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The support vector machine (SVM) is known for its good performance in two-class
classification, but its extension to multiclass classification is still an ongoing research is-
sue. In this article, we propose a new approach for classification, called the import vector
machine (IVM), which is built on kernel logistic regression (KLR). We show that the IVM
not only performs as well as the SVM in two-class classification, but also can naturally
be generalized to the multiclass case. Furthermore, the IVM provides an estimate of the
underlying probability. Similar to the support points of the SVM, the IVM model uses only
a fraction of the training data to index kernel basis functions, typically a much smaller
fraction than the SVM. This gives the IVM a potential computational advantage over the
SVM.
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ing kernel Hilbert space (RKHS); Support vector machines.

1. INTRODUCTION

In standard classification problems, we are given a set of training data (x1, y1), (x2, y2),
. . . , (xn, yn), where the input xi ∈ Rp and the output yi is qualitative and assumes values
in a finite set C, for example, C = {1, 2, . . . , C}. We wish to find a classification rule from
the training data, so that when given a new input x, we can assign a class c from C to it.
Usually it is assumed that the training data are an independently and identically distributed
sample from an unknown probability distribution P (X,Y ).

The support vector machine (SVM) works well in two-class classification, that is,
y ∈ {−1, 1}, but its appropriate extension to the multiclass case is still an ongoing research
issue (e.g., Vapnik 1998; Weston and Watkins 1999; Bredensteiner and Bennett 1999; Lee,
Lin, and Wahba 2002). Another property of the SVM is that it only estimates sign[p(x)−1/2]
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(Lin 2002), while the probability p(x) is often of interest itself, where p(x) = P (Y =
1|X = x) is the conditional probability of a point being in class 1 given X = x. In this
article, we propose a new approach, called the import vector machine (IVM), to address the
classification problem. We show that the IVM not only performs as well as the SVM in two-
class classification, but also can naturally be generalized to the multiclass case. Furthermore,
the IVM provides an estimate of the probability p(x). Similar to the support points of the
SVM, the IVM model uses only a fraction of the training data to index the kernel basis
functions. We call these training data import points. The computational cost of the SVM is
O(n2ns) (e.g., Kaufman 1999), where ns is the number of support points and ns usually
increases linearly with n, while the computational cost of the IVM is O(n2m2), where m

is the number of import points. Because m does not tend to increase as n increases, the
IVM can be faster than the SVM. Empirical results show that the number of import points
is usually much less than the number of support points.

In Section 2, we briefly review some results of the SVM for two-class classification
and compare it with kernel logistic regression (KLR). In Section 3, we propose our IVM
algorithm. In Section 4, we show some numerical results. In Section 5, we generalize the
IVM to the multiclass case.

2. SUPPORT VECTOR MACHINES AND KERNEL LOGISTIC
REGRESSION

The standard SVM produces a nonlinear classification boundary in the original input
space by constructing a linear boundary in a transformed version of the original input space.
The dimension of the transformed space can be very large, even infinite in some cases.
This seemingly prohibitive computation is achieved through a positive definite reproducing
kernel K(·, ·), which gives the inner product in the transformed space.

Many people have noted the relationship between the SVM and regularized function
estimation in the reproducing kernel Hilbert spaces (RKHS). An overview can be found in
Burges (1998), Evgeniou, Pontil, and Poggio (1999), Wahba (1999), and Hastie, Tibshirani,
and Friedman (2001). Fitting an SVM is equivalent to

min
f∈HK

1
n

n∑
i=1

[
1 − yif(xi)

]
+ +

λ

2
‖f‖2

HK
, (2.1)

where HK is the RKHS generated by the kernel K(·, ·). The classification rule is given by
sign[f(x)]. For the purpose of simple notation, we omit the constant term in f(x).

By the representer theorem (Kimeldorf and Wahba 1971), the optimal f(x) has the
form:

f(x) =
n∑

i=1

aiK(x,xi). (2.2)

It often happens that a sizeable fraction of the n values of ai can be zero. This is a con-
sequence of the truncation property of the first part of criterion (2.1). This seems to be an
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Figure 1. Two loss functions, y ∈ { −1, 1}.

attractive property, because only the points on the wrong side of the classification bound-
ary, and those on the right side but near the boundary have an influence in determining the
position of the boundary, and hence have nonzero ai’s. The corresponding xi’s are called
support points.

