors
are acceptable, e.g. ‘classical <PROTEIN>1,25 (OH)
2D3 receptor</PROTEIN>’=>‘<PROTEIN>classical
1,25 (OH) 2D3 receptor</PROTEIN>’ (with format
of ‘annotation in the corpus => identification made by
our system’), while the other one is unacceptable, e.g.
‘<PROTEIN>viral transcription factor</PROTEIN>=>

viral <PROTEIN>transcription factor </PROTEIN>’.

• Cascaded entity name errors (17): It includes the errors
caused by the cascaded entity name phenomenon. We
find that most of such errors come from the annotation
inconsistence in the GENIA corpus: in some cases, only
the embedded entity names are annotated while in other
cases, the embedded entity names are not annotated. Our
system tends to annotate both the embedded entity names
and the whole entity names. Among them, we find that
13 of 17 errors are acceptable. In particular, 2 of 17
errors belong to the ‘protein’ class. Among them, all
the two errors are acceptable, e.g. ‘<DNA>NF kappa B
binding site</DNA>’ => ‘<DNA><PROTEIN>NF
kappa B</PROTEIN> binding site</DNA>’.

• Misclassification errors (16): It includes the errors with
wrong class identification, correct right boundary detec-
tion and correct left boundary detection. We find that this
kind of errors mainly comes from the sense ambiguity
of biomedical entity names and is very difficult to dis-
ambiguate. Among them, seven errors are related with
the ‘DNA’ class and six errors are related with the ‘Cell
Line’ and ‘Cell Type’ classes. Among them, we find that
only 3 out of 16 errors are acceptable. In particular, there
are five errors related to the ‘protein’ class. We also find
that all the five errors are caused by misclassification of
the ‘DNA’ class to the ‘protein’ class and all of them
are unacceptable, e.g. ‘<DNA>type I IFN<DNA>’ =>

‘<PROTEIN>type I IFN</PROTEIN>’.

• True negative (29): It includes the errors by missing
the identification of biomedical entity names. We find
that 14 errors come from the ‘other’ class and 11 errors
from the ‘protein’ class. We also find that GENIA cor-
pus annotates some general noun phrases as biomedical
entity names, e.g. ‘protein’ in ‘the protein’ and ‘cofactor’
in ‘a cofactor’. We also find that 12 of 29 errors are
acceptable. In particular, 11 of 29 errors related to the
‘protein’ class. Among them, four errors are acceptable,
e.g. ‘the <PROTEIN>protein</PROTEIN>’ => ‘the
protein’, while the other seven are unacceptable, e.g.
‘<PROTEIN>80 kDa</PROTEIN>’ => ‘80 kDa’.

• False positive (18): It includes the errors by wrongly
identifying biomedical entity names which are not annot-
ated in the GENIA corpus. We find that 11 out of 18 errors
come from the ‘other’ class. This suggests that the annota-
tion of the ‘other’ class is much lack of consistency and
most problematic in the GENIA corpus. We also find
that 10 out of 18 errors are acceptable. In particular,
2 out of 18 errors are related to the ‘protein’ class and
both of them are all acceptable, e.g. ‘affinity sites’ =>

‘<PROTEIN>affinity sites</PROTEIN>’.

• Miscellaneous (11): It includes all the other errors, e.g.
combination of the above errors and the errors caused
by parentheses. We find that only 1 out of 11 errors
is acceptable. We also find that, among them, two
errors are related with the ‘protein’ class and both
are unacceptable, e.g. ‘<PROTEIN>17 amino acid
epitope</PROTEIN>’ => ‘17 <RNA>amino acid
epitope</RNA>’.

From above error analysis, we find that about 50% (51/100)
of errors are acceptable and can be avoided by flexible annota-
tion scheme (e.g. regarding the modifiers in the left bound-
aries) and consistent annotation (e.g. in the annotation of the
‘other’ class and the cascaded entity name phenomenon). In
particular, about 40% (12/28) of errors are accepted on the
‘protein’ class. This means that the acceptable F -measure is
about 83.6 on the 23 classes of GENIA V3.0. In particular,
the acceptable F -measure on the ‘protein’ class is about 86.2.
In addition, this performance is achieved without using any
dictionaries. If we can have a reasonable dictionary with cov-
erage of 50%, an acceptable F -measure of 90 on the 23 classes
of GENIA V3.0, in particular 92 on the ‘protein’ class can be
achieved.

