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ABSTRACT
Motivation: One problem with discriminant analysis of DNA microar-
ray data is that each sample is represented by quite a large number
of genes, and many of them are irrelevant, insignificant or redundant
to the discriminant problem at hand. Methods for selecting important
genes are, therefore, of much significance in microarray data analysis.
In the present study, a new criterion, called LS Bound measure, is pro-
posed to address the gene selection problem. The LS Bound measure
is derived from leave-one-out procedure of LS-SVMs (least squares
support vector machines), and as the upper bound for leave-one-
out classification results it reflects to some extent the generalization
performance of gene subsets.
Results: We applied this LS Bound measure for gene selection on
two benchmark microarray datasets: colon cancer and leukemia.
We also compared the LS Bound measure with other evaluation cri-
teria, including the well-known Fisher’s ratio and Mahalanobis class
separability measure, and other published gene selection algorithms,
including Weighting factor and SVM Recursive Feature Elimination.
The strength of the LS Bound measure is that it provides gene subsets
leading to more accurate classification results than the filter method
while its computational complexity is at the level of the filter method.
Availability: A companion website can be accessed at http://www.ntu.
edu.sg/home5/pg02776030/lsbound/. The website contains: (1) the
source code of the gene selection algorithm; (2) the complete set of
tables and figures regarding the experimental study; (3) proof of the
inequality (9).
Contact: ekzmao@ntu.edu.sg

1 INTRODUCTION
In recent years, research focus in molecular biology and genetics has
shifted from the study of individual genes to the exploration of the
entire genome. For example, the recently developed gene expression
microarray technique measures the expression levels of thousands of
genes in a single experiment. This large amount of data is something
of a gold mine, from which a number of things can be found.

Gene-expression microarray data have been explored in a variety
of ways including sample discriminant analysis and clustering, gene
clustering and gene selection and many others. Among these issues,
gene selection for discriminant analysis is of particular interest to us.
From the viewpoint of discriminant analysis, we have a few reasons
to perform gene selection. First, among the large set of genes many
might be irrelevant, insignificant or redundant to a specific discrim-
inant problem. Studies have shown that a small subset of genes might
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be sufficient for a particular biological problem (Golub et al., 1999).
Second, gene selection reduces data volume and makes microarray
data easier to handle and analyze. Third, reducing the number of
genes decreases the demand for a large number of training samples
because the performance of a pattern classifier partly depends on the
ratio between the number of samples to the number of features. The
collection of quite a large number of samples in microarray tech-
nique is expensive, time-consuming and even impossible. From the
viewpoint of biologists, the importance of gene selection lies in its
contribution to understanding diseases and functions of particular
genes, and designing microarray experiments for clinical diagnosis
and prognosis purpose.

In the context of gene-expression data analysis, several gene selec-
tion approaches were published. Golub et al. (1999) and Furey et al.
(2000) employed an individual gene ranking score, Weighting factor,
to perform gene selection prior to classification. Li et al. (2001)
proposed a ‘GA/KNN’ method for gene assessment and sample
classification. The main idea of GA/KNN is to find a huge num-
ber of optimal or near-optimal subsets and to assess the importance
of genes for classification by examining the frequency of gene mem-
berships in those subsets. Guyon et al. (2002) introduced a top–down
recursive feature elimination (RFE) algorithm, in which features are
successively eliminated during training of a sequence of support
vector machine (SVM) classifiers.

If put in the context of pattern classification, gene selection can be
solved as a feature selection problem. In general, a feature selection
algorithm mainly consists of two basic components: search pro-
cedure and evaluation criterion (Dash and Liu, 1997). The search
procedure generates candidate feature subsets for evaluation. In the
search procedure, candidate feature subsets can be generated either
sequentially or randomly. The well-known sequential forward selec-
tion (SFS) starts from an empty set and iteratively adds features,
while the sequential backward elimination (SBE) starts from the full
feature set and iteratively deletes features. The evaluation criterion
measures the goodness of the candidate feature subsets generated
by the search procedure. At each step of the iterative procedure, the
feature that leads to the greatest improvement after addition or the
least degradation after deletion is selected.

