
Abstract In toxicology, hazardous substances detected
in organisms may often lead to different pathological con-
ditions depending on the type of exposure and level of
dosage; hence, further analysis on this can suggest the
best cure. Urine profiling may serve the purpose because
samples typically contain hundreds of compounds repre-
senting an effective metabolic fingerprint. This paper pro-
poses a pattern recognition procedure for determining the
type of cadmium dosage, acute or chronic, administrated
to laboratory rats, where urinary profiles are detected us-
ing capillary electrophoresis. The procedure is based on
the composition of a sample data matrix consisting of ar-
eas of common peaks, with appropriate pre-processing
aimed at reducing the lack of reproducibility and enhanc-
ing the potential contribution of low-level metabolites in
discrimination. The matrix is then used for pattern recog-
nition including principal components analysis, cluster
analysis, discriminant analysis and support vector ma-
chines. Attention is particularly focussed on the last of these
techniques, because of its novelty and some attractive fea-
tures such as its suitability to work with datasets that are
small and/or have low samples/variable ratios. The type
of cadmium administration is detected as a relevant fea-
ture that contributes to the structure of the sample matrix,
and samples are classified according to the class member-
ship, with discriminant analysis and support vector ma-
chines performing complementarily on a training and on a
test set.
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Introduction

In toxicology, the exposure of an organism to a specific
hazardous substance can determine different pathological
conditions depending on factors such as the form of inter-
action (ingestion, inhalation, contact), the quantity, and
the type of dosage that can be either acute (a single large
dose) or chronic (several small doses administrated over
time). Further investigation of these aspects is therefore a
major issue because it may indicate the best cure and it
can also provide information on the possible source of
contamination, when this is not identified yet.

Urine profiling may serve for this purpose because typ-
ically samples contain hundreds of species such as inor-
ganic ions, organic acids, amino acids, purines and pyrim-
idines, which represent an effective “metabolic finger-
print” of the organism. Because of this, the analysis of
urine samples has been the focus of much research espe-
cially since the 1980s [1, 2, 3].

Several analytical techniques have been employed for
urinary profiling but lately capillary electrophoresis (CE)
has emerged as a potential tool [4, 5, 6, 7], because it en-
ables cost-effective, rapid and highly efficient separations
with minimal sample volume requirements. Recently, Guillo et
al. reported the optimisation and validation of a sulphated 
β-cyclodextrin-modified micellar electrokinetic capillary
electrophoresis (SβCD-MECC) method developed for gen-
eral profiling of urine, allowing for the separation of over 80
charged and neutral compounds in less than 25 min [8, 9].

Multivariate analysis by means of pattern recognition has
an important role in the interpretation of variations in these
fingerprints, which would be otherwise difficult by visual in-
spection. While several works report the use of pattern recog-
nition for urinary profiling coupled with techniques such
NMR [10, 11], GC [12, 13], HPLC [14, 15], its use with CE
has not been well exploited, with fewer works reported [16].

In this paper we investigate the use of SβCD-MECC
methodology combined with pattern recognition as a new
tool for urine profiling in a toxicological pilot study ex-
amining the influence of cadmium administration on lab-
oratory rats. Two groups of rats are treated using both
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chronic and acute dosages with the aim to be able to dis-
tinguish the effects from urine profiles.

Data are prepared for pattern recognition by compos-
ing a sample matrix with rows referring to the samples and
columns to the most frequently encountered peaks in the
electropherograms. Instrumental factors that interfere with
reproducibility can be reduced by prior pre-processing in-
cluding baseline correction and profile normalisation,
while post-processing based on selective peak normalisa-
tion and standardisation enhances the influence of low-
level metabolites. Exploratory analysis on the sample data
matrix so obtained is performed by means of principal
components analysis (PCA) and hierarchical agglomera-
tive cluster analysis (HACA). Visual inspection of the
scores plots derived from PCA allows determination of
whether the target feature, namely the type of cadmium
administration, has a significant influence over the sample
matrix, while the dendrogram obtained from HACA pro-
vides further insight into the residual lack of reproducibil-
ity, by examining the grouping of replicates. Finally, su-
pervised techniques such as discriminant analysis by
means of the Mahalanobis distance (DA) and support vec-
tors machines (SVMs) are then used for class modelling
aimed at predicting new instances on the basis of the type
of cadmium administration. While DA is a widely spread
technique, SVMs represent a recent approach, whose po-
tential has yet to be fully exploited in analytical chemistry.
Recently, Belousov et al. described its use for classifica-
tion with particular focus on mid-infrared spectral data
[17, 18], while Thiessen et al. [19] applied the approach
for time series prediction in process monitoring. Applica-
tions in other areas such as genomics [20], optical engi-
neering and econometrics [21] have suggested that this
method is a significant improvement on existing approaches,
for addressing not only classification tasks but also for cal-
ibration. Particularly, the underlying theory shows that the
use of SVMs is advisable when dealing with datasets that
are limited in size and/or when the ratio samples/variables
is rather low, making the method suitable for the case un-
der investigation where both these conditions are met.

Experimental

Sample preparation

Rats were pre-treated with a low methionine diet prior to cadmium
dosage. A first group (acute) received one single cadmium dose (to
drinking water) at four different concentration levels, while a sec-
ond group (chronic) was dosed (again via drinking water) over a
time of 12 weeks at three different concentration levels (Table 1).
For all instances urine was collected over 24 h and subsequently
stored at –80°C. Samples were allowed to equilibrate at room tem-
perature before use, and were then vigorously shaken for approxi-
mately 1 min and subsequently filtered through a 45-µm filter
(Whatman, Clifton, NJ, USA) before analysis.