Notice that (2.1) has the form loss + penalty. The loss function (1 − yf)+ is plotted in
Figure 1, along with the negative log-likelihood (NLL) of the binomial distribution. As we
can see, the NLL of the binomial distribution has a similar shape to that of the SVM: both
increase linearly as yf gets very small (negative) and both encourage y and f to have the
same sign. If we replace (1 − yf)+ in (2.1) with ln(1 + e−yf ), the NLL of the binomial
distribution, the problem becomes a kernel logistic regression (KLR) problem:

min
f∈HK

1
n

n∑
i=1

ln
(

1 + e−yif(xi)
)

+
λ

2
‖f‖2

HK
. (2.3)

Because of the similarity between the two loss functions, we expect that the fitted function
performs similarly to the SVM for two-class classification.

There are two immediate advantages of making such a replacement: (a) Besides giving
a classification rule, KLR also offers a natural estimate of the probability p(x) = ef(x)/(1+
ef(x)), while the SVM only estimates sign[p(x)−1/2] (Lin 2002); (b) KLR can naturally be
generalized to the multiclass case through kernel multi-logit regression. However, because
KLR compromises the hinge loss function of the SVM, it no longer has the support points
property; in other words, all the ai’s in (2.2) are nonzero.

KLR is a well-studied problem; see Green and Yandell (1985), Hastie and Tibshirani
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(1990), Wahba, Gu, Wang, and Chappell (1995) and the references therein; however, they
are all under the smoothing spline analysis of variance scheme.

We use a simulation example to illustrate the similar performances between KLR and
the SVM. The data in each class are simulated from a mixture of Gaussian distribution
(Hastie et al. 2001): first we generate 10 means µk from a bivariate Gaussian distribution
N((1, 0)T , I) and label this class +1. Similarly, 10 more are drawn from N((0, 1)T , I)
and labeled class −1. Then for each class, we generate 100 observations as follows: for
each observation, we pick an µk at random with probability 1/10, and then generate a
N(µk, I/5), thus leading to a mixture of Gaussian clusters for each class.

We use the radial basis kernel

K(xi,xi′) = e− ‖xi−x
i′ ‖2

2σ2 . (2.4)

The regularization parameter λ is chosen to achieve good misclassification error. The results
are shown in Figure 2. The radial basis kernel produces a boundary quite close to the Bayes
optimal boundary for this simulation. We see that the fitted model of KLR is quite similar in
classification performance to that of the SVM. In addition to a classification boundary, since
KLR estimates the log-odds of class probabilities, it can also produce probability contours
(Figure 2).

2.1 KLR AS A MARGIN MAXIMIZER

The SVM was initiated as a method to maximize the margin, that is, mini yif(xi),
of the training data; KLR is motivated by the similarity in shape between the NLL of the
binomial distribution and the hinge loss of the SVM. Then a natural question is: what does
KLR do with the margin?

Suppose the dictionary of the basis functions of the transformed feature space is

{h1(x), h2(x), . . . , hq(x)} ,

where q is the dimension of the transformed feature space. Note if q = p and hj(x) is the
jth component of x, the transformed feature space is reduced to the original input space.
The classification boundary, a hyperplane in the transformed feature space, is given by

{x : f(x) = β0 + h(x)T β = 0}.

Suppose the transformed feature space is so rich that the training data are separable, then
the margin-maximizing SVM can be written as:

max
β0,βββ,‖βββ‖2=1

D (2.5)

 subject to yi

(
β0 + h(xi)T β

) ≥ D, i = 1, . . . , n (2.6)

where D is the shortest distance from the training data to the separating hyperplane and is
defined as the margin (Burges 1998).



KERNEL LOGISTIC REGRESSION 189

Figure 2. The solid black lines are classification boundaries; the dashed purple lines are Bayes optimal boundaries.
For the SVM, the dotted black lines are the edges of the margins and the black points are the points exactly on the
edges of the margin. For the IVM, the dotted black lines are the p1(x) = .25 and .75 lines and the black points
are the import points. Because the classification boundaries of KLR and the IVM are almost identical, we omit the
picture of KLR here.
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Now consider an equivalent setup of KLR:

min
β0,βββ

n∑
i=1

ln
(

1 + e−yif(xi)
)

(2.7)

subject to ‖β‖2
2 ≤ s (2.8)

f(xi) = β0 + h(xi)T β, i = 1, . . . , n. (2.9)

Then we have Theorem 1.

Theorem 1. Suppose the training data are separable, that is, ∃β0,β, s.t. yi(β0 +
h(xi)T β) > 0, ∀i. Let the solution of (2.7)–(2.9) be denoted by β̂(s), then

β̂(s)
s

→ β∗  as s → ∞,

where β∗ is the solution of the margin-maximizing SVM (2.5)–(2.6), if β∗ is unique.

If β∗ is not unique, then β̂ββ(s)
s may have multiple convergence points, but they will all

represent margin-maximizing separating hyperplanes.