Generally, feature selection can be performed in two ways: the
filter and the wrapper methods (Devijver and Kittler, 1982). The
main difference between the two methods lies in the evaluation cri-
terion. The filter method employs intrinsic properties of data, such as
Mahalanobis class separability measure (Devijver and Kittler, 1982),
as the criterion for feature subset evaluation, while the wrapper
method evaluates feature subsets based on the performance of the
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classifier, such as classification errors. In most pattern recognition
applications, the wrapper method outperforms the filter method.
Several authors have employed wrapper methods in gene selec-
tion of microarray data (Inza et al., 2002; Xiong et al., 2001) and
received satisfactory performance. However, the accuracy of wrap-
per methods is coupled with intensive computations. In contrast,
the filter method is computationally efficient, and this makes the
filter method very suitable for gene selection in high dimensional
gene-expression data.

In our work we suggested a new filter-like evaluation criterion,
called LS Bound measure, for gene selection. The new criterion has
the advantages of both filter and wrapper methods. First, the cri-
terion is derived from the leave-one-out cross validation (LOOCV)
procedure of least squares support vector machines (LS-SVM) and
is closely related to an upper bound of LOOCV classification results.
Therefore, the criterion provides genes leading to accurate classific-
ation. Second, the estimation of the upper bound implicitly involves
the training of the classifier only once, without repeated use of cross
validation. As a result, the computational complexity is significantly
reduced compared with the classical wrapper method. Our experi-
ments showed that the computational complexity of our method is at
the level of the filter method.

The paper is organized as follows. The LS-SVM is first briefly
reviewed, and a new gene selection criterion, LS Bound measure,
based on the upper bound for LOOCV of LS-SVMs is then proposed.
The performance of the criterion is finally tested with two benchmark
microarray datasets, i.e. the colon cancer dataset (Alon et al., 1999)
and the leukemia dataset (Golub et al., 1999).

2 METHODS

2.1 Least squares support vector machines
In the past few years SVMs (Vapnik, 1998) have been introduced for solving
pattern recognition problems. When used for classification, SVMs separ-
ate one class from the other with a hyperplane that maximizes the distance
between the hyperplane and the nearest sample of each class. The determ-
ination of the hyperplane involves solving a quadratic programming(QP)
problem, which requires expensive computation. To alleviate this problem,
Suykens and Vandewalle (1999) proposed a least squares version of SVMs
for classification problems. Instead of considering inequality constraints in
the classical SVM approach, the LS-SVM employs equality constraints.

Consider l training data pairs: {xi , yi}, i = 1, . . . , l, where xi is an n-
dimensional vector representing the i-th sample, and yi is the class label of
xi , which is either +1 or −1. The linear decision boundary is described as:

wTx + b = 0, (1)

where w = [w1, w2, . . . , wn]T, and b is a scalar. In LS-SVMs, the
optimization problem is formulated as:

min
w,e

�(w, e) = 1

2
wTw + γ

2
eTe, (2)

subject to equality constraints

yi [wTxi + b] = 1 − ei , i = 1, . . . , l, (3)

where ei denotes regression error for sample xi , e = [e1, e2, . . . , el ]T, and
γ is a given positive value assigned to penalize errors. The role of γ , just as
that of the C in classical SVMs, is to adjust the compromise between gener-
alization and training accuracy. The solution to the optimization problem is
given by the saddle point of the Lagrangian:

L(w, b, e, α) = �(w, e) −
l∑

i=1

αi [yi(wTxi + b) − 1 + ei ] (4)

with Lagrange multipliers αi . The conditions for optimality

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂αi

= 0 and
∂L

∂ei

= 0

give

w =
l∑

i=1

αiyixi ,
l∑

i=1

αiyi = 0, αi = γ ei

and yi [wTxi + b] = 1 − ei . (5)

Equation (5) can be written in matrix form as:[
0 −YT

Y � + γ −1I

] [
b

α

]
=

[
0
�1
]

(6)

where Y = [y1, . . . , yl ]T, �1 = [1, . . . , 1]T, α = [α1, . . . , αl ]T and � =
{yiyj xT

i xj }.
Once the classifier is trained, we assign the corresponding class label of

the test pattern x by the sign of the function f (x):

f (x) =
l∑

i=1

αiyixT
i x + b. (7)