RELATED WORK
Previous approaches in biomedical named entity recogni-
tion typically use domain specific heuristic rules and heavily
rely on existing dictionaries. Such representative researches
include Fukuda et al. (1998), Proux et al. (1998), and
Gaizauskas et al. (2000). Fukuda et al. (1998) uses some
heuristic rules to identify ‘protein’ names in SH3 protein
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domain. Evaluation on 30 annotated MEDLINE abstracts
shows precision of 95.22% and recall of 97.40%. Proux et al.
(1998) uses finite state technology to detect ‘gene’ names
by using lexical and morphological knowledge. It achieves
precision of 91.4% and recall of 94.4% on a small corpus
of 1200 sentences from Flybase (The Flybase Consortium,
1998), and precision of about 70% on a larger corpus of
25 000 abstracts from MEDLINE. Gaizauskas et al. (2000)
derives their system from an existing system in the newswire
domain (MUC) and applies it in two projects: extraction of
enzymes and metabolic pathways (EMPathIE) and extraction
of protein structure (PASTA). Their system mainly uses lex-
icons, morphological cues, such as suffixes and hand-coded
rules. Evaluation of biomedical named entity recognition on
six full journal articles in EMPathIE task achieves precision
of 86% and recall of 68% on 10 named entity classes, such
as ‘compound’, ‘element’, ‘enzyme’, etc. while evaluation
on 52 MEDLINE abstracts in PASTA task achieves precision
of 94% and recall of 88% on 13 named entity classes, such
as ‘protein’, ‘species’, ‘residue’, etc. Although these rule-
based systems seem quite promising, they lack the ability
of adaptation to new named entity classes in the biomedical
domain. Once a new class is required to identify, a set of
rules for this class has to be generated manually. In addition,
the more classes, the more ambiguous and difficult to con-
struct consistent rules. Finally, these systems heavily depend
on well-developed dictionaries.

The current trend is to apply machine learning approaches
in biomedical named entity recognition, largely due to the
development of the GENIA corpus. The typical explorations
include Nobata et al. (1999), Collier et al. (2000), Takeuchi
and Collier (2002), Kazama et al. (2002), Lee et al. (2003) and
Tsuruoka and Tsujii (2003). Nobata et al. (1999), Collier et al.
(2000) and Takeuchi and Collier (2002) use a preliminary ver-
sion of the GENIA corpus which contains 100 abstracts and
identifies 10 named entity classes, such as ‘protein’, ‘DNA’,
‘RNA’, ‘cell line’, ‘cell type’, etc. Nobata et al. (1999) uses
the decision tree and incorporates POS, character informa-
tion and domain-specific word lists. The experiment shows
that it achieves the F -measure of about 56. Collier et al.
(2000) applies a linear interpolated HMM and incorporates
surface word itself and character information. It achieves the
F -measure of 72.8. Takeuchi and Collier (2002) applies SVM
and incorporates surface word itself, character information
and pervious word class tags (−3 to +3). It achieves the
F -measure of 71.8. Kazama et al. (2002) also applies SVM
and incorporates a rich feature set, including word feature,
POS, prefix feature, suffix feature, previous class feature,
word cache feature and HMM state feature. The experiment on
GENIA V1.1 of 23 classes shows the F -measure of 54.4, com-
pared with our 62.2 on the same GENIA V1.1. Tsuruoka and
Tsujii (2003) applies a dictionary-based approach and a naïve
Bayes classifier to filter out false positives. It only evaluates
against the ‘protein’ class in GENIA V3.0, and receives

the F -measure of 70.2 with the help of a large dictionary,
compared with our 75.8 on the same class without help of
any dictionaries. Lee et al. (2003) uses a two phase SVM-
based recognition approach and incorporates word formation
pattern and POS. The evaluation on GENIA V3.0 shows the
F -measure of 66.5 over 22 classes except the ‘other’ class
with help of an entity name dictionary, compared with our
68.7 over the same classes without help of any dictionaries.

Direct comparison of different biomedical named entity
recognition systems is difficult because of different methods,
entity classes, evaluation corpus and the use of dictionaries. In
general, systems on specified evaluation corpus with help of
dictionaries tend to perform much better than those on general
ones without help of any dictionaries.

CONCLUSION
In this paper, we describe our exploration on porting an exist-
ing HMM-based named entity recognizer to the biomedical
domain. Various lexical, morphological, syntactic, semantic
and discourse features are incorporated to cope with the spe-
cial phenomena in biomedical named entity recognition. In
addition, a k-NN algorithm is proposed to effectively resolve
the data sparseness problem. Finally, we present a pattern-
based post-processing to deal with the cascaded entity name
phenomenon. Evaluation shows that our HMM-based system
and the k-NN algorithm can effectively integrate various fea-
tures in biomedical named entity recognition. It also shows
that our HMM and the k-NN algorithm outperform other mod-
els, such as back-off HMM, linear interpolated HMM, SVM,
C4.5, C4.5 rules and RIPPER, by effectively capturing the
local context dependency and resolving the data sparseness
problem.

The main contribution of our work lies on the proposal and
appropriate integration of various evidential features, includ-
ing word formation pattern, morphological pattern, POS, head
noun trigger, special verb trigger and name alias feature. The
second contribution is the k-NN algorithm in the effective
resolution of the data sparseness problem in our system. The
final contribution is the pattern-based post-processing in deal-
ing with the cascaded entity name phenomenon. From our best
knowledge, our system is the first system which deals with the
cascaded entity name phenomenon.

In the near future, we will further improve the perform-
ance by investigating more on conjunction and disjunction
construction, the synonym phenomenon, the cascaded entity
name phenomenon and inclusion of a reasonable biomedical
dictionary. In the meanwhile, we will explore our system in
real applications.
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