The proof of the theorem appears in the Appendix. Theorem 1 implies that KLR, similar
to the SVM, can also be considered as a margin maximizer. We have also proved a more
general theorem relating loss functions and margin maximizers in Rosset, Zhu, and Hastie
(2004).

2.2 COMPUTATIONAL CONSIDERATIONS

Because (2.3) is convex, it is natural to use the Newton-Raphson method to fit KLR. In
order to guarantee convergence, suitable bisection steps can be combined with the Newton-
Raphson iterations. The drawback of the Newton-Raphson method is that in each iteration,
an n × n matrix needs to be inverted. Therefore the computational cost of KLR is O(n3).
Recently Keerthi, Duan, Shevade, and Poo (2002) proposed a dual algorithm for KLR
which avoids inverting huge matrices. It follows the spirit of the popular sequential minimal
optimization (SMO) algorithm (Platt 1999). Preliminary computational experiments show
that the algorithm is robust and fast. Keerthi et al. (2002) described the algorithm for two-
class classification; we have generalized it to the multiclass case (Zhu and Hastie 2004).

Although the sequential minimal optimization method helps reduce the computational
cost of KLR, in the fitted model (2.2), all the ai’s are nonzero. Hence, unlike the SVM,
KLR does not allow for data compression and does not have the advantage of less storage
and quicker evaluation.

In this article, we propose an import vector machine (IVM) model that finds a submodel
to approximate the full model (2.2) given by KLR. The submodel has the form:

f(x) =
∑
xi∈S

aiK(x,xi), (2.10)

where S is a subset of the training data {x1,x2, . . . ,xn}, and the data in S are called import
points. The advantage of this submodel is that the computational cost is reduced, especially
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for large training datasets, while not jeopardizing the performance in classification; and
since only a subset of the training data are used to index the fitted model, data compression
is achieved.

Several other researchers have also investigated techniques in selecting the subset S.
Lin et al. (2000) divided the training data into several clusters, then randomly selected a
representative from each cluster to make up S. Smola and Schölkopf (2000) developed a
greedy technique to sequentially select m columns of the kernel matrix [K(xi,xi′)]n×n,
such that the span of these m columns approximates the span of [K(xi,xi′)]n×n well in
the Frobenius norm. Williams and Seeger (2001) proposed randomly selecting m points of
the training data, then using the Nystrom method to approximate the eigen-decomposition
of the kernel matrix [K(xi,xi′)]n×n, and expanding the results back up to n dimensions.
None of these methods uses the output yi in selecting the subset S (i.e., the procedure only
involves xi). The IVM algorithm uses both the output yi and the input xi to select the subset
S, in such a way that the resulting fit approximates the full model well. The idea is similar
to that used in Luo and Wahba (1997), which also used the output yi to select a subset of
the training data, but under the regression scheme.

3. IMPORT VECTOR MACHINES

In KLR, we want to minimize

H =
1
n

n∑
i=1

ln
(

1 + e−yif(xi)
)

+
λ

2
‖f‖2

HK
. (3.1)

Let

pi =
1

1 + e−yif(xi)
, i = 1, . . . n (3.2)

a = (a1, . . . , an)T (3.3)

p = (p1, . . . , pn)T (3.4)

y = (y1, . . . , yn)T (3.5)

K1 =
(
K(xi,xi′)

)n

i,i′=1
(3.6)

K2 = K1 (3.7)

W = diag
(
p1(1 − p1), . . . , pn(1 − pn)

)
. (3.8)

With some abuse of notation, using (2.2), (3.1) can be written in a finite dimensional form:

H =
1
n
1T ln

(
1 + e−y·(K1a)

)
+

λ

2
aT K2a, (3.9)

where “·” denotes element-wise multiplication. To find a, we set the derivative of H with
respect to a equal to 0, and use the Newton-Raphson method to iteratively solve the score
equation. It can be shown that the Newton-Raphson step is a weighted least squares step:

a(k) =
(

1
n
KT

1 WK1 + λK2

)−1

KT
1 Wz, (3.10)
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where a(k) is the value of a in the kth step, and

z =
1
n

(
K1a(k−1) + W−1(y · p)

)
. (3.11)

3.1 BASIC ALGORITHM

As mentioned in Section 2, we want to find a subset S of {x1,x2, . . . ,xn}, such that the
submodel (2.10) is a good approximation of the full model (2.2). Because searching for every
subset S is a combinatorial problem and computationally prohibitive, we use the following
greedy forward strategy: we start with the null model, that is, S = ∅, then iteratively build
up S one element at a time. Basically, we look for a data point among {x1,x2, . . . ,xn}\S,
so that if it is added into the current S, the new submodel will decrease the regularized
negative log-likelihood the most:

Algorithm 1: Basic IVM Algorithm.
1. Let S = ∅, L = {x1,x2, . . . ,xn}, k = 1.
2. For each xl ∈ L, let

fl(x) =
∑

xi∈S∪{xl}
aiK(x,xi).