2.2 LS Bound measure for gene selection
Feature selection approaches can be broadly grouped into filter and wrapper
methods based on the evaluation criteria (Devijver and Kittler, 1982). The
filter method evaluates feature subset based on intrinsic properties of data,
which are related to the performance of the classifier but are not the direct
function of the performance. In contrast, the wrapper method evaluates the
feature subset based on the performance of the classifier directly. For better
generalization, often the LOOCV error is employed to guide the selection in
the wrapper method.

It is proved that the leave-one-out procedure gives an almost unbiased
estimate of the probability of test error (Luntz and Brailovsky, 1969). But
to obtain the leave-one-out error of each training data for a particular gene
set, it requires repeated training of classifiers in the leave-one-out procedure,
which makes the procedure a burdensome task. Several bounds on the expect-
ation of SVMs from the leave-one-out estimator were introduced to reduce
the high computational complexity in the leave-one-out procedure (Vapnik
and Chapelle, 2000). SVMs are well suited to work with high dimensional
data, such as microarray data (Furey et al., 2000). But the determination
of the hyperplane involves solving a QP problem, which requires expens-
ive computation. To alleviate this problem, our present work is focus on the
LS-SVMs (Suykens and Vandewalle, 1999). The advantage of LS-SVMs is
that the solution of LS-SVM can be obtained from solving a set of linear
equations, which is much easier than the QP in the classical SVM. Although
the performance of LS-SVMs on the classification of gene-expression data
might not be better than classical SVMs, the simplicity and high computa-
tional efficiency of LS-SVMs will be of great benefit to the selection of gene
subset from the high dimensional gene-expression data.

The decision function of a linear classifier can be written as:

f (x) = wTx + b. (8)

The classification is based on the sign of the decision function f (x) in
Equation (8). In the present work, we are concerned with value of f (x)

rather than the sign of f (x), because the value of f (x) not only indicates the
information of the class label of the sample x, but also indicates the distance
of sample x to the decision boundary. This value will change whenever a
feature is added to the feature subset or deleted from the feature subset. Even
if different feature subsets lead to the same classification results, the value
f (x) also provides a discriminant power to identify which subset is the best.

Next, we present a leave-one-out bound of f (x) by training once on the
entire training set to avoid repeated training for the leave-one-out procedure.
It can be proved (see proof in the companion website) that when LS-SVM
classifier is trained on the entire training set, if the corresponding Lagrangian

1560



LS Bound for gene selection

multiplier (α0
p) of the training sample xp is positive, the following inequality

holds in the leave-one-out procedure.

−ypf p(xp) ≤ α0
p[(Dp

min)
2 + 2/γ ] − 1, (9)

where f p is the decision function given by the LS-SVM after the sample xp

has been removed, α0
p is the corresponding Lagrangian multiplier of xp when

the LS-SVM classifier is trained on the entire training set, and D
p

min is the
distance between xp and its nearest neighbor. f p(xp) is the validation result
for the sample xp in the leave-one-out procedure. If ypf p(xp) is negative the
sample xp is considered as a leave-one-out error, and if ypf p(xp) is positive
xp is correctly classified in the leave-one-out procedure.

In the LS-SVM, we have α0
p = γ e0

p and ypf 0(xp) = 1 − e0
p [see Equa-

tions (5) and (3)]. According to the two equations, we group the training
data into three categories based on the value of Lagrange multiplier α0. The
first category includes the samples with α0

i ≤ 0, which are far away from
the decision boundary. They could be correctly classified not only when the
decision function is trained on the basis of the entire data set, but also during
the leave-one-out cross validation procedure in normal case. The samples
with 0 < α0

i < γ are in the second category. Although these samples are
correctly classified in the training stage, they might be misclassified during
the leave-one-out procedure because they are close to the decision boundary.
The third category comprises samples with α0

i ≥ γ , which are misclassified
not only in the training procedure but also in the leave-one-out procedure.
The bound on the right side of inequality (9) is especially useful for the data
in the second category. The upper bound is related to both the corresponding
training result and the nearest neighbor. If the bound is negative the sample
must be correctly classified in the leave-one-out procedure. If the bound is
positive, although we are uncertain whether it will be misclassified in the
leave-one-out procedure, the bound indicates to some extent the probability
of misclassification, and hence can be used to evaluate the goodness of the
feature (gene) set.

