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Abstract
Motivation: In order to extract protein sequences from
nucleotide sequences, it is an important step to recognize
points at which regions start that code for proteins. These
points are called translation initiation sites (TIS).
Results: The task of finding TIS can be modeled as a
classification problem. We demonstrate the applicability
of support vector machines for this task, and show how to
incorporate prior biological knowledge by engineering an
appropriate kernel function. With the described techniques
the recognition performance can be improved by 26% over
leading existing approaches. We provide evidence that
existing related methods (e.g. ESTScan) could profit from
advanced TIS recognition.
Contact: {Alexander.Zien,Gunnar.Raetsch,Sebastian.
Mika}@gmd.de; bsc@microsoft.com

Introduction
Living systems are determined by the proteins that they
produce based on their genomes. But only parts of the
genomic text in fact code for proteins. These parts are
called coding sequence (CDS). Therefore, given a piece
of DNA or mRNA sequence, it is a central problem in
computational biology to determine whether it contains
CDS, and, if so, for which protein it codes.

In principle, both CDS and the encoded protein can be
characterized using alignment methods. Programs capable
of aligning nucleotide sequences to protein databases in-
clude FASTX/FASTY (Pearson et al., 1997), SearchWise
(Birney et al., 1996) and BLASTX (Gish and States, 1993).
However, this approach is hampered by two severe prob-
lems. First, there are several sources of noise making the
task more difficult and error-prone than pure protein align-
ment: (i) The correct strand and reading frame have to be
found. (ii) Additional false hits may result from misin-
terpreting non-coding sequence as CDS. (iii) Sequencing
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errors may disrupt the correct reading frame. This is a
particularly strong problem for low-quality sequences
like the popular expressed sequence tags (ESTs). Second,
approaches based on alignment rely on homologous pro-
teins being known. Thus they cannot be used to find novel
genes. Hence, a method to identify CDS in nucleotide
sequences is desirable, both in order to ease the task for
alignment-based approaches and to find new genes.

Since living cells are able to distinguish between CDS
and other nucleotide sequence parts without utilizing
any homology information, this should also be possible
for computer programs, in principle. In fact, there are
algorithms that identify CDS merely relying on properties
intrinsic to nucleotide sequences. The most successful
programs include GENSCAN (Burge and Karlin, 1997)
for genomic DNA and ESTScan (Iseli et al., 1999) for
ESTs. ESTs are single-read partial sequences derived
from mRNA that are particularly error-prone. ESTScan
implements a fifth-order hidden Markov model that si-
multaneously recognizes CDS by typical oligo-nucleotide
frequencies and corrects sequencing errors. It does not
incorporate a model of translation initiation site (TIS)
sequences, although they mark the beginning of CDS.
GENSCAN employs generalized hidden Markov models to
capture the structure of an entire genome. It incorporates
probabilistic models of DNA signal sequences including
TIS, stop codons and splice sites, as well as compositional
features and length distributions of different genomic
regions. Despite its overall sophistication, GENSCAN
uses a relatively crude TIS model: a piece of sequence
is assigned a probability for being a TIS, based on the
positional relative frequencies of individual nucleotides
observed around a true TIS.

There is a number of more elaborate models for TIS.
Salzberg extends the positional probabilities (as used
by GENSCAN) to first-order Markovian dependencies
(Salzberg, 1997). This is essentially a proper probabilistic
model of positional di-nucleotides, and leads to a sig-
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nificant increase in recognition performance. There also
are methods to explicitly capture correlations between
non-adjacent positions near TIS or other signals (Agarwal
and Bafna, 1998b), possibly providing insight into the
mechanisms of translation initiation. However, since few
such correlations can be proved to be significant in TIS
sequences, they afford little gain for TIS recognition.

All models discussed so far can be called generative, as
they can be used to generate potential TIS sequences with
approximately the true probability distribution. Applying
such models, a sequence is considered a TIS if the
probability with which the sequence is generated by the
model exceeds some threshold. The more closely the
true distribution is approximated, the better this approach
works. By using so-called discriminative methods, often
a superior distinction can be achieved between true TIS
and similarly looking pieces of sequence (called pseudo
sites). These methods aim at learning to discriminate
certain objects from others, without explicitly considering
probability distributions.