Instrumentation and capillary electrophoresis methodology

CE experiments were carried out on a P/ACE MDQ Capillary
Electrophoresis System (Beckman Instruments, Fullerton, CA,
USA) fitted with a diode array UV/Vis detector (190–600 nm), a

temperature-controlled capillary compartment (liquid cooled) and
an autosampler. Electrophoretic data were acquired and analysed
with the 32 Karat software. Separations were performed in a 47-cm
fused silica capillary (50-µm i.d.) (Composite Metal Services Ltd,
Hallow, Worcester, UK). New capillaries were conditioned for 
30 min at 25°C with 1 M NaOH, followed by 0.1 M NaOH for 
20 min and deionised water for 10 min. The capillary was washed
with 0.1 M NaOH and deionised water for 1 min, and then 2 min
with the run buffer before each analysis.

Urine samples were analysed using the sulphated β-cyclodex-
trin-modified micellar electrokinetic capillary chromatography
(SβCD-MECC) methodology, developed and validated for urine
profiling [8]. The running buffer was composed of 25 mM sodium
borate, 75 mM SDS and 6.25 mM sulphated β-cyclodextrin. The
pH was adjusted to pH 9.5 with 1 M NaOH, after addition of SDS
and cyclodextrin. Buffer solutions were filtered through a 45-µm
filter before use. Samples were injected by hydrodynamic injection
for 5 s at 0.5 psi to the capillary maintained at 20°C, followed by elec-
trophoretic separation at 18 kV. Electropherograms were recorded
at 200, 250 and 290 nm at a sampling frequency of 4 Hz. Thirty-
two different samples replicated 3 times were analysed.

Chemometrics methods

Data preparation

Baseline correction and peak detection

In order to detect peaks and quantify their area, profiles at
the three wavelengths are summed and the total profile
(an example is shown in Fig. 1) is subjected to prelimi-
nary baseline correction using a fit of the baseline regions
to a linear model and subtracting this model from the data.

Peaks are then detected using the Chromint software
developed by the University of Amsterdam [22], in which
detection is based on the analysis of the profile of the first
derivative of the signal calculated with a Savitzky–Golay
filter. This provides a list of peaks and their position with
typically around 25 peaks detected per electropherogram.

Sample matrix

The next step is to produce a sample matrix S in which
rows refer to samples and columns refer to peak areas, de-
tected along the total profile, of chemical species that are
common to a significant proportion of the samples [13, 23].
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Table 1 Samples analysed and their dosage level. Each sample
was analysed in three replicates

Acute dosage (mg kg–1) Chronic dosage (mg L–1)

0.375 0.75 1.125 1.5 1 3 7

A 313 A 104 A 107a A 110 C 115 C 114 C 101
A 413 A 204a A 207 A 210 C 203 C 202 C 113a

A 513 A 304a A 307 A 310a C 215 C 214a C 201
A 404a A 407a A 410 C 303a C 302 C 213
A 504 C 315a C 314a C 301

C 313a

aSample was used for the test set



After appropriate post-processing, this matrix can then be
used as input to any of the pattern recognition algorithms.

In order to construct the matrix, we use the relative in-
tensity at each of the three wavelengths to determine which
peaks are common to the electropherograms. The intensi-
ties at the three wavelengths (200, 250 and 290 nm) and
the maxima of each peak are measured and their relative
proportions calculated according to Eq. (1):

(1)

where is the original intensity of peak p at its apex
in the electropherogram and at wavelength λ and 
its normalised value. This step allows the comparison of
different sample profiles. A match factor MF for two
peaks l and m belonging to two different samples and
within a peak shift tolerance in time, is formulated as fol-
lows:

(2)

A complete overlap would imply MF=100, while the op-
posite, theoretically when two peaks absorb uniquely at
two different wavelengths, yields MF=0. If MF exceeds a
predefined threshold, the two peaks are assumed to arise
from the same compound and their peak areas are placed
in the same column of S. Otherwise a new column is
added because a new species has been found. The number
of columns in S critically depends on both the threshold
selected for MF and peak shift tolerance (PST). Lower
PST means looking for matches in a narrower window
along the profile, while higher MF means being more re-
stricted in terms of matching; hence, under these condi-
tions a larger sample matrix size is expected (Fig. 2).
Some aspects that may help to determine the optimal
trade-off for MF and PST are: a) the experimentally ob-
served peak shift; b) the observed range of variation for
MF; c) how many species common to all samples are ex-

pected; d) how many species are expected in total. The
last two points may for example derive from experience in
a previous analysis carried out on a similar type of sam-
ples.

Notice that the procedure as formulated does not aim at
identifying peaks, but is a measure of similarity; there-
fore, the use of only three wavelengths suffices. Indices
comparable to MF such as the correlation coefficient or
normed Euclidean distance could be applied if more
wavelengths were available; however, in this particular
application we are confident that we have correctly
matched the peaks in the electropherograms.

Variable and sample selection

Of the all unique peaks detected, many occur in only a
small number of samples and therefore are not suitable for
discrimination because they are unable to describe or
model trends in one of the two classes. Hence, only those
peaks occurring in more than a half of the samples are re-
tained for further processing. This results in a major re-
duction in the number of columns in S.