Combining the bounds for all training data together, we propose the fol-
lowing measure, called LS Bound measure, as the evaluation criterion for
gene selection:

M =
l∑

p=1

(α0
p[(Dp

min)
2 + 2/γ ] − 1)+, (10)

where (x)+ = max(0, x). α0 can be obtained from solving a set of linear
equations in the LS-SVM. The solution of α also can be simply formulated as:

α = H−1�1 − (YTH−1�1)(H−1Y)(YTH−1Y) (11)

where Y = [y1, . . . , yl ]T, �1 = [1, . . . , 1]T and H = �+γ −1I. Note that the
matrix H is positive definite and therefore invertible. The measure M gives
a bound on error expectation, and can be considered as an estimate of the
generalization performance. The feature (gene) subset which minimizes the
measure M is preferred.

The LS Bound measure M in Equation (10) can be combined with any
search algorithm, such as the sequential forward selection (SFS), to form
a gene selection algorithm. The SFS algorithm is a simple greedy heuristic
search algorithm. For better performance, other complex search algorithms,
such as sequential floating forward selection (SFFS) (Pudil et al., 1994), can
be used but at the cost of increasing the computational complexity. In this
paper we only focus on the SFS algorithm, while the implementation and
experimental results of combining LS Bound with SFFS algorithm can be
found in our website (http://www.ntu.edu.sg/home5/pg02776030/lsbound/).

The pseudo code of the sequential forward gene selection algorithm can
be summarized as follows:

The gene selection algorithm combining the LS Bound measure M

with SFS

(1) Initialize S to an empty set;
/* S is the set of selected genes */

(2) Initialize C to the full gene set;
/* C is the set of candidate genes

for selection */
(3) For i = 1 to m

/* m genes are expected to be
selected */
p = number of genes in set C;
For j = 1 to p

Take gene j from set C and
temporarily put into set S;

Calculate the measure M using
all genes in set S;

End
Select the gene with the minimal M;
Put the selected gene into set S;

End

The stopping criterion in our gene selection algorithm is whether a pre-
defined number of features are selected. In our experiments, we first selected
50 genes from the original gene set. However, the 50 genes are not the final
selection result because few of them can get the same or satisfactory per-
formance. In our opinion, the LS Bound measure reflects the generalization
performance of selected gene subset. The decrease of the LS Bound measure
indicates the improvement of the generalization performance. The decision
of final gene subset can be made based on whether the LS Bound measure
approaches the minimum, or whether adding more genes results in insignific-
ant change. For example, on the colon cancer dataset (see Results section), we
selected 15 genes because adding more genes would not reduce the LS Bound
measure significantly. For well separated dataset, after selecting several genes
the LS Bound measure would be reduced to zero. Under such a case, the
gene selection may be terminated when LS Bound measure is very close
to zero.

To select the relevant genes using the LS Bound measure proposed in
the present study, it is important to find the appropriate value of γ in
Equation (10). This can be done using a simple technique. We employed
our algorithm with a sequence of given values of γ to select important genes
on the entire dataset. Because the LS Bound measure indicates the general-
ization performance, the optimal value of γ is chosen to be the one which
gives the minimal LS Bound measure during the selection procedure.