For example, the program ATGpr (Salamov et al., 1998)
uses a linear discriminant function that combines several
statistical measures derived from the sequence. Each of
those features is designed to discriminate between true and
pseudo-TIS. Learning allows to find a (linear) weighted
combination of features that achieves a high level of
discrimination on the training set as well as on the test
set.

A radically different approach to learning a discrimi-
nating function is taken by Pedersen and Nielsen (1997).
They train an artificial neural network (NN) to predict TIS
from a fixed-length sequence window around a potential
start codon (ATG). The input of the NN consists of a bi-
nary encoding of the sequence; no higher-level features are
supplied. The intriguing idea is that the NN learns by itself
which features derived from the sequence are indicative of
a true TIS.

Of the described methods, only ATGpr makes use of
the ribosome scanning model (Kozak, 1989). According
to this model, the translation starts at the first occurrence
of a start codon in the mRNA, and thus other start codons
further downstream are inactive (pseudo sites). However,
it is now known that nucleotides adjacent to the start
codon are also relevant for translation initiation, e.g.
(Kozak, 1997). The scanning model can be combined
with any TIS recognition method, and is confirmed by
the resulting improvements of recognition (Agarwal
and Bafna, 1998a). The model is orthogonal to TIS
signal sequence recognition itself and is limited to
complete mRNA sequences, which prohibits applica-
tion to ESTs. Therefore, we will not consider it in the
following.

In this paper, we show that we can outperform estab-
lished methods for TIS recognition by applying support

vector machines (SVMs) (Boser et al., 1992; Vapnik,
1995). Like NNs, SVMs are a discriminative supervised
machine learning technology, i.e. they need training with
labeled empirical data in order to learn the classification.
For the task of TIS recognition, we show that SVMs can
be superior to NNs. To achieve this performance gain we
use a particularly valuable property of SVMs: the ability
to adapt them to the problem at hand by including prior
knowledge into the so-called kernel function. Here, we
demonstrate how to incorporate basic knowledge of the
translation process. The paper is structured as follows:
we first give a brief description of the SVM technique,
then present experiments and finally discuss results and
potential applications.

System and methods
Support vector machines
Formally, SVMs, like any other classification method, aim
at estimating a classification function f : X → {±1}
using labelled training data from X × {±1} such that f
will correctly classify unseen examples (test data). In our
case, X will contain simple representations of sequence
windows, while ±1 corresponds to true TIS and pseudo
sites, respectively.

In order to be successful, two conditions have to be
respected. First, the training data must be an unbiased
sample from the same source as the test data. Technically
speaking, training and test data have to obey the same
underlying probability distribution. This concerns the
experimental setup. Second, a measure of the size of the
class of functions from which we choose our estimate
f , the so-called capacity of the learning machine, has
to be sensibly restricted. If the capacity is too small,
complex discriminant functions cannot be sufficiently well
approximated by any selectable function f —the learning
machine is too simple to learn well. On the other hand, too
large a capacity bears the risk of losing the ability to learn
a function that generalizes well to unseen data. The reason
lies in the existence of infinitely many functions that are
consistent with the training examples, but disagree on
unseen (test) examples. Those functions would perfectly
memorize the particular examples used for training, but
could not generalize. Picking such a function is called
overfitting.

In NN training, overfitting is avoided by early stopping,
regularization or asymptotic model selection (Bishop,
1995; Orr and Müller, 1998). In contrast, the capacity
of SVMs is limited according to the statistical theory of
learning from small samples (Vapnik, 1995). For learning
machines implementing linear decision functions, one
way of limiting the capacity is to enforce a large margin
of separation between the classes. The margin is the
minimal distance of training points to the separation
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surface. Finding the maximum margin separation can be
cast into a convex quadratic programming (QP) problem
(Boser et al., 1992). The time complexity of solving such
a QP scales approximately between quadratic and cubic
in the number of training patterns (see Schölkopf et al.,
1999).