In a small number of samples (less than 10%) less than
half the peaks identified are detected, therefore these sam-
ples are removed because there is insufficient data for dis-
crimination. This results in a further reduction of the num-
ber of rows in the sample matrix.

Normalisation

Finally, the data matrix S consisting of the areas of the se-
lected peaks along the total profile undergoes post-pro-
cessing. Selective normalisation is applied along rows ac-
cording to the Eq. (3):
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Fig. 1 Total profile of the first replicate of sample A104 (acute
dose of 0.75 mg kg–1)

Fig. 2 Size of the sample data matrix S as function of the match-
ing factor MF% and peak shift tolerance PST
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where si,j is the area of peak referring to species j for sam-
ple i. Subsequently standardisation is applied along col-
umns:

(4)

where is the mean value of the normalised peak area

of the species j over all samples and nstdj the correspond-
ing population standard deviation. This operation is es-
sential because it minimises the risk of the final result be-
ing dominated by those peaks occurring in higher quanti-
ties, hiding the potential contribution of minor peaks. Fig-
ure 3 shows the flow chart of all the steps needed before
performing pattern recognition.

Pattern recognition techniques

Methods of pattern recognition can be mainly divided into
two categories, namely unsupervised and supervised tech-
niques [24]. The former focuses on investigating the
structure in the data, if there are detectable features that
give a major contribution, if there are similarities among
samples or whether there is presence of outliers. They do
not require information about class membership because
their aim is not to define a classification rule. Examples
are principal components analysis [25] and hierarchical
agglomerative cluster analysis [26]. In contrast, super-
vised methods require information on class membership
because their purpose is explicitly to build up a classifier.
They are usually constructed using a portion of the sam-
ples available (training set), and their performance tested
using the remaining ones (test set). Examples are k-near-
est neighbour (KNN) [24], discriminant analysis [27] and
support vector machines [28, 29, 30, 31]. While KNN and
DA are very well known techniques that are widely used
because they easy to apply, the use of SVMs is not wide-
spread yet, in spite of its many attractive features. Primar-
ily, the specific theoretical foundation of the method
(structural risk minimisation principle) equips SVMs with
greater generalisation ability and justifies their employ-
ment especially when there are few samples available for
classes modelling. This relates to the case under investi-
gation, as only a total of 20 samples replicated 3 times are
available. Other attractive features depending to the struc-
ture of the embedded SVMs optimisation problem are:
a) its robustness when working with datasets having low
sample/variables ratios; b) the generation of a completely
reproducible solution in reference to the parameters of the
classifiers; c) the possibility of drawing class boundaries
of various complexity by replacing the kernel, which rep-
resents the “core” of the function to optimise. For the case
described in this application, feature a) is particularly rel-
evant because only replicates of 10 samples will be se-
lected for modelling each of the classes against a number
of variables equal to 11. In fact, DA is known to under-
perform in such circumstances, hence requiring a prior step

of variable reduction. In contrast, features b) and c) may
justify the use of SVMs in most complex situations, as an
alternative to neural networks (NN), as this latter tech-
nique has known drawbacks in terms of reproducibility
and generally needs a greater amount of training samples.
However, despite these multiple advantages, some studies
report how SVMs may not automatically provide the best
solution particularly when dealing with well-behaved data
distributions [17, 32]. Because in principle prior informa-
tion on the complexity of the data may not be available,
an approach using in parallel DA and SVMs is preferred,
and the outcomes of both the techniques tested and com-
pared.

Principal components analysis

PCA is a widespread multivariate technique that decom-
poses the data matrix S into scores T and loadings P, ac-
cordingly to the relation:
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Fig. 3 Flow chart of the pre-processing phase developed for pre-
paring CE data to pattern recognition



While T describes trends among the samples, P describes
trends among variables. Scores and loadings are ordered
in terms of quantitative significance that is proportional to
their eigenvalue, which can also be represented more
straightforwardly as %variance or %information. Hence
PCA can be employed as a method of variable reduction
by retaining the first few principal components. More-
over, visual inspection of the plots generated using scores
and loadings provides a quick and highly informative
means for investigating relationships between samples
and variables respectively, and may be helpful for the
identification of clusters related to a certain feature or for
detecting potential outliers.

Hierarchical agglomerative cluster analysis

This technique is often used for exploratory purposes be-
cause it allows the visualisation of the overall result in the
form of a dendrogram that illustrates the relationships be-
tween samples. The procedure starts by identifying a
number of groups equal to the number of samples that
form the dataset, and through an iterative procedure it
merges the clusters that are most similar, until reaching a
unique cluster collecting all the instances in the final step.
If one wants to identify specific clusters, a prior level of
similarity or distance can be set as threshold, after which
the procedure stops. The adoption of different methods for
measuring the similarity amongst samples and for linkage
may lead to different results; therefore, it is advisable to
compare the outcomes using several approaches. A method
to measure the quality of a clustering solution can be by
means of the cophenetic correlation coefficient that is the
correlation between the original distances between the
samples and those that result from the cluster configura-
tion. This coefficient varies in the range (0,1) and values
above 0.75 are usually regarded to be good. Details on the
algorithm are described elsewhere [24].