2.3 Efficient computation of LS Bound measure
In the gene selection algorithm described above, the LS Bound measure M

needs to be computed for every candidate gene set. For a high dimensional
dataset such as microarray data, the repeated computation of M involving the
inverse of an l-by-l matrix H in Equation (11) is actually a computationally
intensive task. However, in the SFS search procedure we can express the
inverse by using the Sherman–Morrison–Woodbury formula (Golub and van
Loan, 1996):

(M + BCDT)−1 = M−1 − M−1B(C−1 + DTM−1B)−1 × DTM−1.
(12)

Suppose that we have selected a particular gene set S and the matrix H for
gene set S is denoted by HS . During the SFS search procedure, we have
to temporarily put each of the candidate genes into gene set S to test the
performance of each candidate gene. When gene k is added into gene set S

to form a temporary set S′ = S ∪ {xk}, the matrix H for gene set S′, denoted
by HS′ , can be formulated as

HS′ = HS + zzT, (13)

where vector z = (y1x1k , . . . , ylxlk)
T. According to the Sherman–

Morrision–Woodbury formula, we have:

H−1
S′ = H−1

S − H−1
S zzTH−1

S

1 + zTH−1
S z

. (14)

Equation (14) reveals that the inverse of HS′ corresponding to a new subset
S′ = S∪{xk} can be recursively computed from the inverse of HS using simple
matrix operations. Thus, in the SFS procedure, the complex inverse operation
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is no longer needed by using the trick of Equation (14). Even compared with
the filter measures, our measure, as well as our algorithm, is quite efficient.
For example, 33 s are needed to select 50 genes from 1000 candidate genes
using our gene selection algorithm on the colon cancer dataset in the Matlab
environment (2.5 GHz P4 CPU with 512 MB RAM), while 52 s are needed
in the Mahalanobis class separability measure-based sequential forward gene
selection.

3 RESULTS
In this section we report the performance of the proposed gene selec-
tion measure and algorithm on two publicly available microarray
datasets: colon cancer (Alon et al., 1999), and leukemia (Golub
et al., 1999). Each of these datasets was pre-processed using the
procedure described in Dudoit et al. (2002). After thresholding,
filtering and logarithmic-transforming, the microarray data were
standardized to zero mean and unit standard deviation across genes.
Because the dimensionality (number of genes) of microarray data
is huge, and many of the genes are irrelevant to the discriminant
task, we employed a pre-selection procedure to reduce the searching
space and computational time. We selected top 1000 genes based
on Fisher’s ratio, f = (µ1 − µ2)

2/(σ 2
1 + σ 2

2 ). All the simulations
and comparisons in this paper are based on the pre-processed and
pre-selected data.

There are two goals in this section. One is to identify (select)
genes which are significantly more important than others for the
classification. Because of the small sample size of microarray dataset
the goal can be fulfilled by selecting gene subset on the basis of the
entire sample data to make the selection more reliable.

The other goal is to evaluate the performance of our gene selection
criterion and algorithm, and to compare the performance with other
gene selection algorithms. To assess the performance of the gene
selection algorithm, in the literature some authors randomly split the
original dataset into two sets, a training set and a test set, and the gene
selection procedure was performed based on the training set while
the performance of selected genes was assessed from the test set.
Due to the small sample size of gene-expression data, however, the
approach is not advisable. While some employed the entire dataset
for gene selection, the performance of selected genes was tested using
k-fold cross validation. This kind of cross validation, called internal
cross validation, produces biased estimate. Ambroise and McLach-
lan (2002) suggested techniques of external (10-fold) cross validation
and external .632+ Bootstrap, in which the gene selection and val-
idation are performed on the different parts of the sample set, to
obtain an unbiased estimate. Considering the high variance problem
of cross validation, especially for the small-sample microarray data
(Braga-Neto and Dougherty, 2004), we employed the external .632+
Bootstrap (Ambroise and McLachlan, 2002; Efron and Tibshirani,
1997) to evaluate the performance of our gene selection algorithm.
Because there are no consistent approaches for evaluation of gene
selection algorithms in the literature, it is not easy to compare the
different algorithms using the published results alone. Therefore
we employed the same technique, external B.632+, to assess the
performance of different gene selection algorithms for comparison
purpose in our study (the gene selection algorithms used for compar-
ison are described below). The bootstrap samples are generated by
resampling with replacement from the original dataset. In the present
study, the balanced bootstrap samples with K = 200 replicates are
employed to reduce the variance. Each sample in the original sample
set is made to appear exactly K times in the balanced bootstrap

samples. The SVM was employed as the classifier to estimate the
error rates of different gene selection algorithms.