In order to maximize the generalization power, often it is
profitable to misclassify some outlying training data points
in order to enlarge the margin between the other training
points. This is theoretically founded by statistical learning
theory (Vapnik, 1995). This ‘neglectful’ learning strategy
also masters inseparable data (Cortes and Vapnik, 1995;
Schölkopf et al., 2000), which frequently occur in real-
world applications. See Figure 1(a) for an example. The
trade-off between margin size and number of misclassified
training points is controlled by a parameter of the SVM,
which can therefore be used to control its capacity. This
extension still permits optimization via QP (Cortes and
Vapnik, 1995).

It is tempting to think that linear functions can be insuffi-
cient to solve complex classification tasks. A little thought
reveals that, in fact, this depends on the representation
of the data points. Frequently, natural definitions of input
space are used that tend to minimize dimensionality and
avoid redundancy. Then, linearity may easily be too re-
strictive. However, we are free to define (possibly redun-
dant) features that nonlinearly derive from any number of
input space dimensions. Even for complex problems, well
chosen features could ideally be related to the respective
classification by rather simple means, e.g. by a linear func-
tion (cf. Figure 1).

Any linear learning machine can be extended to func-
tions that are nonlinear in input space X by explicitly
transforming the data into a feature space F using a
nonlinear map � : X → F (see Figure 1). SVMs can do
so implicitly, since all information that we need to supply
to the SVM for both training and classification are inner
products of pairs of data points �(x), �(y) in feature
space F . Thus, we only need to supply a so-called kernel
function that computes these inner products. This kernel
function k implicitly defines the feature space via

k(x, y) = 〈�(x), �(y)〉.
Not every function k : X × X → R is a valid
kernel function. The map � and the corresponding feature
space are guaranteed to exist for functions that satisfy
Mercer’s condition: see, e.g. (Boser et al., 1992). Using
kernel functions to compute the dot products, we can
computationally afford very large (e.g. 1010-dimensional)
feature spaces. SVMs can still avoid overfitting thanks
to the margin maximization mechanism. Simultaneously,
they can learn which of the features implied by k are
distinctive for the two classes. Thus, instead of having to
design well-suited features by ourselves (which can often

be difficult), we can use the SVM to select them from a
sufficiently rich feature space. Of course, it will be helpful
if the kernel supplies a set of features related to the correct
classification. In the following sections, we will show how
to boost the process of learning by choosing appropriate
kernel functions.

Data sets
Little experience exists in the application of SVMs to
biomolecular problems (we only know of work on remote
homology detection (Jaakkola et al., 1999) and on gene
expression analysis (Brown et al., 2000)). Therefore, we
compare the performance of our SVMs with that of the
most popular alternative general purpose machine learning
technology, NNs, trained by NN experts on the same
problem domain. In order to do so, we use the NN results
and the vertebrate TIS set provided by Pedersen and
Nielsen (1997) as described below. We take care to only
replace the learning machinery while retaining the setting:
the definition of training and test data sets as well as
the definition of input space. We also compare our SVM
results with the performance of another successful TIS
recognition method, the positional conditional probability
method (Salzberg, 1997).

The original sequence set of Pedersen and Nielsen
has been assembled from high-quality nuclear genomic
sequences of a selected set of vertebrates taken from
GenBank (Benson et al., 1998). All introns were removed,
in analogy to the splicing of mRNA sequences. Only high-
quality entries with at least 10 nucleotides upstream and
150 downstream of the start codon were selected. In order
to avoid over-optimistic performance estimates resulting
from biased data samples, the set was thoroughly reduced
for redundancy. As a consequence, the results below
represent lower limits to the performance to be expected
on real world data, which is heavily redundant. The data
selection protocol left 3312 sequences (see Pedersen and
Nielsen, 1997). From the work of other investigators, e.g.
(Burge and Karlin, 1997), we expect typical features of
TIS to differ for different branches in the evolutionary tree.
This implies that the trained classificator will only be valid
for mammals, and that retraining on other sequence sets
will be necessary for different groups of species.