Discriminant analysis

Discriminant analysis by means of Mahalanobis distance
is a common tool for assigning the class membership to
unknown samples. The Mahalanobis distance of sample i
to class A is defined by Eq. (6):

(6)

where xi is the sample to classify, and and QA are the
centroid and variance–covariance matrix of class A re-
spectively. This equation is computed for each class in the
dataset and the sample assigned to that one for which the
distance is the lowest. In comparison to the Euclidean dis-
tance from the class centroid, which is the simplest form
of classification, the Mahalanobis distance offers the ad-
vantage of taking into account the dispersion of one class
by implementing the variance–covariance matrix in its
formulation. However, a major drawback is that the ratio

of samples to variables has to be high for this technique to
work well, and in any case the number of variables cannot
exceed the number of samples because the variance–co-
variance matrix would not have an inverse. Hence a method
of variable reduction is often adopted prior to the use of DA,
with a possibility being to use the scores obtained from
PCA after estimation of the optimal number of compo-
nents for modelling the data instead of the raw readings.

Support vector machines

The SVMs algorithm derives the classification rule using
only a fraction of the samples in the dataset, which are
called support vectors (SVs) and are typically those lying
nearby the class boundary. In its simplest form (SVMs dot
product), the rule for classifying a new instance x is ex-
plicitly expressed as function of the support vectors, by
means of Eq. (7):

(7)

where y (=±1) is the class label assigned that depends on
the sign of the function within the parenthesis. In the
equation, si is a generic SV and the coefficients αi and b are
the solution to an optimisation problem. The absolute value
of the function represents a kind of confidence level, since
the higher its value, the stronger the SVMs algorithm be-
lieves one sample to belong to a specified class. In this
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Fig. 4 a The SVMs optimisation problem. The optimal separating
hyperplane is that one maximising the distance between the class
boundary and the support vectors. SVs (circled) are those samples
both lying on the margin and misclassified as no hyperplane can
spot them in the proper class, because data are not completely lin-
early separable. b VC dimension of a classifier: this is defined as
the maximum number of training samples that can be spotted in
their proper class, given any arbitrary class labelling. In 2 dimen-
sions, given 3 training samples, a line suffices to correctly separate
the instances for each of the 6 possible combinations. With four
training samples there will be two cases for which a classifier of
higher complexity will be required, which will correspond to a
higher VC dimension



form, SVMs determine the class boundary as the optimal
separating hyperplane between the classes, in the space of
the original variables. Theoretically, infinite hyperplanes
may possibly be found for separating the classes, but the
best is regarded to be the one that maximises the distance
(or margin) between the class boundary and the support
vectors (Fig. 4). The corresponding optimisation problem
for determining the parameters of the optimal separating
hyperplane is formulated as follows:

(8)

where xi and xj are two generic sample data vectors in the
training set, yi yj their labels (±1), and the function LD has
to be maximised with respect to the coefficientsα. These
coefficients will directly determine the disposition of the
class boundary, and will be non-zero only for the support
vectors, namely those samples lying at the very border be-
tween the two classes. The higher the coefficient, the big-
ger the influence of the sample on the determination of the
class boundary. Those samples lying away from the bound-
ary, which may form the majority of cases, will have α=0
and their removal will not influence the final solution.
Hence, the number of support vectors is a first relevant di-
agnostic parameter because it provides a rough idea of the
separability between the classes (fewer SVs means fewer
samples near the boundary). Besides, their number practi-
cally represents an upper bound to the validation error when
using a leave-one procedure: in fact, the samples that are
not termed as SVs are certainly spotted in the correct class
and their removal in validation will not change the struc-
ture of the classifier, hence generating the same result.
Notice that the optimisation problem as formulated in
Eq. (8) incorporates most of the attractive features of the
SVMs method as follows:

a) The input vectors xi and xj appear in the equation only
in the form of a scalar product. This reduces the dete-
riorating effect of data dimensionality and makes this
an advisable approach when the ratio of samples to
variables is low, where other classic techniques may
fail (e.g. DA). As a consequence, no prior step of vari-
able reduction needs to be implemented.

b) The equation to optimise has a convex profile that
shows only one minimum, which makes the final solu-
tion completely reproducible. A major drawback when
using other approaches such as neural networks is that
the profile of the function to optimise for estimating
the parameters often shows local minimums. The solu-
tion is therefore not completely reproducible because
the algorithm for optimisation can get stuck in differ-
ent minimums resulting in different values for the pa-
rameters of the classifier [33].

c) It is possible to substitute the simple dot product of the
input vectors with a product of other functions (kernel
functions) that leave the nature of the optimisation prob-
lem unaltered but allow the determination of complex
class boundaries. When dealing with composite data dis-
tributions this can be a powerful feature to exploit.