In the present study, we compared our LS Bound measure with a
few feature selection criteria, including Fisher’s ratio and Mahalan-
obis class separability measure. Fisher’s ratio is an individual gene
ranking criterion and is used to evaluate how well a single gene is
correlated with the separation between classes. For every gene the
Fisher’s ratio is defined as f = (µ1 − µ2)

2/(σ 2
1 + σ 2

2 ), where
µ1, µ2, σ1, σ2 denote the means and standard deviations of two
classes. The Mahalanobis class separability measure is a well-known
feature subset evaluation criterion in the literature of pattern recogni-
tion (Devijver and Kittler, 1982). In the experiment, the Mahalanobis
class separability measure is combined with SFS algorithm for gene
selection. We also compared our gene selection algorithm with other
published gene selection algorithms, including the Weighting factor
employed both in the Weighted Voting algorithm (Golub et al., 1999)
and with the SVM (Furey et al., 2000), and SVM RFE (Recursive
Feature Elimination) (Guyon et al., 2002). The Weighting factor
[a = |µ1 − µ2|/(σ1 + σ2)] is a minor variant of Fisher’s ratio, and
is also commonly used in the literature of microarray data analysis.
Benefiting from the good performance of SVMs in high dimensional
gene-expression data, SVM RFE is often considered as one of the
best gene selection algorithm in the literature.

3.1 Colon cancer dataset
The colon cancer dataset (Alon et al., 1999) contains gene-expression
levels of 40 tumor and 22 normal colon tissues for 2000 genes. The
task is to identify important genes which can distinguish colon cancer
from normal tissues.

We assessed the performance of our gene selection criterion using
external .632+ bootstrap technique and compared it with Fisher’s
ratio and Mahalanobis class separability measure, and other pub-
lished gene selection algorithms, such as Weighting factor and SVM
RFE. As shown in Figure 1, LS Bound measure is slightly inferior
to SVM RFE, but it outperforms other three algorithms. Note that
only genes 1, 2, 4, 8, 16 and 32 are selected in SVM RFE due to its
selection mechanism.

To identify the important genes for classification problem, we first
identified 50 genes by employing the gene selection on the entire
original dataset. According to the LS Bound measure on the selected
gene subset, we finally selected the first 15 genes listed in Table 1,
because adding more genes would not result in significant change on
the LS Bound measure. Some comments about the selected genes are
worthy of mention. The product of CD44 is a family of transmem-
brane glycoproteins generated by alternative splicing and differential
glycosylation. One of the CD44 variant forms, CD44v6, is closely
associated with transformation in human colon cancer, and its over-
expression may be a clinical indicator of colon cancer (Yamada et al.,
2003). Higher level of expression of RPS3 (Pogue-Geile et al., 1991)
in colon cancer compared to normal tissue has also been observed
before.

3.2 Leukemia dataset
The leukemia dataset was first described by Golub et al. (1999). The
dataset contains gene-expression levels of 72 patients with either
acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid
leukemia (AML, 25 cases) for 7129 human genes. The raw data
are available at http://www-genome.wi.mit.edu/cancer/. The task is
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Fig. 1. The external B.632+ error for the colon cancer dataset, shown as
the number of selected genes. The five curves are obtained from five gene
selection algorithms: the LS Bound measure combining with SFS algorithm,
Fisher’s ratio, Mahalanobis class separability measure with SFS algorithm,
Weighting factor and SVM RFE. The performance of LS Bound measure is
quite good.

Table 1. The top 15 selected genes for the colon cancer dataset

No. Access no. Gene

1 R87126 MYH, nonmuscle (Gallus gallus)
2 X55715 RPS3
3 T94579 Chitotriosidase precursor
4 T61661 PFN1
5 T57882 MYH9
6 R88740 ATP5J
7 T70062 ILF2
8 L37792 STX1A
9 M59042 CD44

10 K03474 MIS
11 T63508 Ferritin heavy chain
12 M84349 CD59
13 H15813 CEBPB
14 D00762 Proteasome comoponent C8
15 X53586 ITGA6

The genes and ESTs without indicating the source are all from Homo sapiens.

to identify important genes which are discriminant between ALL
and AML.