From the described set of sequences, Pedersen and
Nielsen construct the data set for TIS recognition in
the following way (personal communication). For each
potential start codon (the nucleotide sequence ATG) on the
forward strand, one data point is generated. This leads to
13 503 data points, of which 3312 (24.5%) represent true
TIS and the rest (10 191 points, 75.5%) represent pseudo
sites. We prefer this skewed distribution to a balanced data
set, as it is a (crude) approximation to the situation that is
expected for real ESTs. Each datum point is represented
by a sequence window of 200 nucleotides centered around

801



A.Zien et al.

input
space

feature
spaceinput

space

Φ

(a) (b) (c)

Fig. 1. Three different views on the same dot versus cross separation problem. The data points closest to the separation line are called support
vectors. (a) In this example, a linear separation of the input points is not possible without errors. Even the misclassification of one datum
point permits only a small margin. The resulting linear classification function looks inappropriate for the data. (b) A better separation is
permitted by nonlinear surfaces in input space. (c) These nonlinear surfaces correspond to linear surfaces in feature space. Data points are
mapped from input space to feature space by the function � that is implied by the kernel function k (see main text).

the respective ATG triplet. For triplets near the borders
of the available sequence, the positions missing from the
200 nucleotide window are filled with N, the symbol for
unknown. Pedersen and Nielsen divide the data into six
parts of nearly equal size (≈2200 points each) and equal
fraction of true TIS. Each part is in turn reserved for
testing the classification learned from the other five parts.

Engineering the kernel function for TIS recognition
We define the input space by the same sparse bit-encoding
scheme as used by Pedersen and Nielsen (personal
communication): each nucleotide is encoded by five bits,
exactly one of which is set. The position of the set bit
indicates whether the nucleotide is A, C, G or T, or N
(for unknown). This leads to an input space of dimension
n = 1000. Experiments with more compact represen-
tations (two-digit encoding of the four nucleotides with
an appropriate intermediate state for unknown, data not
shown) indicate that the sparse encoding performs best.

Let x and y be n-dimensional vectors, representing two
inputs. The simple polynomial function

k(x, y) = 〈x, y〉d

is a valid kernel that induces (n+d−1)!
d!(n−1)! monomial features

of degree d. Precisely, there is one feature �m(x) of the
form

�m(x) =
√

d!∏n
i=1 mi !

n∏
i=1

xmi
i

for every m ∈ Nn,
∑n

i=1 mi = d. This is proved by

showing that 〈�(x), �(y)〉 = (∑n
i=1 xi yi

)d = 〈x, y〉d =
k(x, y) (Schölkopf, 1997). Note that, using the sparse
encoding described above, the dot product 〈x, y〉 simply
counts the number of nucleotides that coincide in the two
sequences represented by x and y.

For this kernel, setting the degree d to one leads to a
linear separation in input space, since then � becomes the
identity function and the feature space is identical to the
input space. Thus, the features correspond to positional
nucleotide incidences, and the SVM learns positional
preferences. By setting the degree d to two, we can let
the feature space reflect all pairwise correlations of the
nucleotide frequencies at any two sequence positions.
Mathematically, for an input vector x = (x1, . . . , xn), all
features of the kind xi x j , 1 ≤ i, j ≤ n, are represented. A
degree of three corresponds to all correlations of (possibly
scattered) triplets, and so on. In order to determine a
good value for the degree d, we train with different
values of d, using only part of the training data, and
validate performance on the reserved training data (cross-
validation). We investigate polynomials of first to fifth
degree (d = 1, . . . , 5). With this simple polynomial
kernel function we already achieve results competitive to
those of the NN devised by Pedersen and Nielsen (see
Table 1).

Table 1 also shows that the SVM provides a discrimi-
nation power superior to that of the generative model of
conditional positional probabilities for nucleotides as sug-
gested by Salzberg (1997). According to this model, TIS
score is computed from log ratios of empirically estimated
probabilities. Some rare events (positional di-nucleotides)
may be observed in the test data but not in the training set.
In order to avoid infinite scores arising from the result-
ing zero probabilities, pseudo counts are introduced. The
observed frequency of each dinucleotide at each position
is increased by 0.5 before it is used for the estimation of
the corresponding conditional probabilities. For the pur-
pose of comparison, we run the method of Salzberg on the
same input data as the other methods, i.e. 200 nucleotides
from a five letter alphabet. The method works surprisingly
well and is competitive to the NN.