In addition to these features, the use of SVMs is however
properly justified because the optimisation problem in
Eq. (8) relates directly to the structural risk minimisation
principle (SRMP), which represents the theoretical founda-
tion of the method. This principle equips SVMs with greater
generalisation ability and make this approach attractive
especially when the amount of information available is lit-
tle, namely when there are few samples available. SRMP
is formulated as follows:

(9)

where is the generalisation error (the minimum achiev-
able errors), is the training error, and dVC is the Vap-
nik–Chervonenkis dimension that relates to the complexity
of the classifier (Fig. 4). This principle defines a theoretical
upper bound to the error corresponding to a probability
of 1–η. According to the formulation, the discrepancy be-
tween and will decrease using a higher number of
samples, namely with using more information, and will de-
crease with using a more complex classifier because of a
higher risk of over-fitting the training data. SVMs exploit
this principle, since the algorithm is focussed on minimis-
ing the entire left-hand member of the SRMP formulation,
rather than minimising the training error (empirical risk
minimisation principle) as all the other supervised pattern
recognition algorithms normally do. Thus, the optimal so-
lution may correspond to a non-minimum for the training
error . Equation (8) relates to SRMP because this is
reached trough the learning algorithm by maximising the
margin which itself constitutes an upper bound to the
dVC dimension of the classifier. According to the SRMP for-
mulation, the maximisation of the margin in the SVMs
learning procedure generates a classifier with lower dVC (the
whole quantity under square root on the right member of
Eq. (9) reduces) and greater generalisation ability.

Computation

CE sample profiles were acquired in ANDI format and
transferred to Matlab 6.0 (MathWorks Inc.) using The
NetCDF Toolbox [34]. Peak detection and quantification
was carried out using the chromatographic integration soft-
ware Chromint [22], and SVMs was performed using the
OSU-SVM Classifier Toolbox [35]. All remaining pro-
cessing were carried out by means of in-house Matlab
routines.

Results

The 96 samples were split into a training set and a test set
of 60 samples (20 replicates 3 times) and 36 samples (12
replicated 3 times) respectively. Samples of training set
were used to identify the peaks of the species to retain in
the analysis as columns of the sample data matrix S and
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for the construction of the classifiers. According to the
procedure outlined in the Section “Sample matrix”, visual
inspections of the profiles and analysis of the variation
range for matching suggested to set MF=90% and
PST=87.5 s as optimal trade-off. Particularly, this value
for PST roughly corresponded to the maximum delay ob-
served in the release of similar peaks among replicates.
This led to the formation of an initial sample data matrix
for the training set STRAINING 60×51 (samples×peak areas).
The majority of peaks were removed because they ap-
peared in less than 30 training set samples, leading to a re-
duction of the columns from 51 down to 11. A minor frac-
tion of samples also had to be removed, because less than
6 out of the 11 peaks used to describe the system had non-
zero peak areas, leading to a final size of STRAINING of
55×11. Finally, in order to prepare the data for pattern
recognition, the sample matrix was normalised along
rows and standardised along the columns. Subsequently, a
second matrix STEST was built up: the same 11 peaks iden-
tified in the training set were retained as descriptors of the
system, and the data standardised according to the mean
and population standard deviation of the variables in
STRAINING. For three samples less than 6 non-zero peak ar-
eas were found; hence, these were removed and the ma-
trix STEST reduced from a size of 36×11 to a size of 33×11.
Table 2 shows average retention time and sample fre-
quency of the peaks retained for both the datasets.

Explorative analysis

Principal components analysis

Table 3 shows the outcomes of PCA extraction on the
training set. The first PCs that span the majority of vari-
ance in the system can be used to visualise major trends in
the dataset. However, further PCs may still be important
because they are possibly associated to the classes of in-
terest. The optimal combination of PC scores for visual-
isation may be determined manually by trying several

arrangements or with the help of some parameters that
quantify the separability of the classes along each score.
For instance, a discriminant factor (DF) based on the
analysis of the variance can be calculated as follows:

(10)

where i refers to i-th PC score, SSWAc and SSWCh are the
within groups sum of squares for the two classes (Ac=
acute, Ch=chronic), and SSTOT is the total sum of squares.
Higher DFi implies a higher variation when passing from
a group to another, hence indicating the i-th score to be
more useful for distinguishing the classes. When using
more scores at the same time, it must also be verified that
the selected ones discriminate between complimentary
parts of the system, which can be done by setting up a
stepwise procedure if the number of possible combina-
tions is relatively high.

For the training set, Table 3 indicates that the scores of
PC2 poorly contribute (DF%=1.35), while the scores of
PC1, PC3 and PC4 that have the higher DF% are more
appropriate (Fig. 5). Here the two classes can be distin-
guished with Ac cases forming a major cluster on the cen-
tre-left and Ch cases more dispersed on the centre-right.
However, a consistent part of the information in the
dataset is not represented in the plot, mainly because of
the exclusion of PC2 that alone represents roughly a quar-
ter (22.55%) of the whole amount of information avail-
able. This means that while the two classes can be spotted,
this feature in not clearly dominant in the training set.

A similar analysis can be conducted on the test set.
Scores are computed by projecting these samples in the
principal component space of the training set through the
respective loadings matrix rather than applying PCA di-
rectly on the test set, because the training set is employed
for constructing the model. This also allows a more con-
sistent comparison between the distributions of the two
subsets of data. Table 3 emphasises how various PCs can
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Table 2 Average retention time (RT) and sample frequency of the
peaks used as variables to describe the system

Peaks Training set Test set

No. Average Freq. Freq. Freq. Freq. 
RT (s) (no.) (%) (no.) (%)

1 342.22 60 100.00 36 100.00
2 352.81 60 100.00 36 100.00
3 580.35 50 83.33 25 69.44
4 620.01 33 55.00 25 69.44
5 667.50 31 51.67 16 44.44
6 687.52 34 56.67 17 47.22
7 695.91 43 71.67 23 63.89
8 735.31 54 90.00 36 100.00
9 786.74 41 68.33 24 66.67