Use the Newton-Raphson method to find a to minimize

H(xl) =
1
n

n∑
i=1

ln
(
1 + exp(−yifl(xi))

)
+

λ

2
‖fl(x)‖2

HK
(3.12)

=
1
n
1T ln

(
1 + exp(−y · (Kl

1a))
)

+
λ

2
aT Kl

2a, (3.13)

where the regressor matrix

Kl
1 =

(
K(xi,xi′)

)
n×k

, xi ∈ {x1, . . . ,xn},xi′ ∈ S ∪ {xl};

the regularization matrix

Kl
2 =

(
K(xi,xi′)

)
k×k

,xi,xi′ ∈ S ∪ {xl};

and k = |S| + 1.
3. Find

xl∗ = argmin
xl∈L

H(xl).

Let S = S ∪ {xl∗}, L = L \ {xl∗}, Hk = H(xl∗), k = k + 1.
4. Repeat Steps 2 and 3 until Hk converges.

The points in S are the import points.
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3.2 REVISED ALGORITHM

The above algorithm is computationally feasible, but in Step 2 we need to use the
Newton-Raphson method to find a iteratively. When the number of import points k becomes
large, the Newton-Raphson computation can be expensive. To reduce this computation, we
use a further approximation.

Instead of iteratively computing a(k) until it converges, we can just do a one-step
iteration, and use it as an approximation to the converged one. This is equivalent to ap-
proximating the negative binomial log-likelihood with a different weighted quadratic loss
function at each iteration. To get a good approximation, we take advantage of the fitted
result from the current “optimal” S, that is, the submodel when |S| = k − 1, and use it to
compute z in (3.11). This one-step update is similar to the score test in generalized linear
models (GLM); but the latter does not have a penalty term. The updating formula allows
the weighted regression (3.10) to be computed in O(nm) time.

Hence, we have the revised Steps 1 and 2 for the basic algorithm:

Algorithm 2: Revised Steps 1 and 2.
1∗ Let S = ∅, L = {x1,x2, . . . ,xn}, k = 1. Let a(0) = 0, hence z = 2y/n.
2∗ For each xl ∈ L, correspondingly augment K1 with a column, and K2 with a

column and a row. Use the current submodel from iteration (k − 1) to compute z in
(3.11) and use the updating formula (3.10) to find a. Compute (3.13).

3.3 STOPPING RULE FOR ADDING POINT TO S
In Step 4 of the basic algorithm, we need to decide whether Hk has converged. A

natural stopping rule is to look at the regularized NLL. Let H1, H2, . . . be the sequence of
regularized NLL’s obtained in Step 3. At each step k, we compare Hk with Hk−∆k, where
∆k is a prechosen small integer, for example ∆k = 1. If the ratio |Hk−Hk−∆k|

|Hk| is less than
some prechosen small number ε, for example, ε = .001, we stop adding new import points
to S.

3.4 CHOOSING THE REGULARIZATION PARAMETER λ

So far, we have assumed that the regularization parameter λ is fixed. In practice, we
also need to choose an “optimal” λ. We can randomly split all the data into a training set
and a tuning set, and use the misclassification error on the tuning set as a criterion for
choosing λ. To reduce the computation, we take advantage of the fact that the regularized
NLL converges faster for a larger λ. Thus, instead of running the entire revised algorithm
for each λ, we propose the following procedure, which combines both adding import points
to S and choosing the optimal λ.

Algorithm 3: Simultaneous Selection of S and λ.
1. Start with a large regularization parameter λ.



194 J. ZHU AND T. HASTIE

Figure 3. Radial kernel is used. n = 200, σ2 = .7, ∆k = 3, ε = .001, λ decreases from e10 to e−10. The minimum
misclassification rate .262 is found to correspond to λ = 1.

2. Let S = ∅, L = {x1,x2, . . . ,xn}, k = 1. Let a(0) = 0, hence z = 2y/n.
3. Run Steps 2∗, 3, and 4 of the revised Algorithm 2, until the stopping criterion is

satisfied at S = {xi1 , . . . ,xik
} . Along the way, also compute the misclassification

error on the tuning set.
4. Decrease λ to a smaller value.
5. Repeat Steps 3 and 4, starting with S = {xi1 , . . . ,xik

}.
We choose the optimal λ as the one that corresponds to the minimum misclassification error
on the tuning set.