Although the SVM with the polynomial kernel already
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Table 1. Comparison of classification errors (measured on the test sets) achieved with different learning algorithms. All results are averages over the six data
partitions (see main text). SVMs are trained on 8000 data points with combinations of parameters as described in the text. An optimal set of parameters
is selected according to the overall error on the remaining training data (≈3300 points): only these are presented. Note that the windows consist of 2l + 1
nucleotides. The NN results are those achieved by Pedersen and Nielsen (1997, personal communication). There, model selection seems to have involved
test data, which might lead to slightly over-optimistic performance estimates. Positional conditional preference scores are calculated analogously to Salzberg
(1997), but extended to the same amount of input data also supplied to the other methods. Note that all performance measures shown depend on the value
of the classification function threshold. For SVMs, the thresholds are by-products of the training process; for the Salzberg method, ‘natural’ thresholds are
derived from prior probabilities by Bayesian reasoning. Overall error denotes the ratio of false predictions to total predictions. The sensitivity versus specificity
trade-off can be controlled by varying the threshold (see Figure 2). The Mathews correlation coefficient is the (Pearson) correlation coefficient of true and
predicted labels where positive and negative labels are represented by two arbitrary but different real numbers. The mutual information between true and
predicted labels is given in bits and would be 0.804 for a perfect prediction. Note also that all performance measures but sensitivity are sensitive to the relative
numbers of TIS to pseudo sites in the data set (here, ≈ 1 : 3)

Algorithm Parameter Overall Specificity Sensitivity Mathews Mutual
setting error correlation information

Neural network 15.4% 64.5% 82.4% 62.7% 0.192
Salzberg method 13.8% 73.7% 68.1% 61.9% 0.250
SVM, simple polynomial d = 1 13.2% 75.7% 69.2% 63.9% 0.267
SVM, locality-improved kernel d1 = 4, l = 4 11.9% 79.3% 70.0% 66.9% 0.292
SVM, codon-improved kernel d1 = 2, l = 3 12.2% 78.7% 69.0% 65.9% 0.283
SVM, Salzberg kernel d1 = 3, l = 1 11.4% 76.0% 78.4% 69.6% 0.326

performs better than both established methods, the results
can still be improved by modifying the kernel function.
We design an improved kernel function by incorporating
the basic biological hypothesis that, while certain local
correlations are typical for TIS, dependencies between
distant positions are of minor importance or do not even
exist. We want the feature space to reflect this. Thus, we
modify the kernel utilizing a technique that is described
in (Schölkopf et al., 1998): at each sequence position, we
compare the two sequences locally, within a small window
of length 2l + 1 around that position. Again, we count
matching nucleotides, this time multiplied with weights
w increasing from the boundaries to the center of the
window. The resulting weighted counts are taken to the dth

1
power. d1 reflects the order of local correlations (within the
window) that we expect to be of importance.

winp(x, y) =
( +l∑

j=−l

w j matchp+ j (x, y)

)d1

Here, matchp+ j (x, y) is 1 for matching nucleotides at
position p + j and 0 otherwise. The window scores
computed with winp are summed over the whole length
of the sequence. Correlations between up to d2 windows
are taken into account by raising the resulting sum to the
power of d2.

k(x, y) =
(

l∑
p=1

winp(x, y)

)d2

We call this kernel locality-improved. Similar to the poly-
nomial kernel, each window score is a kernel that induces

a set of monomial features of degree d1. The monomials
are weighted in order to strengthen the representation of
correlations of sequence positions that are close to each
other. Only correlations of positions within the window
size are represented by the window scores. The second
level polynomial induces monomial features of degree
d1d2 that combine any d2 intra-window monomials. Thus,
distant correlations are taken into account by values
d2 > 1. Intuitively, it is clear that this function is a valid
kernel function, since it corresponds to the application
of a weighted polynomial map with degree d2 to an
intermediate space that is defined as feature space of a
weighted polynomial map with degree d1 on the input
space. Formally, it can be proved that linear combinations
of kernels with positive coefficients and positive powers
of kernels are valid kernels (Schölkopf et al., 1999;
Schölkopf, 1997).