10 923.51 54 90.00 29 80.56
11 1,073.50 37 61.67 27 75.00

Table 3 Outcomes of PCA extraction and discriminant factors
calculated for each PC score both for the training and the test set,
in reference to the two classes of interest. DF% is not calculated
for PCs of highest order because they span a minimal amount of
system variance

N. E-value Var. % Cum. DFtraining % DFtest %
PCs Var. %

1 172.30 28.48 28.48 29.21 90.77
2 136.41 22.55 51.03 1.35 11.81
3 102.34 16.92 67.94 26.51 0.03
4 52.63 8.70 76.64 7.66 9.44
5 46.38 7.67 84.31 7.13 0.44
6 28.81 4.76 89.07 2.75 19.05
7 26.69 4.41 93.48 1.84 7.05
8 21.39 3.54 97.02 – –
9 11.26 1.86 98.88 – –

10 6.78 1.12 100.00 – –
11 0.00 0.00 100.00 – –



be considered for visualisation as they display a rather
high DF%. These values suggest the scores plot generated
by using PC1, PC2 and PC6 as optimal combination (Fig. 6).
Here the classes can be determined even more clearly than
in the previous plot, with class Ch still showing higher
dispersion than class Ac. Noticeably, there appears to be
some degree of heterogeneity between the samples in the
two subsets of data, because the classes in the test set
seem more separable. This emerges by comparing the two
scores plots as well as by comparing the DF% for the
same PC score, which in the majority of cases is much
higher for the test set.

Hierarchical agglomerative cluster analysis

HACA was performed using both the Euclidean and the
Mahalanobis distance for measuring the similarity among
couples of samples and with average linkage for merging
the clusters. Figure 7 shows the dendrogram for the train-
ing set using the Euclidean distance, which resulted in a
cophenetic correlation coefficient equal to 0.908 (the Ma-
halanobis distance generated similar outcomes with a cor-
relation value of 0.886). First, it is possible to observe that
various triplets corresponding to replicates. A few repli-
cates cluster in pairs with the third sample appearing in a
close neighbouring cluster. However, in a few cases this
expected feature does not emerge. This may be due either
to the experimental signal of the sample that significantly
differs from other replicates, or to a fault within the peak
detection routine. The outcome of HACA can provide an
important feedback both for the experimental and the data
processing phases. Another major feature that emerges is
clustering of samples according to the class membership.
For example, a cluster collecting 21 instances of class A
(from A210 A to A307C) is represented in the top of Fig. 7.
Hence, HACA further confirms that the type of dosage is
a feature that clearly contributes to the structure of the
dataset. However, the level of the dosage does not appear
as a clear feature determining the formation of sub-clus-
ters.

Classification

Discriminant analysis

For this technique to work well, the number of samples
must be significantly larger than the number of variables.
When the number of variables exceeds the number of
samples, the variance–covariance matrix has no an in-
verse and consequently the Mahalanobis distance cannot
be computed. There are 30 samples for each class in the
training set, but these are reduced down to 10 if replicates
are not considered, while the number of variables equals
11. Under such circumstances it is preferable to use a vari-
able reduction by PCA, in which the first few scores are
the input to the classifier. The estimation of the optimal
number of components to retain in the model is performed
by setting up a cross-validation procedure: one sample is
removed from the training set, and the model using a de-
fined number of PC scores is constructed using the re-
maining samples. The prediction ability of the model is
tested on the sample left out, and the procedure repeated
for all samples in the dataset and for each possible model
constructed using a different number of PC scores. Table 4
shows that the minimal number of errors occurs with us-
ing either 6 and 7 PCs. Six PCs are preferred because they
generate a slightly simpler model. The centroids of the
two classes and the variance–covariance matrices are then
calculated using the full training set. Figures 8 and 9 show
the distance plot for the training and the test set respec-
tively, in which the dotted bar represents the class bound-

2015

Fig. 5 scores plot of the training set in the space of the compo-
nents 1, 3 and 4 that together account for the 54.1% of variance in
the dataset. Most of the instances of class Ac distribute in a major
cluster on the centre-left with fewer samples disposed more ran-
domly in the centre. Instances of class Ch show higher dispersion

Fig. 6 Scores plot of the test set projected in the space compo-
nents 1,2 and 6 of the training set. These components together ac-
count for 55.79% of variance in the dataset. Here the two classes
of interest can clearly be spotted in two different clusters, with
class Ch, on the centre-right, again characterised by higher disper-
sion
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ary. This type of plot can be theoretically divided in four
sub-regions: top left and bottom right, in which samples
are assigned to one class with high degree of confidence
as the difference between the two distances is significant;
bottom left, in which assignment is ambiguous as samples
may fit both classes well; and finally top-right is a region
where potential outliers may occur, as they badly fit both
the classes [24].

For the training set, the classifier results in 3 errors
(94.55% correctly classified). Quantitatively the perfor-
mance is rather satisfactory because especially many of the
instances of class Ch lie rather far from the boundary, on
the bottom-right. The performance on the test is slightly

Fig. 7 Dendrogram on the in-
stances of training set, gener-
ated using Euclidean distance
and average linkage. Many
replicates cluster at the earliest
stages forming triplets and
duets, indicating an acceptable
level of reproducibility. Major
clusters are formed according
to the class membership, while
the dosage level within each
class does not seem to emerge
as a feature that contributes to
clustering

Table 4 Number of errors and
% of correct classifications for
a DA model implementing an
increasing number of PC
scores as input, by using a
leave-one-out method as proce-
dure for validation. This sug-
gests using a model with 6 PC
scores

PCs no. No. Err. % C.C.