4. NUMERICAL RESULTS

In this section, we use both simulation and real data to illustrate the IVM method.

4.1 SIMULATION RESULTS

The data are generated in the same way as Figure 2. The simulation results are shown
in Figures 3–5.
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Figure 4. Radial kernel is used. n = 200, σ2 = .7, ∆k = 3, ε = .001, λ = 1. The stopping criterion is satisfied
when |S| = 19.

Figure 3 shows how the tuning parameter λ is selected. The optimal λ is found to
be equal to 1 and corresponds to a misclassification rate .262. Figure 4 fixes the tuning
parameter to λ = 1 and finds 19 import points. Figure 2 compares the results of the SVM
and the IVM: the SVM has 130 support points, and the IVM uses 19 import points; they
give similar classification boundaries. Figure 5 is for the same simulation but different sizes
of training data: n = 200, 400, 600, 800. We see that as the size of training data n increases,
the number of import points does not tend to increase.

Remarks. The support points of the SVM are those which are close to the classification
boundary or misclassified and usually have large weights p(x)(1−p(x)). The import points
of the IVM are those that decrease the regularized NLL the most, and can be either close
to or far from the classification boundary. This difference is natural, because the SVM is
concerned only with the classification sign

[
p(x) − 1/2

]
, while the IVM also focuses on

the unknown probability p(x). Though points away from the classification boundary do not
contribute to determining the position of the classification boundary, they may contribute
to estimating the unknown probability p(x). The total computational cost of the SVM
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Figure 5. The data are generated in the same way as Figures 2–4. Radial kernel is used. σ2 = .7, λ = 1, ∆k = 3,
ε = .001. The sizes of training data are n = 200, 400, 600, 800, and the corresponding numbers of import points
are 19, 18, 19, 18.

is O(n2ns) (e.g., Kaufman 1999), where ns is the number of support points, while the
computational cost of the IVM method is O(n2m2), where m is the number of import
points. Since m does not tend to increase as n increases, as illustrated in Figure 5, the
computational cost of the IVM can be smaller than that of the SVM.

4.2 REAL DATA RESULTS

In this section, we compare the performances of the IVM and the SVM on some real
datasets. Ten benchmark datasets are used for this purpose: Banana, Breast-cancer, Flare-
solar, German, Heart, Image, Ringnorm, Splice, Thyroid, Titanic, Twonorm and Waveform.
Detailed information about these datasets can be found in Rätsch, Onoda, and Müller (2000).

Table 1 contains a summary of these datasets. Radial kernel (2.4) is used throughout
these datasets. The parameters σ and λ are fixed at specific values that are optimal for the
SVMs generalization performance (Rätsch et al. 2000). Each dataset has 20 realizations of
the training and test data. The results are in Table 2 and Table 3. The number outside each
bracket is the mean over 20 realizations of the training and test data, and the number in
each bracket is the standard error. From Table 2, we can see that the IVM performs as well
as the SVM in classification on these benchmark datasets. From Table 3, we can see that
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Table 1. Summary of the Ten Benchmark Datasets. n is the size of the training data, p is the dimension
of the original input, σ2 is the parameter of the radial kernel, λ is the tuning parameter, and N
is the size of the test data.

Dataset n p σ2 λ N

Banana 400 2 1 3.16 × 10−3 4900
Breast-cancer 200 9 50 6.58 × 10−2 77
Flare-solar 666 9 30 .978 400
German 700 20 55 .316 300
Heart 170 13 120 .316 100
Image 1300 18 3 .002 1010
Ringnorm 400 20 10 10−9 7000
Thyroid 140 5 3 .1 75
Titanic 150 3 2 10−5 2051
Twonorm 400 20 40 .316 7000
Waveform 400 21 20 1 4600

the IVM typically uses a much smaller fraction of the training data than the SVM to index
kernel basis functions. This may give the IVM a computational advantage over the SVM.