This kernel function poses the problem of how to
set a number of parameters (in addition to the general
parameter for SVM capacity control described above). We
systematically investigated only the case d2 = 1, since
some test runs with d2 > 1 yielded inferior performance
(data not shown). This is consistent with our intuition
that long-distance correlations are of minor importance.
For each of the remaining parameters, we select a small
number of values in an appropriate range. SVMs are
trained with all combinations of these values, while
excluding a part of the training set as validation set. This
validation part is then used to measure the performance
of the trained SVM and to select the corresponding
parameters. We investigate window sizes (2l + 1) ranging
from one to eleven, taking into account some possibly
relevant biological numbers. Biological features that we
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consider important include oligo-nucleotide composition,
interactions between neighboring amino acids and the
assumed number of nucleotides that the ribosome can have
contact with at the same time. For the case of l = 0
this kernel reduces to a simple polynomial kernel. We
always obtain superior results for larger values (l > 0),
indicating that local correlations are indeed of special
importance. For the degree of local correlations (d1), we
consider values up to five. In Table 2 the TIS recognition
performance of this type of kernel is compared with that
of the polynomial kernel for differently sized training sets.

Table 2 shows that the optimal parameterization of
the kernel depends on the training set size. The table
also shows that the performance improvements over the
polynomial increase for larger training sets. This suggests
that carefully designed kernel functions are useful even in
presence of a wealth of training data.

In an attempt to further improve performance we try
to incorporate another biological hypothesis into the
kernel, this time concerning the codon structure of coding
sequence. A codon is a triplet of adjacent nucleotides that
codes for one amino acid. By definition the difference
between a true TIS and a pseudo site is that downstream of
a TIS there is CDS (which shows codon structure), while
upstream there is not. CDS and non-coding sequence
show statistically different compositions. It is likely that
the SVM exploits this difference for classification. We
could hope to improve the kernel by reflecting the
fact that CDS shifted by three nucleotides still looks
like CDS. Therefore, we further modify the locality-
improved kernel function to account for this translation-
invariance. In addition to counting matching nucleotides
on corresponding positions, we also count matches that
are shifted by three positions. We call the resulting
kernel codon-improved. Except for the modified matching
function, it is given by the same expressions as the
locality-improved kernel. Again, this function can be
shown to be a valid kernel by explicitly deriving the
monomial features.

Tables 1 and 2 suggest that this modification actually
seems to decrease performance. This is disappointing,
since a similar modification to the simple polynomial
kernel leads to an increase of recognition accuracy (data
not shown), which, however, is smaller than the increase
by the locality-improvement. We could imagine that the
process of learning some relevant features (e.g. strong
positional preferences near to the start codon) is distorted
by the modification. On the other hand, the other kernels
are already capable of learning translation-invariance if
they are given enough training data and if this proves
advantageous for the classification.

Another direction for modification of the kernel function
is suggested by the good performance of the method of
Salzberg. In order to integrate his idea into a kernel func-

tion, we do not calculate the product of the conditional
probabilities over the whole sequence, but instead calcu-
late the log odds of the conditional probabilities for each
position separately:

sp(x) = log P(xp at pos. p in TIS|xp−1 at pos. p − 1

in TIS)
/

P(xp at pos. p in ANY|xp−1 at pos.

p − 1 in ANY)

Here, P denotes estimated probabilities derived from
training set counts plus pseudo counts, xp is the nucleotide
incident at position p in the sequence corresponding
to data point x, T I S is the set of training sequences
centered around TIS, and ANY is the set of all training
sequences (both centered around TIS or pseudo sites).
This way, we define a new input space. Each data point is
represented by a sequence of log odd scores sp(x) relating,
individually for each position, two probabilities: first, how
likely the observed nucleotide at that position derives
from a true TIS and second, how likely that nucleotide
occurs at the given position relative to any ATG triplet. We
then proceed analogously to the locality-improved kernel,
replacing the sparse bit representation by the sequence of
these scores. As expected, this leads to a further increase
in classification performance. The results are shown in
Figure 1. However, a similar gain could be expected for
the NN if it was trained on the log odd scores as input
values.

In conclusion, all three engineered kernel functions
clearly outperform the NN as devised by Pedersen and
Nielsen by reducing the overall number of misclassifica-
tions by about 25% (see Table 1). The SVM also beats the
performance of positional conditional probabilities, which
work surprisingly well when applied to larger windows
than suggested by Salzberg. The SVM results show more
false positives and fewer false negatives than the NN, cor-
responding to a higher level of specificity. However, the
sensitivity versus specificity trade-off can be controlled
by setting the threshold value of the classification function
(see Figure 2). From this point of view, again, the SVMs
do best.