1 18 70.00
2 9 85.00
3 11 81.67
4 9 85.00
5 8 86.67
6 5 91.67
7 5 91.67
8 7 88.33
9 7 88.33

10 7 88.33
11 7 88.33
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improved. Only a sample corresponding to C315 is mis-
classified (96.97% correctly classified). In contrast, the
overall level of confidence worsens, as in the plot of Fig-
ure 9 samples tend to be closer to the class boundary. The
improved performance on the test set can be interpreted in
light of the scores plot in Figs. 5 and 6: DA is a classifier
that works well when the overall data distribution is fairly
simple (e.g. two partially overlapped classes where data
are normally distributed). When applied to the test set, the
model improves its performance because the simpler data
distribution (Fig. 6) matches with simple class boundaries
that DA draws between the classes. However the overall
worsening in confidence depends on the fact that the

model is trained with the instances as in Fig. 5, which is
partly heterogeneous to the test set.

Support vector machines

If from exploratory analysis (HACA and PCA), the distri-
bution of the data is thought to be not too complex, it is
preferable to rely on the simplest form of SVMs (dot
product), without employing more sophisticated SVMs
classifiers based on the replacement of the kernel in Eq. (7).
The SVMs dot product will be able to operate in the space
of the original variables of the sample matrix S possibly
picking up structure in the data that DA would be unable
to model so well, resulting also in a comparably easily un-
derstood classification rule [Eq. (6)]. Moreover, this form
of SVMs classifier is rather easy to manage, as it requires
the adjustment of only one parameter, which is the penalty
error C. This bounds the coefficients of the optimisation
problem according to:

(11)

where C is inversely proportional to the error tolerance for
the training samples: including no error (no upper bound
to theα multipliers) corresponds to find a hyperplane that
minimises the training error. However this may result in a
very narrow margin that indicates poor generalisation abil-
ity. Generally, we want to trade-off between these two as-
pects, and therefore it is sensible to include some error
tolerance. A possible way of tuning this parameter is to
compare different classifiers by implementing a valida-
tion procedure similar to the one described for the selec-
tion of the scores in Section “Discriminant analysis” un-
der “Classification”. The classifier with best prediction
ability would then be selected. A second possible approach
is to consider the profile of the number of support vectors
as function of C: in practical applications it is observed

� � �α≤ ≤

Fig. 8 Plot of the Mahalanobis distance from class centroids on
the training set. Samples are well separated on the basis of the
class membership with good level of confidence especially for the
instances of chronic Ch that lie further away from the boundary.
Samples misclassified for class Ac correspond to those lying away
from the major cluster on the centre-left of Fig. 5

Fig. 9 Plot of the Mahalanobis distance from class centroids on
the test set. Qualitatively the performance improves with only one
sample misclassified because classes show simpler distribution
(Fig. 6). However the overall level of confidence decreases in com-
parison to the training set of Fig. 8, as samples lie closer to the
boundary

Fig. 10 Profile of the number of SVs as function of the penalty er-
ror C. Smaller C implies lower number of SVs because the margin
gets narrower, involving less samples in the determination of the
optimal separating hyperplane. The arrow indicates the most ad-
visable value



that the number of SVs decreases as C increases, until a
minimum is maintained when a certain threshold for C is
overcome. A good choice may be this threshold because it
corresponds to the lowest penalty error value (that means
wider margin and better generalisation ability according
to SRMP) given the lowest number of SVs, which indi-
cates a good separability between the classes because
fewer samples lie nearby the boundary. Figure 10 shows
this relation, suggesting an optimal value of logC=0.8 cor-
responding to 10 SVs out of 55 samples. The number of
SVs indicates a good separability of the classes as they
compose only 2/11 of the training set. Even though the
class boundary is calculated in the space of the original
variables, the projection of the samples in the scores plot
of Fig. 11 illustrates how the support vectors mainly span
along the interclass space, consistently with the theoreti-
cal formulation of the method.

This is also consistent on the experimental side, be-
cause these samples correspond to the instances at higher
dosage for class Ch and at lower dosage for class Ac that
are likely to be the most similar, thus lying nearby the
boundary (Table 5).

Also it is interesting to notice how for class Ac, only
one of the four SVs falls in the major cluster on the left.
This emphasises how SVMs strives in modelling the re-
maining samples that spread on the centre-right of the
scores plot. As a result, when checking the performance
on the training set, perfect classification is obtained. Fig-
ure 12 reports the value of the decision function of Eq. (6):
this takes a sign according to class membership, express-
ing also a relatively good level of confidence for the vast
majority of the instances. Figure 13 reports the results on
the test set. The performance is much poorer and all the
misclassifications (8 for 75.76% in overall performance)
are concentrated in class Ch. This can be qualitatively ex-
plained by the partial lack of homogeneity between the
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Fig. 11 SVs selected in the training set, which will determine the
structure of the SVMs dot product classifier. Notice that they dis-
pose mainly along the inter-class space, qualitatively indicated by
the dotted oval. For class Ac, only one SV falls in the cluster on
the centre-left where the majority of samples of this class lie. The
remaining three are involved in modelling the smaller portion of
samples on the centre-right