5. MULTICLASS CASE

In this section, we briefly describe a generalization of the IVM to multiclass classifi-
cation. Suppose there are C classes. The conditional probability of a point being in class c

given X = x is denoted as pc(x) = P (Y = c|X = x). Hence the Bayes classification rule
is given by:

c(x) =  argmax
c∈{1,...,C}

pc(x)

The model has the form

p1(x) =
ef1(x)∑C

c=1 e
fc(x)

, (5.1)

p2(x) =
ef2(x)∑C

c=1 e
fc(x)

, (5.2)

... (5.3)

pC(x) =
efC(x)∑C
c=1 e

fc(x)
, (5.4)

where fc(x) ∈ HK ; HK is the RKHS generated by a positive definite kernel K(·, ·). Notice
that f1(x), . . . , fC(x) are not identifiable in this model, for if we add a common term to
each fc(x), p1(x), . . . , pC(x) will not change. To make fc(x) identifiable, we consider the
symmetric constraint

C∑
c=1

fc(x) = 0. (5.5)
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Table 2. Comparison of Classification Performance of SVM and IVM on Ten Benchmark Datasets

Dataset SVM Error (%) IVM Error (%)

Banana 10.78 (± .68) 10.34 (± .46)
Breast-cancer 25.58 (± 4.50) 25.92 (± 4.79)
Flare-solar 32.65 (± 1.42) 33.66 (± 1.64)
German 22.88 (± 2.28) 23.53 (± 2.48)
Heart 15.95 (± 3.14) 15.80 (± 3.49)
Image 3.34 (.70) 3.31 (± .80)
Ringnorm 2.03 (± .19) 1.97 (± .29)
Thyroid 4.80 (± 2.98) 5.00 (± 3.02)
Titanic 22.16 (± .60) 22.39 (± 1.03)
Twonorm 2.90 (± .25) 2.45 (± .15)
Waveform 9.98 (± .43) 10.13 (± .47)

Then the multiclass KLR fits a model to minimize the regularized negative log-likelihood

H = − 1
n

n∑
i=1

ln pyi(xi) +
λ

2
‖f‖2

HK
(5.6)

=
1
n

n∑
i=1

[
−yT

i f(xi) + ln
(
ef1(xi) + · · · + efC(xi)

)]
+

λ

2
‖f‖2

HK
, (5.7)

where yi is a binary C-vector with values all zero except a 1 in position c if the class is c,
and

f(xi) =
(
f1(xi), . . . , fC(xi)

)T
, (5.8)

‖f‖2
HK

=
C∑

c=1

‖fc‖2
HK

. (5.9)

Using the representer theorem (Kimeldorf and Wahba 1971), one can show that fc(x),
which minimizes H , has the form

fc(x) =
n∑

i=1

aicK(xi,x). (5.10)

Table 3. Comparison of Number of Kernel Basis Used by SVM and IVM on Ten Benchmark Datasets

Dataset # of SV # of IV

Banana 90 (± 10) 21 (± 7)
Breast-cancer 115 (± 5) 14 (± 3)
Flare-solar 597 (± 8) 9 (± 1)
German 407 (± 10) 17 (± 2)
Heart 90 (± 4) 12 (± 2)
Image 221 (± 11) 72 (± 18)
Ringnorm 89 (± 5) 72 (± 30)
Thyroid 21 (± 2) 22 (± 3)
Titanic 69 (± 9) 8 (± 2)
Twonorm 70 (± 5) 24 (± 4)
Waveform 151 (± 9) 26 (± 3)
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Hence, (5.6) becomes

H =
1
n

n∑
i=1

[
−yT

i

(
K1(i, )A

)T + ln
(
1T e(K1(i,)A)T

)]
+

λ

2

C∑
c=1

aT
c K2ac, (5.11)

where A = (a1 . . .aC), K1 and K2 are defined in the same way as in the two-class case; and
K1(i, ) is the ith row of K1. Notice that in this model, the constraint (5.5) is not necessary
anymore, for at the minimum of (5.6),

∑C
c=1 fc(x) = 0 is automatically satisfied.

5.1 MULTICLASS KLR AND MULTICLASS SVM

Similar to Theorem 1, a connection between the multiclass KLR and a multiclass SVM
also exists.

In going from the two-class SVM to the multiclass classification, many researchers
have proposed various procedures.

In practice, the one-versus-rest scheme is often used: given C classes, the problem
is divided into a series of C one-versus-rest problems, and each one-versus-rest problem
is addressed by a different class-specific SVM classifier (e.g., “class 1” vs. “not class
1”); then a new sample takes the class of the classifier with the largest real valued output
c∗ =  argmaxc=1,...,Cfc, where fc is the real valued output of the cth SVM classifier.

Instead of solving C problems, Vapnik (1998) and Weston and Watkins (1999) gener-
alized (2.1) by solving one single optimization problem:

max
fc

D (5.12)

 subject to fyi(xi) − fc(xi) ≥ D(1 − ξic), (5.13)

i = 1, . . . n, c = 1, . . . C, c /= yi (5.14)

ξic ≥ 0,
∑

i

∑
c /=yi

ξic ≤ λ (5.15)

C∑
c=1

‖fc‖2
HK

= 1. (5.16)

Recently, Lee et al. (2002) pointed out that (5.12)–(5.16) is not always Bayes optimal.
They proposed an algorithm that implements the Bayes classification rule and estimates
argmaxcP (Y = c|X = x) directly.