Again, we assessed the performance of our gene selection cri-
terion using external .632+ bootstrap technique and compared it
with Fisher’s ratio, Mahalanobis class separability measure, Weight-
ing factor and SVM RFE. As shown in Figure 2, our gene selection
algorithm outperforms the other algorithms in this dataset.

By employing the gene selection on the entire dataset we selected
12 most important genes for the classification between ALL and
AML. The 12 genes are shown in Table 2. Among the selected
genes, some of them have been reported to be related to myeloid
or lymphoblastic leukemia. Adipsin (D component of complement)
is contained in the locus 19p13.3, whose chromatin reorganiza-
tion is known to be associated with myeloid cell differentiation
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Fig. 2. The external B.632+ error for the leukemia dataset, shown as the num-
ber of selected genes. The five curves are obtained from five gene selection
algorithms: the LS Bound measure combining with SFS algorithm, Fisher’s
ratio, Mahalanobis class separability measure with SFS algorithm, Weighting
factor and SVM RFE. The LS Bound measure results in better performance
than others.

Table 2. The top 12 selected genes for the leukemia dataset

No. Access no. Gene

1 M84526 Adipsin
2 L15326 PTGS2(COX2)
3 M92287 Cyclin D3 (CCND3)
4 D26308 NADPH-flavin reductase
5 X95735 Zyxin
6 U75276 BRF1
7 U88667 ABCA4
8 U40343 CDKN2D
9 M31994 ALDH1

10 D26156 SMARCA4(SNF2)
11 J03779 CD10
12 S57212 MEF2C

All genes are from human mRNA.

(Wong et al., 1999). Cyclin D3 encodes protein critical for control-
ling the physiological progression from the G1 to the S phase of the
cell cycle. In acute lymphoblastic leukemia (ALL) cells conditional
expression of cyclin D3 leads to preventing glucocorticoid-induced
cell cycle G1 arrest (Ausserlechner et al., 2004). The gene ALDH1,
which encodes the retinoic acid synthesizing enzyme, was found
to be ectopically activated by HOX11 in NIH 3T3 cells, while the
activation of HOX11 is a feature of some T-cell tumors and in many
T-cell ALL cases the HOX11 gene is activated by translocation into
either of two T-cell receptor loci (Greene et al., 1998). CD10, the
common acute lymphoblastic leukemia antigen (CALLA), is the
most common marker for clinical immunophenotypic classification
of ALL. It is a membrane-bound neutral endopeptidase that can
be expressed in both B- and T-cell ALL (Pui et al., 1993). In the
work of Golub et al. (1999) four genes (adipsin, cyclin D3, zyxin
and SMARCA4) are also selected. Although Zyxin gene, which
encodes protein important for cell adhesion, and SMARCA4, which
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encodes protein for chromatin remodeling, were not reported to
have any role in hematopoisis, Zyxin is highly correlated with acute
myelogenous leukemia (AML) while SMARCA4 is correlated with
B-precursor ALL.

4 CONCLUSION
In the present study, we have proposed an LS Bound measure as
the evaluate criterion for gene selection. The LS Bound measure
can be considered as a hybrid of filter and wrapper methods. On
the one hand, the LS Bound measure is derived from the leave-one-
out procedure of LS-SVMs. As the upper bound for leave-one-out
classification results, the LS Bound measure has direct relation to
the performance of LS-SVMs, consequently it provides gene subset
leading to more accurate classification results than the filter method.
On the other hand, unlike the classical wrapper method, the LS
Bound measure does not demand repeated trainings for cross val-
idation. The training procedure involved is implicitly expressed in
Equation (11), which has a similar computational complexity to the
filter method. The effectiveness of the LS Bound measure has been
tested on two benchmark microarray datasets when the LS Bound
measure is combined with SFS to form a gene selection algorithm.
We also combined the SFFS search procedure with LS Bound meas-
ure for gene selection on the same datasets, and the results revealed
that the superiority of the LS Bound measure does not depend on
a specific search procedure. For details, please refer to the website
http://www.ntu.edu.sg/home5/pg02776030/lsbound/
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