Table 5 Distribution of SVs within each class in relation to the
dosage level. According to theory, SVs are those samples lying
nearby the boundary that, practically, correspond to those with
higher dosage levels for class Ch and lower level for class Ac (in
fact, levels of 1.125 mg kg–1 and 1.5 mg kg–1 for Ac and 1 mg L–1

for Ch are not represented). The corresponding α coefficients of
the separating hyperplane also indicate the most influential sam-
ples. This further confirms this trend as they correspond to C101 C
and A413 A

SV α Dosage level

A104 C 2.65 0.75 mg kg–1

A104 B 2.23 0.75 mg kg–1

A504 C 1.68 0.75 mg kg–1

A413 A 6.31 0.375 mg kg–1

C101 C 5.67 7 mg L–1

C213 C 2.76 7 mg L–1

C301 B 1.97 7 mg L–1

C202 B 1.79 3 mg L–1

C302 A 0.59 3 mg L–1

C114 A 0.087 3 mg L–1

Fig. 12 Values of the SVMs decision function as in Eq. (6) for the
training set. All samples are correctly classified (sign of the func-
tion) because SVMs strive to model this set of data nearby the
boundary, where DA fails. Lower confidence is shown for in-
stances lying in this region (support vectors)

Fig. 13 Values of the SVMs decision function as in Eq. (6) for the
test set. The SVMs classifier fails to correctly assess the class
membership of class Ch where all the errors are concentrated



two subsets of data, as emphasised in the Section “Princi-
pal components analysis” under “Explorative analysis”,
and by the fact that class Ch shows higher dispersion in
both the subsets. Its instances in the test set seem to be af-
fected more by the particular distribution of the support
vectors of class Ac.

Conclusions

Unsupervised pattern recognition techniques showed that
the type of cadmium administration, either acute or chronic,
has an important influence on the data structure that can
clearly be identified in urine profiles obtained by capillary
electrophoresis. The scores plots (Figs. 5 and 6) suggest
the presence of a major cluster related to instances of class
Ac but with instances of class Ch showing higher vari-
ability. HACA (Fig. 7) also suggests major clusters in re-
lation to class membership. However, it does not result in
the formation of sub-groups according to dosage level. This
sub-feature within each of the two classes is much harder
to spot, but this may be partly explained with the limited
size of the dataset, where only a maximum of 4 samples
were implemented for each dosage level (Table 1). More-
over, HACA suggests an acceptable level of reproducibil-
ity for the experimental methodology and the computa-
tional approach: replicate samples often cluster showing
high similarity. Major differences in a few cases may be
either due to an actual difference in the profile or to a fault
in the peak detection routine. In this way HACA provides
useful feedback because, if considering a higher number
of replicates in further analysis (a number of three is not
sufficient for defining a sample reference profile), those
clustering afar from the majority might be removed.

As far as supervised pattern recognition is concerned,
both DA and SVMs show that it is possible to discrimi-
nate samples on the basis of the class membership. A sub-
stantial difference is that DA is applied on sample matrix
S after variable reduction by means of PCA (the first 6 PC
scores are retained to feed the classifier); SVMs are ap-
plied on S in the space of the original variables. The two
techniques lead however to complementary results be-
cause while SVMs outperform DA on the training set
(C.C.DA=94.55% versus C.C.SVM=100%), DA performs bet-
ter on the test set (C.C.DA=96.97% versus C.C.SVM=
75.76%). This can be explained by the partial lack of ho-
mogeneity between the two sets of data, on which the two
scores plots supply an insight: SVMs perform better on
the training set because this approach actively models the
small fraction of samples belonging to class Ac that are
far from the major cluster on the centre-left in Fig. 5. Ac-
cording to SVMs theory, the support vectors that define
the classification rule are found along the interclass space
and in fact three out of four of the SVs for class Ac are
taken from the centre-right region of the scores plot, with
the remaining one located in the cluster on the centre-left
(Fig. 11) where the majority of samples for this class lie.
DA is unable to model this distribution so well. Signifi-
cantly, some of the misclassified instances of DA in the

training set correspond in fact to support vectors. In con-
trast, the test set shows a simpler distribution (Fig. 6), and
DA performs better because the classifier in the training
phase is equally influenced by all training samples, the
majority of which do not lie along the class boundary.
Note also that all the misclassified instances for SVMs on
the test set belong to class Ch. This can qualitatively be
explained by the higher dispersion of this class, whose in-
stances are affected by the particular distribution of the
support vectors for class Ac on the centre-right.

Other studies [17, 32] suggest that SVMs may not au-
tomatically provide the best solution when dealing with
simple data distributions. However, prior information is
often not available because exploratory analysis (e.g. with
PCA or HACA) is not performed, or factors that are out of
control (e.g. the appearance of other analytes in urine pro-
files) may lead to a sudden increasing in complexity of the
data. Hence, especially when a limited number of samples
are available for constructing the classifier, the use of
SVMs is justified because of their greater theoretical gen-
eralisation ability due to the embodied SRMP and their
robustness to low sample-to-variable ratios that allows
working in the space of the original variables. Prior steps
of variable reduction may result in omitting relevant in-
formation on the system, and the determination of these
features (e.g. number of PCs to model the data) can some-
times be ambiguous. In case the complexity of the data
sensitively increases, other kernel functions can be imple-
mented in the SVMs optimisation problem that will be
able to draw more appropriate class boundaries.
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