In order to allow for this performance comparison, all
calculations reported above are based on the same rep-
resentation of input space (encoding a five letter alpha-
bet) as was used for the NN. We repeated some of the
experiments using a more natural representation that dis-
tinguishes between four letters only, each representing a
real nucleotide. Unknowns are translated into a probabil-
ity distribution over the four nucleotides which is deter-
mined from the sequences. Using this representation, the
method of Salzberg performs considerably worse than be-
fore: the overall error rate increases to 21.2% (correspond-
ing to specificity 71.6%, sensitivity 22.7%, Mathews cor-
relation 31.8%, mutual information 0.061). This suggests
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Table 2. Performance of kernel functions (measured on the test sets) computed as described in Table 1, but trained on differently sized subsets of the training
data set. The columns show the optimal parameter settings (params), determined as described in Table 1, together with the corresponding overall classification
error (error) and Mathews correlation coefficient (Mcc)

400 data points 1000 data points 4000 data points
SVM kernel function params error Mcc params error Mcc params error Mcc

Simple polynomial d = 2 18.1% 46.0% d = 2 16.0% 54.3% d = 1 13.6% 62.3%
Locality-improved d1 = 3, l = 2 18.0% 48.1% d1 = 4, l = 3 15.9% 53.9% d1 = 3, l = 3 12.6% 64.6%
Codon-improved d1 = 1, l = 2 18.4% 45.7% d1 = 1, l = 2 15.6% 55.5% d1 = 1, l = 2 13.6% 62.2%
Salzberg kernel d1 = 1, l = 1 14.7% 57.1% d1 = 1, l = 1 13.6% 61.2% d1 = 3, l = 1 11.7% 68.8%
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Fig. 2. Specificity versus sensitivity trade-off for the method of
Salzberg (gray line) and for the SVM with Salzberg kernel (black
line) on the test data for the first data partitions. Specificity is
the rate of correctly predicted TIS (true positives) to all predicted
TIS; sensitivity is the rate of correctly predicted TIS to all true
TIS. The SVM clearly improves sensitivity for a wide range of
reasonable values of specificity (60–97%). The performance of the
neural network by Pedersen and Nielsen is marked by a black plus
symbol (+).

that the introduction of unknowns is asymmetrical for TIS
and pseudo sites, and that the method utilizes this bias for
the classification. However, the SVM using the Salzberg
kernel performs almost as well on the four letter repre-
sentation as before: the overall error is 11.7% (Sp 76.6%,
Sn 75.4%, Mcc 68.3, MI 0.311). This shows that the al-
gorithm does well on data that is relevant for real-world
application.

From an application point of view, performance mea-
sures may be considered more relevant on a per sequence
basis than per ATG, as investigated so far. Thus, we re-
evaluate the most successful method, the SVM with the
Salzberg kernel, in a manner that is appropriate for com-
plete mRNA sequences: for each of the original 3312 se-
quences (cf. description of data sets), we predict exactly
one TIS. The TIS is predicted to be the highest scoring

ATG triplet within the sequence (foreward strand only), re-
gardless of the absolute score value. Since each sequence
contains one TIS, we have no true negatives. This renders
usual performance measures (including Sn, Sp, Mcc and
MI), as used above, inappropriate. Instead, we supply in
Table 3 the raw counts of correct and false predictions. The
figures indicate an upper bound for the performance on
our target application area, ESTs. In ESTs, in contrast to
complete mRNAs, the TIS may not be covered. Thus, the
problem of TIS recognition becomes more difficult, since
we only know that there is at most one TIS contained in
the sequence. Therefore, this investigation cannot replace
a thorough evaluation on a benchmark that is designed for
this purpose and includes ESTs that do not contain a TIS.
We intend to develop such a benchmark.