Here we propose a theorem that illustrates the connection between the multiclass KLR
and one version of the multiclass SVM.

Theorem 2. Suppose the training data are pairwise separable, that is, ∃fc(x), s.t.
fyi(xi) − fc(xi) > 0, ∀i, ∀c /= yi. Then as λ → 0, the classification boundary given by
the multi-class KLR (5.6) will converge to that given by the multiclass SVM (5.12)–(5.16),
if the latter is unique.

The proof of the theorem is very similar to that of Theorem 1, we omit it here. Note that in
the case of separable classes, (5.12)–(5.16) is guaranteed to be Bayes optimal.
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Figure 6. Radial kernel is used. C = 3, n = 300, λ = .368, |S| = 32.

5.2 MULTICLASS IVM

The multiclass IVM procedure is similar to the two-class case (we omit the details),
and the computational cost is O(Cn2m2). Figure 6 is a simulation of the multiclass IVM.
The data in each class are generated from a mixture of Gaussians (Hastie et al. 2001).

6. DISCUSSION

The support vector machine has been very successful for two-class classification and
gained a lot of attention in the machine learning society in the past 10 years. Many articles
have been published to explain why the support vector machine performs well in two-
class classification. Most of this literature concentrates on the concept of margin. Various
misclassification error bounds have been derived based on the margin (e.g., Vapnik 1995,
1998; Bartlett and Shawe-Taylor 1999; Shawe-Taylor and Cristianini 1999).

However, our view in this article is a little different from that based on the concept of
margin. Several researchers have noted the relationship between the support vector machine
and regularized function estimation in RKHS (e.g., Evgeniou et al. 1999; Wahba 1999;
Hastie et al. 2001). The regularized function estimation problem contains two parts: a loss
function and a regularization term. What is special with the support vector machine is
the loss function, that is, the hinge loss. The margin maximizing property of the support
vector machine derives from the hinge loss function. Lin (2002) pointed out that the hinge
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loss is Bayes consistent, that is, the population minimizer of the loss function agrees with
the Bayes rule in terms of classification. We believe this is a big step in explaining the
success of the support vector machine, because it implies the support vector machine is
trying to implement the Bayes rule. However, this is only part of the story; we believe that
the regularization term has also played an important role in the support vector machine’s
success.

Regularization is an essential component in modern data analysis, in particular when
the number of basis functions is large, possibly larger than the number of observations, and
nonregularized fitting is guaranteed to give badly overfitted models. The enlarged feature
space in the support vector machine allows the fitted model to be flexible, and the regulariza-
tion term controls the complexity of the fitted model; theL2 nature of the regularization term
in the support vector machine allows the fitted model to have a finite representation, even if
the fitted model is in an infinite dimensional space. Hence we propose that by replacing the
hinge loss of the support vector machine with the negative binomial log-likelihood, which
is also Bayes consistent, we should be able to get a fitted model that performs similarly
to the support vector machine. The resulting kernel logistic regression is something our
statisticians are very familiar with (e.g., Green and Yandell 1985; Hastie and Tibshirani
1990; Wahba et al. 1995). We all understand why it can work well. The same reasoning
could be applied to the support vector machine. The import vector machine algorithm is
just a way to compress the data and reduce the computational cost.

Kernel logistic regression is not the only model that performs similarly to the support
vector machine, replacing the hinge loss with any sensible loss function will give similar
result, for example, the exponential loss function of boosting (Freund and Schapire 1997),
the squared error loss (e.g., Buhlmann and Yu 2001; Zhang and Oles 2001; Mannor, Meir,
and Zhang 2002) and the 1/yf loss for distance weighted discrimination (Marron and Todd
2002). These loss functions are all Bayes consistent. The negative binomial log-likelihood
and the exponential loss are also margin-maximizing loss functions; but the squared error
loss and the 1/yf loss are not.

To summarize, margin maximization is by nature a nonregularized objective, and solv-
ing it in high-dimensional space is likely to lead to overfitting and bad prediction per-
formance. This has been observed in practice by many researchers, in particular Breiman
(1999). Our conclusion is that margin maximization is not the only key to the support vector
machine’s success; the regularization term has played an important role.

APPENDIX

A.1 PROOF OF THEOREM 1

 
For the purpose of simple notation, we omit the constant β0 in the proof. We define

G(β) ≡
n∑

i=1

ln
(

1 + e−yih(xi)T βββ
)
.
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Lemma A.1. Consider the optimization problem (2.7)–(2.9), let the solution be de-
noted by β̂(s). If the training data are separable, that is, ∃β, s.t. yih(xi)T β > 0, ∀i, then
yih(xi)T β̂(s) > 0, ∀i and ‖β̂(s)‖2 = s for all s > s0, where s0 is a fixed positive number.

Hence,
∥∥∥ β̂ββ(s)

s

∥∥∥
2

= 1.

Proof: Suppose ∃i∗, s.t. yi∗h(xi∗)T β ≤ 0, then

G(β) ≥ ln
(

1 + e−yi∗ h(xi∗ )T βββ
)

(A.1)

≥ ln 2. (A.2)

On the other hand, by the separability assumption, we know there exists β∗, ‖β∗‖2 = 1,
s.t. yih(xi)T β∗ > 0, ∀i. Then for s > s0 = − ln(21/n − 1)/mini

(
yih(xi)T β∗), we have

G(sβ∗) =
n∑

i=1

ln
(

1 + e−yih(xi)T βββ∗s
)

(A.3)

<

n∑
i=1

ln 2
n

= ln 2. (A.4)

Since G(β̂(s)) ≤ G(sβ∗), we have, for s > s0, yih(xi)T β̂(s) > 0, ∀i.
For s > s0, if ‖β̂(s)‖2 < s, we consider to scale up β̂(s) by letting

β̂
′
(s) =

β̂(s)
‖β̂(s)‖2

s.

Then ‖β̂
′
(s)‖2 = s, and

G
(
β̂

′
(s)

)
=

n∑
i=1

ln
(

1 + e−yih(xi)T β̂ββ
′(s)

)
(A.5)

<

n∑
i=1

ln
(

1 + e−yih(xi)T β̂ββ(s)
)

(A.6)

= G
(
β̂(s)

)
, (A.7)

which is a contradiction. Hence ‖β̂(s)‖2 = s.

✷

Now we consider two separating candidates β1 and β2, such that ‖β1‖2 = ‖β2‖2 = 1.
Assume that β1 separates better, that is:

d1 := min
i

yih(xi)T β1 > d2 := min
i

yih(xi)T β2 > 0.

Lemma A.2. There exists some s0 = S(d1, d2) such that ∀s > s0, sβ1 incurs smaller
loss than sβ2, in other words:

G(sβ1) < G(sβ2).
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Proof: Let

s0 = S(d1, d2) =
ln n + ln 2
d1 − d2

,

then ∀s > s0, we have
n∑

i=1

ln
(

1 + e−yih(xi)T βββ1s
)

≤ n ln
(
1 + e−s·d1

)
(A.8)

≤ n exp(−s · d1) (A.9)

<
1
2

exp(−s · d2) (A.10)

≤ ln
(
1 + e−s·d2

)
(A.11)

≤
n∑

i=1

ln
(

1 + e−yih(xi)T βββ2s
)
. (A.12)

The first and the last inequalities imply

G(sβ1) < G(sβ2).

✷

Given these two lemmas, we can now prove that any convergence point of β̂ββ(s)
s must

be a margin maximizing separator. Assume β∗ is a convergence point of β̂ββ(s)
s . Denote

d∗ := mini yih(xi)T β∗. Because the training data are separable, clearly d∗ > 0 (since
otherwise G(sβ∗) does not even converge to 0 as s → ∞).

Now, assume some β̃ with ‖β̃‖2 = 1 has bigger minimal margin d̃ > d∗. By continuity
of the minimal margin in β, there exists some open neighborhood of β∗:

Nβ∗ = {β : ‖β − β∗‖2 < δ},
and an ε > 0, such that:

min
i

yih(xi)T β < d̃ − ε, ∀β ∈ Nβββ∗ .

Now by Lemma A.2 we get that there exists some s0 = S(d̃, d̃− ε) such that sβ̃ incurs
smaller loss than sβ for any s > s0, β ∈ Nβββ∗ . Therefore β∗ cannot be a convergence point
of βββ(s)

s .
We conclude that any convergence point of the sequence βββ(s)

s must be a margin maxi-
mizing separator. If the margin maximizing separator is unique then it is the only possible
convergence point, and therefore:

lim
s→∞

β̂(s)
s

= arg max
‖βββ‖2=1

min
i

yih(xi)T β.

In the case that the margin maximizing separating hyperplane is not unique, this con-
clusion can easily be generalized to characterize a unique solution by defining tie-breakers:
if the minimal margin is the same, then the second minimal margin determines which model
separates better, and so on. Only in the case that the whole order statistics of the margins is
common to many solutions can there really be more than one convergence point for βββ(s)

s .
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