In order to get a first impression how much a program
like ESTScan could profit from an advanced TIS recogni-
tion module, we applied it to the same set of 3312 mRNA-
like sequences. ESTScan aims at identifying CDS within
ESTs as accurately as possible. In a slight misuse of the
program, we investigate how confidently it predicts the
correct TIS (the start position of the CDS) for each se-
quence. The results are also shown in Table 3. On average,
ESTScanmisses the true TIS position by 41.6 nucleotides.
Both this figure and the table indicate that ESTScan could
profit from a TIS recognition module. For genomic se-
quences and programs like GENSCAN, a similar situation
can be expected.

Discussion
TIS recognition can be used to improve reliability and
accuracy of amino acid predictions from nucleotide
sequences. Two major fields of application are distin-
guished by their different data types: ESTs and genomic
sequences. The data set used in this paper consists of
computationally spliced sequences that resemble mRNA
and thus is more tuned towards EST data, which is our
target area of application. In order to fit our method more
closely to this data type and re-evaluate the performance,
we are currently building a more realistic data set from
real ESTs. Since ESTs cover only a fragment of a real
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Table 3. Evaluation of the SVM with the best kernel function on a per-sequence basis on the original set of 3312 sequences. The sequences are supplied in
the natural four-letter representation as described in the main text. For comparison purposes, we also show the corresponding results for the original Salzberg
method. In both cases, for each sequence the highest scoring ATG codon is predicted to be the TIS. We also apply ESTScan (with default parameters) to all
3312 sequences. For each predicted CDS, an ATG triplet near the supposed start point of the CDS is selected as predicted TIS. The evaluation is shown for
three different selection strategies, as indicated in the leftmost column

Method Number of Correct False Missed
predictions predictions predictions TIS

Salzberg method 3312 2217 1095 1095
SVM, Salzberg kernel 3312 2782 530 530
ESTScan, left ATG 2350 208 2142 3104
ESTScan, right ATG 2350 1614 736 1698
ESTScan, closest ATG 2350 1621 729 1691

mRNA, we cannot be sure that each EST contains a
TIS. Thus, we cannot simply predict the highest scoring
ATG of each EST to be a TIS, but we also need some
global score threshold below which no TIS is predicted
for an EST. This is modeled by the all TIS versus all
pseudo site discrimination, while the (possibly easier)
task of per-mRNA discrimination would be sufficient for
complete mRNAs. The fragmentary nature of ESTs also
prohibits the utilization of some additional features for the
classification, including the total length of the complete
CDS and the number of preceeding start codons.

However, caution is necessary if we use our method
within a rigorous probabilistic framework like those of
GENSCAN or ESTScan. In some sense, the SVM (as well
as Pedersen and Nielsen’s NN) exploits the differences
of the oligo-nucleotide compositions in CDS and non-
coding sequence. These compositional preferences are
already incorporated in GENSCAN and ESTScan, leading
to probability distribution dependencies that must be taken
into account. In order to avoid these dependencies, it
is easiest to restrict the sequence window presented to
the SVM to the ribosome binding site. In addition, it
is desirable that the TIS recognition method computes
probability values for potential TIS to be true TIS.
Meanwhile, it should be useful to heuristically combine
our TIS recognition with GENSCAN or ESTScan output.
We plan to devote more work to these issues.

We believe that the kind of kernel functions presented
in this paper will prove useful for other bioinformatics
problems. There are far too many interesting classification
tasks in molecular biology than can be covered here, so we
restrict ourselves to three problems. Most obviously, our
technique can easily be applied to the recognition of other
fixed length DNA signals. These include binding sites of
regulatory proteins, that are important elements of pro-
moters, enhancers and silencers. Second, we can imagine
that the excellent protein classification performance of the
Fisher kernel method developed by Jaakkola and Haussler
(Jaakkola et al., 1999) can still be improved by consider-

ing local amino acid correlations in a manner similar to our
locality-improved kernel or to the Salzberg kernel. Third,
we believe that SVMs will prove successful for exploit-
ing the information gathered with DNA chips. Here, ker-
nel functions could be engineered that reflect the structure
of expression data as collection of unrelated time series.
These are fields of interesting future work.

In summary, we have compared the performance of
important methods for sequence classification on a bio-
molecular problem of practical relevance. We show that
SVMs are competitive to other, more frequently used
machine learning methods and show a simple way to
include prior knowledge to improve performance. We
provide evidence that our advanced TIS recognition can
be of use for other existing programs.
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